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The possibility of the appearance of ∆(1232) isobars in neutron star matter and the so called ∆
puzzle is investigated in a relativistic quark model where the confining interaction for quarks inside
a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector
harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing
additional quark couplings to σ, ω, and ρ mesons through mean-field approximations. The hyperon
couplings are fixed from the hyperon optical potentials at saturation density. Effects of moderate
variations in the ∆-ω and ∆-ρ coupling strength on the critical density of forming ∆ resonances and
on the mass-radius relation of neutron stars is studied. We have also made an attempt to study
the impact of in-medium mass variations of the ∆ baryon on the structure of neutron stars. It is
observed that within the constraints of the mass of the precisely measured massive pulsars, PSR
J0348+0432 and PSR J1614-2230, neutron stars with a composition of both ∆ isobars and hyperons
is possible in the present model.

PACS numbers: 26.60.+c, 21.30.-x, 21.65.Qr, 95.30.Tg

I. INTRODUCTION

The investigations pertaining to the formation of
baryons heavier than the nucleon at the core of neutron
stars and the effects of such formation on the mass and
radius of neutron stars is a subject of active research
in nuclear astrophysics. It is expected that high den-
sity nuclear matter may consist not only of nucleons and
leptons but also several exotic components such as hy-
perons, mesons as well as quark matter in different forms
and phases. While many studies have been conducted
to address the appearance of hyperons and on the so
called hyperon puzzle [1–18], little work has been done
to study the appearance of ∆ (1232) isobars in neutron
stars. An earlier work [1] indicated the appearance of
∆ at much higher densities than the typical densities of
the core of neutron stars and hence was considered of
little significance to astrophysical studies. However, re-
cent studies [19–26] suggest the possibility of an early
appearance of ∆ isobars. In fact, the critical density
ρcrit∆− of appearance of ∆− in these studies is around 2
to 3 times the nuclear saturation density ρ0. Such an
early appearance leads to the softening of the equation
of state (EOS) of dense matter consequently reducing the
maximum mass of neutron stars below the current obser-
vational limit of 2.01± 0.04 M⊙ (PSR J0348+0432) [27]
and 1.928± 0.017 M⊙ (PSR J1614-2230) [28, 29].

In the present work, we would like to address the ∆-
puzzle in a relativistic quark model, alternatively called
the modified quark-meson coupling model (MQMC). The
MQMC model is based on a confining relativistic in-
dependent quark potential model rather than a bag to
describe the baryon structure in vacuum. The baryon-
baryon interactions are realized by making additional
quark couplings to σ, ω, and ρmesons through mean-field
approximations. This relativistic quark model has been
successfully applied to various domains of nuclear and
high energy physics including the baryon spectroscopy

[30], electromagnetic form factors of nucleons [31], mag-
netic moments of the octet baryons [32], nucleon struc-
ture functions in deep inelastic scattering [33], symmetric
[34] and asymmetric [35] nuclear matter. More recently
this framework has been used to study the equation of
state of neutron star matter with hyperon degrees of free-
dom and the properties of Λ and Ξ0 hypernuclei [36, 37].
Studies on the effect of the nucleon charge radius on the
mass and radius of neutron stars [38] and developing an
equation of state within the constraints set by GW170817
observations [39] are some other recent works undertaken
using this model.

In the present work we include the delta isobars (∆−,
∆0, ∆+, ∆++) together with hyperons as new degrees
of freedom in dense hadronic matter relevant for neutron
stars. The interactions between nucleons, ∆’s and hyper-
ons in dense matter is studied and the possibility of the
existence of the ∆ baryon at densities relevant to neutron
star core as well as its effects on the mass of the neutron
star is analysed. In free-space, the two-body nucleon-
nucleon (NN) interaction is reasonably well known below
the pion production threshold. In-medium NN interac-
tion even at saturation density, especially the iso-vector
part, spin-isospin and spin-orbit coupling are not well
known. The saturation properties of nuclear matter at
ρ0 and properties of finite nuclei have not fixed all these
properties of NN interaction yet. The extrapolation of
such interactions to densities beyond nuclear saturation
density is quite challenging. The hyperon-nucleon inter-
action are known experimentally, but large uncertainties
exist. Studies indicate a repulsive Σ nuclear potential
and a shallow attractive potential for Ξ. We use the hy-
peron optical potential values of UΛ = −28 MeV [40, 41],
UΣ = 30 MeV [9, 11, 42–44] and UΞ = −10 MeV at satu-
ration respectively for the Λ, Σ and Ξ hyperons. We also
study the effect of variation of the UΞ from −10 to −18
MeV [9–11, 42, 43] on the star properties.

Due to lack of microscopic constraints on the coupling
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of the ∆ baryon with ω and ρ mesons, many workers
take the coupling strength of the mesons with ∆ the
same as that of the nucleons. Studies [45] based on the
quark counting argument suggest universal couplings be-
tween nucleons, ∆ isobars and mesons, giving the value
of xω∆ = gω∆/gωN = 1 and xσ∆ = gσ∆/gσN = 1. Theo-
retical studies of Gamow-Teller transitions and M1 giant
resonance in nuclei by Bohr and Mottelson [46] observed
a 25 − 40% reduction in transition strength due to the
couplings to ∆ isobars, indicating weaker coupling of the
isoscalar mesons to the ∆ isobars. Further, the difference
between xσ∆ and xω∆ was found to be xσ∆ − xω∆ = 0.2
in Hartree approximation [47]. In the present work we
fix the ∆-ω coupling with the value of xω∆ = 0.7. We
also study the effect of moderate variations in the value
of xω∆ and xρ∆ on the critical density of appearance of
∆− baryon as well as on the mass and radius of neutron
stars.
The paper is organized as follows: In Sec. II, a brief

outline of the model describing the baryon structure in
vacuum is discussed. The baryon mass is then realized
by appropriately taking into account the center-of-mass
correction, pionic correction, and gluonic correction. The
EOS with the inclusion of the ∆ isobars and the hyperons
is then developed in Sec. III. The results and discussions
are made in Sec. IV. We summarize our findings in Sec.
V.

