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The nonlocal implementation of the dispersive optical model (DOM) provides all the ingredients
for distorted-wave impulse-approximation (DWIA) calculations of the (e, e′p) reaction. It provides
both the overlap function, including its normalization, and the outgoing proton distorted wave. This
framework is applied to describe the knockout of a proton from the 0d 3

2
and 1s 1

2
orbitals in 40Ca

with fixed normalizations of 0.71 and 0.60, respectively. Data were obtained in parallel kinematics
for three outgoing proton energies: 70, 100, and 135 MeV. Agreement with the data is as good
as, or better than, previous descriptions employing local optical potentials and overlap functions
from Woods-Saxon potentials - both with standard nonlocality corrections - whose normalization
(spectroscopic factor) and radius were fitted to the data. The present analysis suggests that slightly
larger spectroscopic factors are obtained when nonlocal optical potentials are employed than those
generated with local potentials. The results further suggest that the chosen kinematical window
around 100 MeV proton energy provides the best and cleanest method to employ the DWIA for
the analysis of this reaction. The conclusion that substantial ground-state correlations cannot be
ignored when describing a closed-shell atomic nucleus is therefore confirmed in detail. To reach these
conclusions, it is essential to have a complete description of the nucleon single-particle propagator
that accounts for all elastic nucleon-scattering observables in a wide energy domain up to 200 MeV.
The current nonlocal implementation of the DOM fulfills this requirement.

I. INTRODUCTION

The shell model, in which the nucleons fill certain or-
bitals, is well suited to describe the structure of a nu-
cleus. The best place to test this description is in or
around (double) closed-shell nuclei. In the simplest pic-
ture, in which residual interactions are neglected, all or-
bitals are 100% filled up to the Fermi level according to
the Pauli principle, and those above it are empty. How-
ever, due to residual interactions there is depletion of or-
bitals below the Fermi energy, and filling of those above
it. The precise amount of this depletion/filling is still a
topic under investigation. The best tool to study this ex-
perimentally is the (e, e′p) reaction [1–7]. At sufficiently
high electron energy and momentum transfer, the pro-
ton can be knocked out with enough energy such that
a description within the distorted-wave impulse approxi-
mation (DWIA) can be expected to be applicable, so that
depletion (and also filling) of orbits can be studied.

The canonical analysis of this reaction, practiced by
the Nikhef group [1, 2], employs a standard global op-
tical potential for the distorted wave and calculates the
bound-state wave function (overlap function) of the pro-
ton in a Woods-Saxon potential well, which is adjusted
to describe the momentum dependence of the measured
cross sections. A scaling factor of about 0.6-0.7 (rela-
tive to a completely filled orbital) is then required to
describe the overall magnitude [6]. This scaling factor
corresponds to the normalization of the overlap function
between the target ground state and low-lying single-hole
states, usually referred to as the (reduced) spectroscopic

factor. Often this spectroscopic factor is reported multi-
plied with a factor of 2j+1 corresponding to the complete
filling of a shell with angular momentum j. Furthermore,
the data show that additional removal strength with es-
sentially the same overlap function is located at nearby
energies, providing clear evidence of the fragmentation of
the single-particle strength [1, 8].
The theoretical interpretation of these experimental

results, reviewed in Refs. [7, 9], has mainly been con-
cerned with the explanation of this reduction in the spec-
troscopic strength to 60-70% of the independent-particle
shell model (IPSM) value. Whereas the main reduction
of the strength appears to be due to the coupling to
low-lying surface vibrations and higher-lying giant res-
onances associated with long-range correlations (LRC),
it has been well documented that additional short-range
and tensor correlations (SRC) can be responsible for a
10-15% depletion of the IPSM value [9].
The interpretation of spectroscopic factors has been

questioned in the literature [10–12] as well as the pos-
sibility of measuring momentum distributions or occu-
pation probabilities [13]. In order to address this issue,
it is useful to rephrase the interpretation of the (e, e′p)
cross section as a question whether the DWIA is a valid
reaction model for this process. It is also important to de-
scribe the data with a consistent set of ingredients. For
example, in the standard Nikhef analysis the potential
used to describe the distorted proton wave is unrelated
to the one that generates the overlap function and its
normalization is a scaling parameter to fit the data.
Recent developments of the Dispersive Optical Model