II. MODIFIED QUARK MESON COUPLING

MODEL

The modified quark-meson coupling model has been
successful in obtaining various bulk properties of sym-
metric and asymmetric nuclear matter as well as hyper-
onic matter within the accepted constraints [34–36]. We
now extend this model to include the ∆ isobars (∆−,
∆0, ∆+, ∆++) along with nucleons and hyperons in neu-
tron star matter under conditions of beta equilibrium and
charge neutrality. We begin by considering baryons as
composed of three constituent quarks confined inside the
hadron core by a phenomenological flavor-independent
potential, U(r). Such a potential may be expressed as an
admixture of equal scalar and vector parts in harmonic
form [34],

U(r) =
1

2
(1 + γ0)V (r),

with

V (r) = (ar2 + V0), a > 0. (1)

Here (a, V0) are the potential parameters. The confining
interaction provides the zeroth-order quark dynamics of

the hadron. In the medium, the quark field ψq(r) satisfies
the Dirac equation

[γ0 (ǫq − Vω − 1

2
τ3qVρ)− ~γ.~p− (mq − Vσ)− U(r)]

×ψq(~r) = 0 (2)
where Vσ = gqσσ0, Vω = gqωω0 and Vρ = gqρb03. Here
σ0, ω0, and b03 are the classical meson fields, and gqσ, g

q
ω,

and gqρ are the quark couplings to the σ, ω, and ρ mesons,
respectively. mq is the quark mass and τ3q is the third
component of the isospin matrix. We can now define

ǫ′q = (ǫ∗q − V0/2) and m′
q = (m∗

q + V0/2), (3)

where the effective quark energy, ǫ∗q = ǫq − Vω − 1
2τ3qVρ

and effective quark mass, m∗
q = mq − Vσ. We now intro-

duce λq and r0q as

(ǫ′q +m′
q) = λq and r0q = (aλq)

− 1
4 . (4)

The ground-state quark energy can be obtained from
the eigenvalue condition

(ǫ′q −m′
q)

√

λq
a

= 3. (5)

The solution of (5) for the quark energy ǫ∗q immediately
leads to the mass of baryon in the medium in zeroth order
as

E∗0
B =

∑

q

ǫ∗q . (6)

We next consider the spurious center-of-mass correc-
tion ǫc.m., the pionic correction δMπ

B for restoration of
chiral symmetry, and the short-distance one-gluon ex-
change contribution (∆EB)g to the zeroth-order baryon
mass in the medium.
We have used a fixed center potential to calculate the

wave functions of a quark in a baryon. To study the prop-
erties of the baryon constructed from these quarks, we
must extract the contribution of the center-of-mass mo-
tion in order to obtain physically relevant results. Here,
we extract the center of mass energy to first order in the
difference between the fixed center and relative quark co-
ordinate, using the method described by Guichon et al.

[48, 49]. The centre of mass correction is given by:

ec.m. = e(1)c.m. + e(2)c.m., (7)

where,

e(1)c.m. =

3
∑

i=1

[

mqi
∑3

k=1mqk

6

r20qi (3ǫ
′
qi +m′

qi)

]

, (8)
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e(2)c.m. =
a

2

[

2
∑

kmqk

∑

i

mi〈r2i 〉+
2

∑

kmqk

∑

i

mi〈γ0(i)r2i 〉 −
3

(
∑

kmqk)
2

∑

i

m2
i 〈r2i 〉

− 1

(
∑

kmqk)
2

∑

i

〈γ0(1)m2
i r

2
i 〉 −

1

(
∑

kmqk)
2

∑

i

〈γ0(2)m2
i r

2
i 〉 −

1

(
∑

kmqk)
2

∑

i

〈γ0(3)m2
i r

2
i 〉
]

. (9)

In the above, we have used for i = (u, d, s) and k =
(u, d, s) and the various quantities are defined as

〈r2i 〉 =
(11ǫ′qi +m′

qi)r
2
0qi

2(3ǫ′qi +m′
qi)

, (10)

〈γ0(i)r2i 〉 =
(ǫ′qi + 11m′

qi)r
2
0qi

2(3ǫ′qi +m′
qi)

, (11)

〈γ0(i)r2j 〉i6=j =
(ǫ′qi + 3m′

qi)〈r2j 〉
3ǫ′qi +m′

qi

. (12)

The pionic corrections in the model for the nucleons
become

δMπ
N = −171

25
Iπf

2
NNπ, (13)

where fNNπ is the pseudo-vector nucleon-pion coupling
constant. Taking wk = (k2 +m2

π)
1/2, the Iπ becomes

Iπ =
1

πmπ
2

∫ ∞

0

dk.
k4u2(k)

w2
k

, (14)

with the axial vector nucleon form factor given as

u(k) =
[

1− 3

2

k2

λq(5ǫ′q + 7m′
q)

]

e−k2r20/4 . (15)

The pionic correction for Σ0 and Λ0 become

δMπ
Σ0 = −12

5
f2
NNπIπ, (16)

δMπ
Λ0 = −108

25
f2
NNπIπ. (17)

Similarly the pionic correction for Σ− and Σ+ is

δMπ
Σ+,Σ− = −12

5
f2
NNπIπ . (18)

The pionic correction for Ξ0 and Ξ− is

δMπ
Ξ−,Ξ0 = −27

25
f2
NNπIπ . (19)

For ∆ baryon, the pionic correction is given by

δMπ
∆ = −99

25
f2
NNπIπ . (20)

The one-gluon exchange interaction is provided by the
interaction Lagrangian density

Lg
I =

∑

Jµa
i (x)Aa

µ(x) , (21)

where Aa
µ(x) are the octet gluon vector-fields and Jµa

i (x)
is the i-th quark color current. The gluonic correction can
be separated into two pieces, namely, one from the color
electric field (Ea

i ) and another from the magnetic field
(Ba

i ) generated by the i-th quark color current density

Jµa
i (x) = gcψ̄q(x)γ

µλai ψq(x) , (22)

with λai being the usual Gell-Mann SU(3) matrices and
αc = g2c/4π. The contribution to the mass can be written
as a sum of color electric and color magnetic part as

(∆EB)g = (∆EB)
E
g + (∆EB)

M
g . (23)

Baryon auu aus ass buu bus bss

N -3 0 0 0 0 0

∆ 3 0 0 0 0 0

Λ -3 0 0 1 -2 1

Σ 1 -4 0 1 -2 1

Ξ 0 -4 1 1 -2 1

TABLE I. The coefficients aij and bij used in the calculation
of the color-electric and and color-magnetic energy contribu-
tions due to one-gluon exchange.

Finally, taking into account the specific quark fla-
vor and spin configurations in the ground state baryons
and using the relations 〈

∑

a(λ
a
i )

2〉 = 16/3 and
〈∑a(λ

a
i λ

a
j )〉i6=j = −8/3 for baryons, one can write the

energy correction due to color electric contribution as
given in [36]

(∆EB)
E
g = αc(buuI

E
uu + busI

E
us + bssI

E
ss) , (24)

and due to color magnetic contributions, as

(∆EB)
M
g = αc(auuI

M
uu + ausI

M
us + assI

M
ss ) , (25)

where aij and bij are the numerical coefficients depending
on each baryon and are given in Table I. In the above,
we have

IEij =
16

3
√
π

1

Rij

[

1− αi + αj

R2
ij

+
3αiαj

R4
ij

]

,

IMij =
256

9
√
π

1

R3
ij

1

(3ǫ
′

i +m
′

i)

1

(3ǫ
′

j +m
′

j)
, (26)
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where

R2
ij = 3

[ 1

(ǫ
′

i
2 −m

′

i
2
)
+

1

(ǫ
′

j
2 −m

′

j
2
)

]

,

αi =
1

(ǫ
′

i +m
′

i)(3ǫ
′

i +m
′

i)
. (27)

The color electric contributions to the bare mass for nu-
cleon and the ∆ baryon are (∆EN )Eg = 0 and (∆E∆)

E
g =

0. Therefore the one-gluon contribution for ∆ becomes

(∆E∆)
M
g =

256αc

3
√
π

[ 1

(3ǫ′u +m′
u)

2R3
uu

]

. (28)

The details of the gluonic correction for the nucleons and
hyperons is given in [36].
Treating all energy corrections independently, the mass

of the baryon in the medium becomes

M∗
B = E∗0

B − ǫc.m. + δMπ
B + (∆EB)

E
g + (∆EB)

M
g . (29)

III. THE EQUATION OF STATE

The total energy density and pressure at a particular
baryon density, including all the members of the baryon
octet and the ∆ isobars, for the nuclear matter in β-
equilibrium can be found as

E =
1

2
m2

σσ
2
0 +

1

2
m2

ωω
2
0 +

1

2
m2

ρb
2
03

+
γ

2π2

∑

B

∫ kf,B

[k2 +M∗
B
2]1/2k2 dk

+
∑

l

1

π2

∫ kl

0

[k2 +m2
l ]

1/2k2dk, (30)

P = − 1

2
m2

σσ
2
0 +

1

2
m2

ωω
2
0 +

1

2
m2

ρb
2
03

+
γ

6π2

∑

B

∫ kf,B k4 dk

[k2 +M∗
B
2]1/2

+
1

3

∑

l

1

π2

∫ kl

0

k4dk

[k2 +m2
l ]

1/2
, (31)

where γ is the spin degeneracy factor for nuclear mat-
ter. For the nucleons and hyperons γ = 2 and for the ∆
baryons γ = 4. Here B = N, ∆, Λ, Σ±, Σ0, Ξ−, Ξ0

and l = e, µ.
The chemical potentials, necessary to define the β−

equilibrium conditions, are given by

µB =

√

k2B +M∗
B
2 + gωω0 + gρτ3Bb03, (32)

where τ3B is the isospin projection of the baryon B.
The lepton Fermi momenta are the positive real solu-

tions of (k2e +m2
e)

1/2 = µe and (k2µ +m2
µ)