(DOM) make it possible to provide all the necessary in-
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gredients of the DWIA for this reaction. The DOM was
developed by Mahaux and Sartor [14] to provide the link
between the potential used to describe elastic nucleon
scattering data and the one that provides the levels of
the IPSM through the use of a subtracted dispersion re-
lation, which links the real and imaginary parts of the
nucleon self-energy [15]. Recent implementations of the
DOM have introduced fully nonlocal potentials [16, 17]
to allow additional data to be included in the descrip-
tion, like particle number and the nuclear charge density.
It is thus possible to provide all the ingredients of the
DWIA from the DOM description of all available elas-
tic nucleon scattering data as well as separation energies,
particle number, and the nuclear charge density for 40Ca
in our case. Indeed, the distorted outgoing proton wave
and the overlap function with its implied normalization
are all provided by the DOM to allow a consistent de-
scription of the 40Ca(e, e′p)39K cross section for the three
available energies of 70, 100, and 135 MeV of the outgo-
ing proton. The states analyzed for this reaction are the
first two states of 39K, corresponding to the 0d3

2 and 1s12
valence hole states in 40Ca in the IPSM. The three differ-
ent proton energies were chosen to test the validity of the
DWIA used to calculate the theoretical cross sections for
this range of energies, which involves the folding of the
ejected proton’s bound-state wave function (overlap func-
tion with the appropriate normalization) with its outgo-
ing distorted wave to calculate the cross section [18, 19].
In the past, the spectroscopic factor was found by scal-

ing the calculated cross sections to match the data. In
the present analysis, the DOM also provides the spec-
troscopic factor allowing a consistent description of the
cross section and thereby an assessment of the accuracy
of the DWIA description. In addition, it is possible to
check the consistency between the data that determine
the DOM self-energy and the (e, e′p) cross sections.
In Sec. II we review the theoretical ingredients of the

analysis. It includes in Sec. II A the relevant material
related to the Green’s function method that provides the
framework of the discussion. In Sec. II B essential ingre-
dients of the DOM are presented, while the DWIA of the
(e, e′p) cross section is described in Sec. II C. The exper-
iment is described in Sec. III and the results presented in
Sec. IV. Conclusions and outlook are discussed in Sec. V.

II. THEORY

The DOM generates all of the ingredients necessary
to calculate the (e, e′p) cross section when the DWIA is
adopted. It provides a representation of the nucleon self-
energy that is constrained by a large number of observ-
ables related to adding or removing a particle from the
ground state, 40Ca in this case. It employs the framework
of the Green’s function method [15] to simultaneously
describe all available elastic nucleon scattering cross sec-
tions as well as neutron and proton particle number, re-
moval energies of discrete valence orbits below the Fermi

energy, and the nuclear charge density. In addition, it
provides relevant quantities for the analysis of reactions,
including overlap functions with their normalization and
distorted waves for nucleons at positive energy. This sec-
tion is broken up in subsections that provide brief intro-
ductions to all the concepts used in the present analysis.

A. Single-particle propagator

The single-particle propagator describes the probabil-
ity amplitude for adding a particle in state α at one time
to the ground state of a system and propagating on top of
that state until a later time at which it is removed in state
β [15]. In addition to the conserved orbital and total an-
gular momentum (ℓ and j, respectively), the labels α and
β in Eq. (1) refer to a suitably chosen single-particle ba-
sis. In this work the Lagrange basis [20] was employed. It
is convenient to work with the Fourier-transformed prop-
agator in the energy domain,

Gℓj(α, β;E)=〈ΨA
0 | aαℓj

1

E − (Ĥ − EA
0 ) + iη

a†βℓj |ΨA
0 〉

+〈ΨA
0 | a†βℓj

1

E − (EA
0 − Ĥ)− iη

aαℓj |ΨA
0 〉 ,(1)

with EA
0 representing the energy of the nondegenerate

ground state |ΨA
0 〉. Many interactions can occur between

the addition and removal of the particle (or vice versa),
all of which need to be considered to calculate the prop-
agator. No assumptions about the detailed form of the
Hamiltonian Ĥ need to be made for the present discus-
sion, but it will be assumed that a meaningful Hamilto-
nian exists that contains two-body and three-body con-
tributions. Application of perturbation theory then leads
to the Dyson equation [15] given by