1/2 = µµ. The
equilibrium composition of the star is obtained by solv-
ing the equations of motion of meson fields in conjunc-
tion with the charge neutrality condition, given in (33),

at a given total baryonic density ρ =
∑

B γk
3
B/(6π

2).
The effective masses of the baryons are obtained self-
consistently in this model.
Since the neutron star time scale is quite long we need

to consider the occurence of weak processes in its mat-
ter. Moreover, for stars in which the strongly interacting
particles are baryons, the composition is determined by
the requirements of charge neutrality and β-equilibrium
conditions under the weak processes B1 → B2 + l + νl
and B2 + l→ B1 + νl. After de-leptonization, the charge
neutrality condition yields

qtot =
∑

B

qB
γk3B
6π2

+
∑

l=e,µ

ql
k3l
3π2

= 0 , (33)

where qB corresponds to the electric charge of baryon
species B and ql corresponds to the electric charge of
lepton species l. Since the time scale of a star is ef-
fectively infinite compared to the weak interaction time
scale, weak interaction violates strangeness conservation.
The strangeness quantum number is therefore not con-
served in a star and the net strangeness is determined by
the condition of β-equilibrium which for baryon B is then
given by µB = bBµn − qBµe, where µB is the chemical
potential of baryon B and bB its baryon number. Thus
the chemical potential of any baryon can be obtained
from the two independent chemical potentials µn and µe

of neutron and electron respectively.
In the present work, the baryon couplings are given by,

gωB = xωB gωN , gρB = xρB gρN , where xωB and xρB
are equal to 1 for the nucleons and acquire different val-
ues in different parameterisations for the other baryons.
We may mention here that the s-quark is unaffected by
the σ- and ω-mesons i.e. gsσ = gsω = 0. We may note
here that in the present work, baryons are not consid-
ered as point particles. They have an internal structure,
the state of which is realized in SU(6). In the present case
we have considered SU(2) symmetry taking the interac-
tion of u-quark and d-quark with the mesons as identical.
Here we fix gqσ (coupling constant for the quarks with the
σ-meson) to the saturation properties of nuclear matter
self-consistently. It therefore does not give a direct defi-
nition for gσB and hence of xσB for baryons.
The vector mean-fields ω0 and b03 are determined

through

ω0 =
gω
mω

2

∑

B

xωBρB, b03 =
gρ

2mρ
2

∑

B

xρBτ3BρB,

(34)
where gω = 3gqω and gρ = gqρ. Finally, the scalar mean-
field σ0 is fixed by

∂E
∂σ0

= 0. (35)

The iso-scalar scalar and iso-scalar vector couplings gqσ
and gω are fitted to the saturation density and binding
energy for nuclear matter. The iso-vector vector coupling
gρ is set by fixing the symmetry energy at J = 32.0 MeV.
For a given baryon density, ω0, b03, and σ0 are calculated
from (34) and (35), respectively.
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The relation between the mass and radius of a star with
its central energy density can be obtained by integrating
the Tolman-Oppenheimer-Volkoff (TOV) equations [50,
51] given by,

dP

dr
= −G

r

[E + P ]
[

M + 4πr3P
]

(r − 2GM)
, (36)

dM

dr
= 4πr2E , (37)

with G as the gravitational constant andM(r) as the en-
closed gravitational mass. We have used c = 1. Given an
EOS, these equations can be integrated from the origin as
an initial value problem for a given choice of the central
energy density, (ε0). It may be noted here that we add
the standard Baym-Pethick-Sutherland (BPS) EOS [52]
to the EOS of the MQMC model to describe the crust of
the star where the density is significantly smaller than nu-
clear matter saturation density. Recent works detail the
importance and technique of such core-crust matching for
non-unified equation of states [53] and the dependence of
the crust-core transition density on the symmetry energy
[54]. Of particular importance is the maximum mass ob-
tained from the solution of the TOV equations. The value
of r (= R), where the pressure vanishes defines the sur-
face of the star. The surface gravitational redshift Zs is
defined as,

Zs =

(

1− 2GM

R

)−1/2

− 1. (38)

IV. RESULTS AND DISCUSSION

The MQMC model has two potential parameters, ‘a’
and ‘V0’ which are obtained by fitting the nucleon mass
MN = 939 MeV and charge radius [55] of the proton
〈rN 〉 = 0.84 fm in free space. Keeping the value of the
potential parameter ‘a’ same as that for nucleons, we
obtain ‘V0’ for the Λ, ∆, Σ and Ξ baryons by fitting their
respective masses to MΛ = 1115.6 MeV, M∆ = 1232

Baryon MB(MeV) V0(MeV) V0(MeV)

mu,d = 150(MeV) mu,d = 200(MeV)

N 939 36.76 5.44

Λ 1115.6 69.34 35.18

Σ 1193.1 86.10 50.78

Ξ 1321.3 104.64 67.13

∆ 1232 91.26 61.59

TABLE II. The potential parameter V0 for different baryons
obtained for the quark mass mu = md = 150 MeV, ms = 230
MeV with a = 0.722970 fm−3 and at quark mass mu = md =
200 MeV, ms = 280 MeV with a = 0.795590 fm−3.

MeV, MΣ = 1193.1 MeV and MΞ = 1321.3 MeV. The
set of potential parameters for the baryons at zero density
for quark mass mq = 150 MeV and mq = 200 MeV are
given in Table II.
The quark meson couplings gqσ, gω = 3gqω, and gρ = gqρ

are fitted self-consistently for the nucleons to obtain the
correct saturation properties of nuclear matter binding
energy, EB.E. ≡ B0 = E/ρB −MN = −15.7 MeV, pres-
sure, P = 0, and symmetry energy J = 32.0 MeV at
ρB = ρ0 = 0.15 fm−3.

mq gqσ gω gρ M∗
N/MN K L

(MeV) (MeV) (MeV)

150 4.57842 6.49093 8.82263 0.85 235.55 86.20

200 4.36839 7.40592 8.73323 0.83 242.41 86.98

TABLE III. Parameters for nuclear matter. They are deter-
mined from the binding energy per nucleon, EB.E = B0 ≡

E/ρB −MN = −15.7 MeV and pressure, P = 0 at saturation
density ρB = ρ0 = 0.15 fm−3. Also shown are the values of
the nuclear matter incompressibility K and the slope of the
symmetry energy L for the quark mass mq = 150 MeV and
mq = 200 MeV.

We have taken the standard values for the meson
masses; namely, mσ = 550 MeV, mω = 783 MeV and
mρ = 763 MeV. The values of the quark meson cou-
plings, gqσ, gω, and gρ at quark mass 150 MeV and 200
MeV is given in Table III. The nuclear matter incom-
pressibility K at saturation density in the present set of
parameters at quark mass mq = 150 MeV and mq = 200
MeV is K = 235.55 MeV and K = 242.41 MeV respec-
tively. Recent measurements [56] extracted from doubly-
magic nuclei like 208Pb constrain the value of K to be
around 240± 20. Further, the slope of the symmetry en-
ergy, L = 86.20 MeV and L = 86.98 MeV for quark mass
mq = 150 MeV and mq = 200 MeV respectively in the
present model lies near the upper limit of the presently
accepted [57] range of 58.7± 28.1 MeV obtained from an
extensive survey of 53 analyses.
The couplings of the hyperons to the σ-meson need

not be fixed since we determine the effective mass of the
hyperons self-consistently. The hyperon couplings to the
ω-meson are fixed by determining xωB . The value of xωB

is obtained [58–60] from the hyperon potentials in nuclear
matter, UB = −(MB−M∗

B)+xωBgωω0 for B = Λ,Σ and
Ξ with UΛ = −28 MeV, UΣ = 30 MeV and two values of
UΞ, i.e., at UΞ = −10 MeV and UΞ = −18 MeV. For the
quark mass 150 MeV and 200 MeV with fixed xρB = 1,
the corresponding values for xωB for the hyperons are
given in Table IV.
The Λ hyperon potential has been chosen from the

measured single particle levels of Λ hypernuclei from
mass numbers A = 3 to 209 [40, 41] of the binding of
Λ to symmetric nuclear matter. Studies of Σ nuclear in-
teraction [61, 62] from the analysis of Σ− atomic data
indicate a repulsive isoscalar potential in the interior of
nuclei. The Σ potential has been fixed at 30 MeV, as
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mq xωΛ xωΣ xωΞ

(MeV) UΛ = −28 MeV UΣ = 30 MeV UΞ = −10 MeV UΞ = −18 MeV

150 0.87659 1.69560 0.58729 0.48628

200 0.82541 1.45353 0.52541 0.44782

TABLE IV. xωB determined by fixing the potentials for the hyperons.

suggested from recent developments [9, 11, 42–44] in hy-
pernuclear physics. Measurements of the final state in-
teraction of Ξ hyperons produced in (K−,K+) reaction
on 12C in E224 experiment at KEK [63] and E885 exper-
iment at AGS [64] indicate a shallow attractive poten-
tial UΞ ∼ −16 MeV and UΞ ∼ −14 or less respectively.
In view of this we consider the Ξ hyperon potential at
UΞ = −10 MeV. We also study the effect of the com-
monly used [9–11, 42, 43] value of the Ξ hyperon poten-
tial UΞ = −18 MeV on the mass and radius of neutron
stars.

The coupling of the ∆ resonances are constrained
poorly due to their unstable nature. Earlier works [45]
based on the quark counting argument considered simple
universal choice of couplings of the ∆ with the mesons.
Wehrberger et al. [47] carried out studies of ∆−baryon
excitation in finite nuclei in linear Walecka model and
reproduced properties of some finite nucleus. They con-
strained the scaling to 0 . xσ∆ − xω∆ . 0.2. Further-
more, suggestions [20, 25] on the range of uncertainty for
the ∆ potential −30MeV + UN . U∆ . UN from the
studies of electron-nucleus [47, 65, 66] and pion-nucleus
[67, 68] scattering and photoabsorption lead to a con-
straint −90 < U∆ < −50 MeV for UN ≃ −(50 − 60)
MeV.

As stated in Sec. III, for the present work there is
no direct definition for xσ∆. We are therefore limited to
the choice of fixing xω∆ for obtaining ∆ potential values.
Moreover, our choice of the xω∆ is also restricted by the
neutron star mass constraint. In this context we choose
to fix xω∆ = 0.7, since in the present model this gives
the value of U∆ = −96 MeV for quark mass 200 MeV
and U∆ = −88 MeV for quark mass 150 MeV, which lie
close to the range obtained from photoabsorption studies.
The ∆-coupling to the ρ-meson is fixed at xρ∆ = 1. How-
ever, variations in coupling strength xω∆ and xρ∆ have
been made to study their impact on the critical density
of forming ∆ resonances and on the structure of neutron
stars.