Gℓj(α, β;E) = G
(0)
ℓ (α, β;E)

+
∑

γ,δ

G
(0)
ℓ (α, γ;E)Σ∗

ℓj(γ, δ;E)Gℓj(δ, β;E), (2)

where G
(0)
ℓ (α, β;E) corresponds to the free propaga-

tor (which only includes a kinetic contribution) and
Σ∗

ℓj(γ, δ;E) is the irreducible self-energy [15].
The hole spectral density for energies below εF is ob-

tained from

Sh
ℓj(α, β;E) =

1

π
Im Gℓj(α, β;E). (3)

The diagonal element of Eq. (3) is known as the (hole)
spectral function identifying the probability density for
the removal of a single-particle state with quantum num-
bers αℓj at energy E. The spectral strength for a given
ℓj combination can be found by summing (integrating)
the spectral function according to

Sℓj(E) =
∑

α

Sℓj(α, α;E). (4)
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The spectral strength Sℓj(E) is the contribution at en-
ergy E to the occupation from all orbitals with ℓj. The
occupation of specific orbits characterized by n with
wave functions that are normalized to 1 can be obtained
from Eq. (3) by folding in the corresponding wave func-
tions [21],

Sn−
ℓj (E) =

∑

α,β

[φnℓj(α)]
∗Sh

ℓj(α, β;E)φnℓj(β). (5)

Note that this representation of the spectral strength in-
volves off-diagonal elements of the propagator.
Of particular interest are the solutions of the Dyson

equation that correspond to discrete bound states with
one proton removed. In the IPSM, these correspond
to the 0d 3

2 and 1s 12 orbits for which (e, e′p) cross sec-
tions are available and discussed in this paper. Such
quasihole wave functions are obtained from the nonlocal
Schrödinger-like equation

∑

γ

〈α|Tℓ +Σ∗
ℓj(E) |γ〉ψn

ℓj(γ) = ε−nψ
n
ℓj(α), (6)

where 〈α|Tℓ |γ〉 is the kinetic-energy matrix element, in-
cluding the centrifugal term. These wave functions cor-
respond to overlap functions

ψn
ℓj(α) = 〈ΨA−1

n |aαℓj |ΨA
0 〉 , ε−n = EA

0 − EA−1
n . (7)

Such discrete solutions to Eq. (7) exist where there is
no imaginary part of the self-energy, so near the Fermi
energy. The normalization for these wave functions is the
spectroscopic factor, which is given by [15]

Zn
ℓj =

(

1−
∂Σ∗

ℓj(αqh, αqh;E)

∂E

∣

∣

∣

∣

ε−n

)−1

, (8)

where αqh corresponds to the quasihole state that solves
Eq. (6). This corresponds to the spectral strength at
the quasihole energy ε−n , represented by a delta function.
Note that because of the presence of imaginary parts of
the self-energy at other energies, there is also strength
located there, thus the spectroscopic factor will be less
than 1 and also less than the occupation probability. In-
deed as shown in Ref. [21], an equivalent spectral density
Sp
ℓj(α, β;E) for energies above εF can be obtained which

allows for the calculation of the presence of orbits that de-
scribe localized (and therefore normalized) single-particle
states according to

Sn+
ℓj (E) =

∑

α,β

[φnℓj(α)]
∗Sp

ℓj(α, β;E)φnℓj(β). (9)

The distribution of single-particle strength for the two
relevant proton orbits will be discussed in Sec. IV. It
reveals that the strength for these orbits is fragmented
over all energies, positive and negative, rather than con-
centrated at one energy as in the IPSM. We note that the
distribution at positive energies is constrained by elastic-
scattering data, making the conclusion of the relevance

of correlations beyond the IPSM inevitable [21]. The
strength of each orbit is peaked at its quasihole energy
ε−n . The spectral strength distribution below εF is con-
strained by the charge density and particle number which
also receive contributions from other ℓj quantum num-
bers [15].
It is appropriate to introduce the Fermi energies for

removal and addition given by

ε−F = EA
0 − EA−1

0 (10)

and

ε+F = EA+1
0 − EA

0 , (11)

referring to the ground states in the A ± 1 systems, re-
spectively. It is also convenient to employ the average
Fermi energy

εF ≡ 1

2

[

ε+F − ε−F
]