Fig. 1(a) and 1(b) show the effective mass of the nu-
cleons and ∆ for the quarks masses mq = 150 MeV and
mq = 200 MeV respectively. With increasing density
the effective mass decreases due to the attractive σ field
for the baryons. The EOS for different compositions of
neutron star matter at quark mass 150 and 200 MeV is
shown in Fig. 2. It is observed that with the inclusion
of ∆, the EOS becomes softer than for matter containing
only the nucleons. For matter containing the nucleons,
delta and the hyperons, we observe significant decrease
of stiffness.

 0.7
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B

* /M
B
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(a) mq=150 MeV

 N 
∆

 0.7

 0.8
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 1

 0  0.2  0.4  0.6  0.8  1  1.2

M
B

* /M
B

ρB (fm-3)

(b) mq=200 MeV

 N 
∆

FIG. 1. Effective baryon mass as a function of baryon density
at quark mass (a) mq = 150 MeV and (b) mq = 200 MeV.

In fact, for matter composed of nucleons + ∆ + hy-
peron, the stiffness of the EOS decreases with the early
appearance of the ∆− at a density of around ρB =
0.39 fm−3 for mq = 200 MeV. The hyperons start ap-
pearing at a density of ρB = 0.45 fm−3 further reducing
the stiffness of the EOS. A similiar trend is also observed
for quark mass mq = 150 MeV. The shaded region shows
the empirical EOS obtained by Steiner et al. from a
heterogeneous data set of six neutron stars with well de-
termined distances [69].

The composition of the matter in terms of the parti-
cle fractions for β-equiibriated matter is shown in Fig.
3. At densities below the saturation value the β-decay
of neutrons to muons are allowed and thus muons start
to populate. At higher densities the lepton fraction be-
gins to fall since charge neutrality can now be main-
tained more economically with the appearance of nega-
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tive baryon species. Since the ∆− can replace the neutron
and electron at the top of the Fermi sea, it appears first
at a density of ρB = 0.39 fm−3. This is followed by the
appearance of Λ. The sequence of appearance of the ∆
resonances is consistent with the notion of charge-favored
or unfavored species [1]. As such, the first ∆ resonance
to appear is ∆−, followed by the ∆0, ∆+ and ∆++. The
slope of the symmetry energy L also plays a key role in
the appearance of ∆ resonances. By constraining the L
in the range 40 < L < 62 MeV, Drago et al. [23] have ob-
served the appearance of ∆ close to twice the saturation
density. At high densities all baryons tend to saturate.
It may be noted here that the Σ hyperon is not present
in the matter distribution for the given set of potentials
since we have chosen a repulsive potential for it.
Since the vector coupling of the ∆ are not constrained

by the properties of saturated nuclear matter, we study
the effect of moderate variations in the strength of the
vector coupling of the ∆ on the critical density of forming
∆− baryon and on the mass-radius relation of the neu-
tron star. Figure 4 shows the variation in the ρcrit∆− with
increasing ρ-∆ coupling strength xρ∆ and a fixed value
xω∆ = 0.7 for quark massesmq = 150 and 200 MeV. It is
observed that the value of ρcrit∆− increases with an increase
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FIG. 2. Total pressure as a function of the energy density
for various composition of the stellar matter at quark mass
(a) mq = 150 MeV and (b) mq = 200 MeV with xω∆ = 0.7
and xρ∆ = 1. The shaded region shows the empirical EOS
obtained by Steiner et al from a heterogeneous data set of six
neutron stars.
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FIG. 3. Particle fraction as a function of the baryon density
indicating the onset of the ∆ isobars at quark mass mq = 200
MeV and xω∆ = 0.7.

in the value of xρ∆.

Considering only the nucleon and ∆ composition of
the matter, we plot in Fig. 5 the gravitational mass as
a function of radius by changing the coupling strength
xω∆ and xρ∆ of the ∆ isobars. By decreasing the cou-
pling strength from xω∆ = 1 to xω∆ = 0.6, we observe
in Fig. 5(a) a gradual decrease in the maximum mass of
the star. A similar behavior is also observed in Fig. 5(b)
by decreasing the xρ∆ coupling strength. The results are
tabulated in Table V. This follows from the fact that by
decreasing the interaction strength of the ∆ with respect
to the nucleons, the EOS becomes softer with a conse-
quent decrease in the maximum mass of the star [70].
We further observe that an increase in the ∆-ω coupling
strength tends to reduce the radii while an increase in the
∆-ρ coupling strength increases the radii corresponding
to the maximum mass of the neutron star. This appre-
ciable change in the radius at maximum mass indicates
a strong dependence on the meson-baryon coupling con-
stants. However, the radius of canonical neutron stars of

 1
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 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
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cr

it /ρ
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xω∆ = 0.7

mq=150 MeV
mq=200 MeV

FIG. 4. Effect of variation in ∆-ρ coupling strength xρ∆ on
the critical density of forming ∆− at xω∆ = 0.7 for quark
masses 150 and 200 MeV .
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xρ∆=0.9
xρ∆=1.0

FIG. 5. Gravitational mass as a function of radius for various
coupling strength. In (a) the value of xω∆ is varied keeping
xρ∆ = 1 while in (b) xρ∆ is varied keeping xω∆=0.7 fixed.
Both are determined for N+∆ composition at a quark mass
of mq = 200 MeV.

xω∆ Mmax R R1.4

(M⊙) (km) (km)

0.60 1.86 12.40 13.6

0.70 1.98 12.08 13.6

0.80 2.05 11.82 13.6

0.90 2.09 11.87 13.6

1.00 2.11 11.89 13.6

(a)

xρ∆ Mmax R R1.4

(M⊙) (km) (km)

0.60 1.70 11.18 13.2

0.70 1.78 11.47 13.5

0.80 1.85 11.74 13.6

0.90 1.92 11.93 13.6

1.00 1.98 12.08 13.6

(b)

TABLE V. Mass-radius relation of neutron stars for different
coupling strength with Nucleon+∆ matter. (a) shows the
effect variation of xω∆ at mq = 200 MeV with xρ∆ = 1. (b)
shows the effect of variation of xρ∆ of at mq = 200 MeV at a
fixed value of xω∆ = 0.7

1.4 M⊙ has almost no change.

To examine further the dependence of the ∆ formation
on the meson-baryon couplings, we chose a stronger ω−∆
coupling at xω∆ = 1.1 as suggested in [26] and vary the
xρ∆ strength at xρ∆ < 1.0. We observe that such a
combination significantly changes the composition of the

 0.0001
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 1
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xω∆ = 1.1
xρ∆ = 0.6

n
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e

µ ∆-

FIG. 6. Particle fraction as a function of the baryon density
for the coupling values xω∆ = 1.1 and xρ∆ = 0.6 at quark
mass mq = 200 MeV with N+∆ matter.

xρ∆ Mmax R R1.4

(M⊙) (km) (km)

0.60 2.08 11.85 13.6

0.70 2.10 11.89 13.6

0.80 2.11 11.90 13.6

TABLE VI. Mass-radius relation of neutron stars for fixed
xω∆ = 1.1 and varying coupling strength of xρ∆ with
Nucleon+∆ matter at mq = 200 MeV.

matter with the appearance of only ∆− resonance and
no other Delta resonant state even within 7-8 times the
saturation density, as shown in Fig. 6. We find that with
increasing strength of the xρ∆, the ρ

crit
∆− shifts to higher

densities. Such a trend increases the maximum mass of
the neutron star as given in Table VI. For xρ∆ ≥ 1 with
xω∆ = 1.1 there is no Delta formation in the neutron star
matter. This indicates that in the present model stronger
vector coupling strengths do not allow the the possibility
of ∆ formation in neutron star matter.
Since the ∆ mass distribution can be modified in nu-

clear medium [71, 72], we plot in Fig. 7 the effect of
change in ρcrit∆− with variation of the ∆ mass M∆. The
Breit-Wigner mass distribution f(M∆) shown by ∆ res-
onances in free space is also plotted. In free space, the
Breit-Wigner mass distribution for ∆ resonances is,

f(M∆) =
1

4

Γ2(M∆)

(M∆ −M0
∆)

2 + Γ2(M∆)/4
, (39)

where Γ(M∆) is the mass dependent width [73, 74] given
by,

Γ(M∆) = 0.47q3/(M2
π + 0.6q2)(GeV ). (40)

Here q = [([M2
∆−M2

N +M2
π]/2M∆)

2−M2
π]

1/2 is the pion
momentum in the ∆ rest frame in the ∆ → π+N decay
process. It is observed that low mass ∆ resonance appear
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Composition mq = 150 MeV mq = 200 MeV

Mmax R ε0 R1.4 Mmax R ε0 R1.4

(M⊙) (km) (fm−4) (km) (M⊙) (km) (fm−4) (km)

NP 1.97 11.41 6.34 13.4 2.11 11.89 5.45 13.6

NP+∆ 1.89 11.67 6.06 13.4 1.98 12.08 5.56 13.6

NP+∆+HYP 1.82 12.15 5.28 13.4 1.90 12.41 5.02 13.6

TABLE VII. Stellar properties obtained at different compositions of the star matter for quark mass mq = 150 MeV and
mq = 200 MeV.
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FIG. 7. Variation of critical density ρcrit
∆− with change in mass

of ∆ baryon. Also shown is the Breit-Wigner mass distribu-
tion in free space.

near 2ρ0, thus indicating that hyperons can appear after
∆’s in neutron stars. We also show in Fig. 8 the mass-
radius relation of neutron stars, for quark mass 150 and
200 MeV, with change in the mass of ∆ resonances for
fixed xω∆ = 0.7 and xρ∆ = 1. In both the Figs. 8 (a) and
(b) we observe a smaller maximum mass for low mass ∆
resonances indicating relatively more abundance due to
their lower production thresholds [22].

In Fig. 9 we plot the mass-radius relations for the three
compositions of neutron star matter at mq = 150 MeV
and mq = 200 MeV with xω∆ = 0.7 and xρ∆ = 1. A
stiffer EOS corresponding to matter with nucleons only
gives the maximum star mass of Mstar = 2.11M⊙ at
mq = 200 MeV. With the appearance of the ∆ isobars,
mass decreases by 0.13M⊙ to Mstar = 1.98M⊙. The
inclusion of the hyperons further softens the EOS result-
ing in a corresponding decrease in the maximum mass to
Mstar = 1.90M⊙. For the lower quark mass of mq = 150
MeV, we observe a similar trend with a decrease in the
maximum mass. The detailed results including the max-
imum mass, radius, central density (ε0) and the radius
corresponding to the canonical star mass 1.4M⊙ (R1.4)
for the two quark masses, mq = 150 MeV and mq = 200
MeV are shown in Table VII. We may note here that
by changing the value of the UΞ to −18 MeV from −10
MeV we obtain a smaller maximum mass with a corre-
sponding increase in radii. For mq = 200 MeV the star
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FIG. 8. Gravitational mass as a function of radius for different
masses of of the ∆ resonance at quark mass (a)mq = 150 MeV
and (b) mq = 200 MeV with xω∆ = 0.7.