. (12)

In practical work, we adhere to the average Fermi energy
to separate the particle and hole domain and their corre-
sponding imaginary parts of the self-energy. For specific
questions related to valence holes, the imaginary part of
the self-energy can be neglected and Eqs. (6) and (8) can
be applied. The occupation probability of each orbital is
calculated by integrating all contributions from the spec-
tral strength up to the Fermi energy

nn
ℓj =

∫ εF

−∞

dE Sn−
ℓj (E), (13)

whereas the depletion of the orbit is obtained from

dnℓj =

∫ ∞

εF

dE Sn+
ℓj (E). (14)

Since the DOM has so far been limited to 200 MeV pos-
itive energy, a few percent of the sum rule

nn
ℓj + dnℓj = 1, (15)

that reflects the anticommutator relation of the corre-
sponding fermion addition and removal operators, has
been found above this energy [21]. The particle number
of the nucleus is found by summing over each ℓj combi-
nation while integrating the spectral strength up to the
Fermi energy,

Z,N =
∑

ℓj

(2j + 1)

∫ εF

−∞

dE Sp,n
ℓj (E). (16)

where Z and N are the total number of protons and
neutrons, respectively. The DOM calculation of 40Ca
that includes ℓ ≤ 5, results in Z = 19.8 and N = 19.7.
As 20 is the experimental number, this allows for small
contributions from higher ℓ-values.
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B. Dispersive optical model

It was recognized long ago that the irreducible self-
energy represents the potential that describes elastic-
scattering observables [22]. The link with the potential
at negative energy is then provided by the Green’s func-
tion framework as was realized by Mahaux and Sartor
who introduced the DOM as reviewed in Ref. [14]. The
analytic structure of the nucleon self-energy allows one
to apply the dispersion relation, which relates the real
part of the self-energy at a given energy to a disper-
sion integral of its imaginary part over all energies. The
energy-independent correlated Hartree-Fock (HF) contri-
bution [15] is removed by employing a subtracted disper-
sion relation with the Fermi energy used as the subtrac-
tion point [14]. The subtracted form has the further ad-
vantage that the emphasis is placed on energies closer to
the Fermi energy for which more experimental data are
available. The real part of the self-energy at the Fermi
energy is then still referred to as the HF term, but is suffi-
ciently attractive to bind the relevant levels. In practice,
the imaginary part is assumed to extend to the Fermi en-
ergy on both sides while being very small in its vicinity.
The subtracted form of the dispersion relation employed
in this work is given by

Re Σ∗(α, β;E) = Re Σ∗(α, β; εF ) (17)

−P
∫ ∞

εF

dE′

π
Im Σ∗(α, β;E′)[

1

E − E′
− 1

εF − E′
]

+P
∫ εF

−∞

dE′

π
Im Σ∗(α, β;E′)[

1

E − E′
− 1

εF − E′
],

where P is the principal value. The static term is de-
noted by ΣHF from here on. Equation (17) constrains
the real part of the self-energy through empirical in-
formation of the HF term and empirical knowledge of
the imaginary part, which is closely tied to experimen-
tal data. Initially, standard functional forms for these
terms were introduced by Mahaux and Sartor who also
cast the DOM potential in a local form by a standard
transformation which turns a nonlocal static HF poten-
tial into an energy-dependent local potential [23]. Such
an analysis was extended in Refs. [24, 25] to a sequence
of Ca isotopes and in Ref. [26] to semi-closed-shell nu-
clei heavier than Ca. The transformation to the exclu-
sive use of local potentials precludes a proper calculation
of nucleon particle number and expectation values of the
one-body operators, like the charge density in the ground
state. This obstacle was eliminated in Ref. [27], but it
was shown that the introduction of nonlocality in the
imaginary part was still necessary in order to accurately
account for particle number and the charge density [16].
Theoretical work provided further support for this in-
troduction of a nonlocal representation of the imaginary
part of the self-energy [28, 29]. A recent review has been
published in Ref. [17].
We implement a nonlocal representation of the

self-energy following Ref. [16] where ΣHF(r, r
′) and

Im Σ(r, r′;E) are parametrized, using Eq. (17) to gen-
erate the energy dependence of the real part. The HF
term consists of a volume term, spin-orbit term, and a
wine bottle shape [30] to simulate a surface contribution.
The imaginary self-energy consists of volume, surface,
and spin-orbit terms. Details can be found in [16]. Non-
locality is represented using the Gaussian form