mass decreases from 1.90 M⊙ to 1.86 M⊙ and the cor-
responding radius increases from 12.41 km to 12.61 km.
For mq = 150 MeV the star mass decreases from 1.82
M⊙ to 1.77 M⊙ and the corresponding radius increases
from 12.15 km to 12.36 km.
From our calculations we obtain a range of masses

varying from 2.11M⊙ to 1.77M⊙ depending on the com-
position of the matter. We may note here that for an
appropriate description of the low-density crust region
of the neutron star, we add to the core EOS the Baym-
Pethick-Sutherland (BPS) crust EOS [52].
The radii corresponding to the maximum mass for var-

ious compositions for the quark masses mq = 150 MeV
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FIG. 9. Gravitational mass as a function of radius for varying
composition of star matter at (a) quark mass mq = 150 MeV
and (b) quark mass mq = 200 MeV at fixed xω∆ = 0.7.

and mq = 200 MeV is shown in Table VII. We observe
moderate increase in the radii from R = 11.89 km for
matter with nucleons only to R = 12.41 km for mat-
ter composed of nucleons, ∆ and hyperons. Further, we
obtain a radii of R1.4 = 13.6 km for canonical neutron
star of mass 1.40M⊙. For the quark mass mq = 150
MeV the radius decreases as compared to the radius
for quark mass mq = 200 MeV. The recent detection
of the gravitational-wave signal from merging neutron-
star binaries, GW170817 [75], has provided new insight
on the range of radii of neutron stars. Various studies
[76, 77] have put forth a stringent limit on the radius
corresponding to the 1.4M⊙ mass neutron star, between
9.9 < R1.4 < 13.6 km. In the present work we obtain the
R1.4 = 13.6 km.

Figure 10 shows the gravitational redshift versus the
gravitational mass of the neutron star at quark mass
mq = 200 MeV and xω∆ = 0.7. It also shows the
maximum redshift (redshift corresponding to the max-
imum mass) which, for the present work comes out to
be Zmax

s = 0.20. This is well below the upper bound on
the surface redshift for subluminal equation of states, i.e.
zCL
s = 0.8509 [78].
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FIG. 10. Surface gravitational redshift as a function of star
mass at quark mass mq = 200 MeV and xω∆ = 0.7.

V. SUMMARY

In the present work we have studied the possibility
of forming ∆ isobars and their impact in dense matter
relevant to neutron stars. We have developed the EOS
using a relativistic quark model also called the modified
quark-meson coupling model which considers the baryons
to be composed of three independent relativistic quarks
confined by an equal admixture of a scalar-vector har-
monic potential in a background of scalar and vector
mean fields. Corrections to the centre of mass motion,
pionic and gluonic exchanges within the nucleon are cal-
culated to obtain the effective mass of the baryon. The
baryon-baryon interactions are realised by the quark cou-
pling to the σ, ω and ρ mesons through a mean field
approximation.

By varying the composition of the matter we observe
the variation in the degree of stiffness of the EOS and the
corresponding effect on the maximum mass of the star.
As predicted theoretically, we observe that the inclusion
of the ∆ and hyperon degrees of freedom softens the EOS
and hence lowers the maximum mass of the neutron star.
The so called ∆ and hyperon puzzles state that the pres-
ence of the ∆ isobars and hyperons would decrease the
maximum star mass below the recently observed masses
of the pulsars PSR J0348+0432 and PSR J1614-2230. In
the present work, we are able to achieve the observed
mass and radius constraint and at the same time satisfy
the theoretical predictions of the possibility of existence
of higher mass baryons in highly dense matter. Their
existence however significantly depends on the yet un-
constrained ∆-ω and ∆-ρ couplings. Such dependence
on the vector couplings is studied through the effect of
their variations on the critical density of forming the res-
onances and on the maximum mass of the star. Further
we also observe that the formation of the ∆ is sensitive
to the in-medium ∆ mass.



11

ACKNOWLEDGMENTS

The authors want to acknowledge Professor Niranjan
Barik for useful discussions in the preparation of the
manuscript. The authors would like to acknowledge the
financial assistance from BRNS, India for the Project No.
2013/37P/66/BRNS. PKP would like to acknowledge

DST, Government of India for the project SR/PST/PS-
II/2017/22. B. A. Li is supported in part by the U.S.
Department of Energy, Office of Science, under Award
Number DE-SC0013702 and the National Natural Sci-
ence Foundation of China under Grant No. 11320101004.
HSS would like to acknowledge the award of CSIR-SRF
Fellowship Award No. 09/1036/0007 (2018).

[1] N.K. Glendenning, Astrophys. J. 293, 470 (1985).
[2] N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett.

67, 2414 (1991).
[3] N. K. Glendenning, Compact Stars (Springer-Verlag,

New York, 2000).
[4] J. M. Lattimer and M. Prakash, Nucl. Phys. A 777, 479

(2006).
[5] I. Bednarek, P. Haensel, J.L. Zdunik, M. Bejger, R.
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