H(s, β) = π−3/2β−3e−s2/β2

, (18)

where s = r − r′, as proposed in Ref. [23]. As men-
tioned previously, it was customary in the past to re-
place nonlocal potentials by local, energy-dependent po-
tentials [14, 15, 23, 31]. The introduction of an energy
dependence alters the dispersive correction from Eq. (17)
and distorts the normalization, leading to incorrect spec-
tral functions and related quantities [27]. Thus, a nonlo-
cal implementation permits the self-energy to accurately
reproduce important observables such as the charge den-
sity and particle number. Only the nonlocal version of
the DOM is therefore particularly well suited for describ-
ing (e, e′p) cross sections.
In order to use the DOM self-energy for predictions,

the parameters are fit through a weighted χ2 minimiza-
tion of available elastic differential cross section data
( dσdΩ), analyzing power data (Aθ), reaction cross sections
(σr), total cross sections (σt), charge density (ρch), en-
ergy levels (εℓj), particle number, separation energies,
and root-mean-square charge radius (rrms). The poten-
tial is transformed from coordinate-space to a Lagrange
basis using Legendre and Laguerre polynomials for scat-
tering and bound-states, respectively. The bound-states
are found by diagonalizing the Hamiltonian in Eq. (6),
the propagator is found by inverting the Dyson equa-
tion, Eq. (2), while all scattering calculations are done
in the framework of R-matrix theory [20]. Predictions of
the DOM have been published in Ref. [32] where a large
neutron skin for 48Ca was generated.

C. DWIA description of the (e, e′p) cross section

In the past, (e, e′p) cross sections obtained at Nikhef in
Amsterdam have been successfully described by utilizing
the DWIA. This description is expected to be particularly
good when kinematics is used that emphasizes the longi-
tudinal coupling of the excitation operator, which is dom-
inated by a one-body operator. The Nikhef group was
able to fulfill this condition by choosing kinematical con-
ditions in which the removed proton carried momentum
parallel or antiparallel to the momentum of the virtual
photon. Under these conditions, the transverse contribu-
tion involving the spin and possible two-body currents is
suppressed. Therefore the process can be interpreted as
requiring an accurate description of the transition ampli-
tude connecting the resulting excited state to the ground
state by a known one-body operator. This transition am-
plitude is contained in the polarization propagator which
can be analyzed with a many-body description involving
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linear response [15]. Such an analysis demonstrates that
the polarization propagator contains two contributions.
The first term involves the propagation of a particle and
a hole dressed by their interaction with the medium, but
not each other. The other term involves their interac-
tion. The latter term will dominate at low energy when
the proton that absorbs the photon participates in collec-
tive excitations like surface modes and giant resonances.
When the proton receives on the order of 100 MeV it is
expected that the excited state that is created can be well
approximated by the dressed particle and dressed hole
excitation [33]. In fact, when strong transitions are con-
sidered, like in the present work, two-step processes have
only minor influence [1, 34]. This interpretation forms
the basis of the DWIA applied to exclusive (e, e′p) cross
sections obtained by the Nikhef group. The ingredients of
the DWIA therefore require a proton distorted wave de-
scribing the outgoing proton at the appropriate energy
and an overlap function with its normalization for the
removed proton. The distorted wave was typically ob-
tained from a standard local global optical potential like
Ref. [35] for 40Ca. The overlap function was obtained
by adjusting the radius of a local Woods-Saxon potential
to the shape of the (e, e′p) cross section while adjust-
ing its depth to the separation energy of the hole. Its
normalization was obtained by adjusting the calculated
DWIA cross section to the actual data [6]. Standard
nonlocality corrections were applied to both the outgo-
ing and removed proton wave functions [36], in practice
making the bound-state wave function the solution of a
nonlocal potential. We observe that such corrections are
ℓ-independent and therefore different from the nonlocal
DOM implementation.

In order to describe the (e, e′p) reaction, the incoming
electron, the electron-proton interaction, the outgoing
electron, and the outgoing proton must therefore be ad-
dressed. The cross section is calculated from the hadron
tensor, Wµν , which contains matrix elements of the nu-
clear charge-current density, Jµ [37]. Using the DWIA,
which assumes that the virtual photon exchanged by the
electron couples to the same proton that is detected and
the final-state interaction can be described using an opti-
cal potential [18, 19], the nuclear current can be written
as

Jµ(q) =

∫

dreiq·rχ
(−)∗
Eℓj (r)(Ĵµ

eff)Eℓj(r)ψ
n
ℓj(r)

√

Zn
ℓj ,

(19)

where χ
(−)∗
E (r) is the outgoing proton distorted wave [37],

ψn
ℓj is the overlap function, Zn

ℓj its normalization, q =
kf − ki is the electron three-momentum transfer, and

Ĵµ
eff is the effective current operator [37]. The incoming

and outgoing electron waves are treated within the Ef-
fective Momentum Approximation, where the waves are
represented by plane waves with effective momenta to ac-
count for distortion from the interaction with the target

nucleus [38]

keffi(f) = ki(f) +

∫

drVc(r)φ
2
ℓj(r), (20)

where Vc(r) is the Coulomb interaction. This alters
Eq. (19) by replacing q with qeff.
In the plane-wave impulse approximation (PWIA), in

which the outgoing proton wave is approximated by a
plane wave, the (e, e′p) can be factorized into an off-
shell electron-proton cross section and the spectral func-
tion [37],

S(Em,pm) =
1

kσep

d6σ

dEe′dΩe′dEpdΩp
. (21)

The off-shell electron-proton cross section, σep, is approx-
imated from the on-shell one using the σcc1 model as pro-
posed in [39]. This separation does not hold true for the
DWIA, but the displayed cross sections, both the exper-
imental and theoretical ones, have been divided by the
σcc1 cross section. Note that Eq. (21) is equivalent to the
diagonal element of Eq. (3) when the momentum basis
is employed and the restriction to given values of ℓ and
j is taken into account. In principle, corrections due to
two-step processes could be considered but they are esti-
mated to make negligible contributions for the transitions
considered in this study [1].
The calculations of the (e, e′p) cross sections in this pa-

per were performed by employing DOM ingredients that
were constrained by other experimental data. Appropri-
ate distorted waves and overlap functions with their nor-
malization were thus generated that allow for a DWIA
description of the exclusive (e, e′p) cross section for va-
lence holes in 40Ca. Agreement with cross sections there-
fore supports the description of the reaction in a DWIA
framework, but also confirms the overall consistency of
the DOM approach including its interpretation of the
normalization of the overlap functions as spectroscopic
factors that can be confronted with data.

III. EXPERIMENT

The experimental data for the reaction 40Ca(e, e′p)39K
that are presented in this paper were obtained with
the electron beam from the Medium Energy Accelerator
(MEA) at Nikhef in Amsterdam with natural calcium
targets (40Ca abundance about 97%) of thicknesses 14.3
and 24.6 mg/cm2. Typical values for the beam current
amounted to several µA, while the duty factor of the
beam was about 1%. The beam energies E0 used were
between 299 and 532 MeV, as listed in Table I. The
beam was tuned in so called “double dispersion match-
ing” mode [40], which resulted in a missing-energy reso-
lution in the range 130-200 keV (see Fig. 1).
The experiment was carried out in the EMIN hall [41],

where the scattered electrons and ejected protons were
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FIG. 1. Radiatively unfolded excitation-energy spectrum for
the reaction 40Ca(e, e′p) at missing momentum 140 MeV/c,
showing the well resolved transitions to the Jπ = 3/2+ ground
state and 1/2+ first excited state in 39K. Above Ex = 5 MeV
several transitions to states with mostly Jπ = 5/2+ are iden-
tified. The peak at Ex ≈ 4 MeV results from the reaction
16O(e, e′p)15Ng.s. due to oxygen contamination in the target.
The curve is a multiple gaussian fit to the data.

detected in a pair of high-resolution magnetic spectrom-
eters [41]. Each of the spectrometers had a momentum
acceptance of ± 5% around the central value. The lumi-
nosity determination was calibrated by comparing mea-
sured elastic electron scattering from 12C to known liter-
ature values [42].

The amount of 40Ca in the targets was determined
with an accuracy of 2% from a comparison of elastic
electron scattering from 40Ca to known literature val-
ues [42]. Since the targets also contained some oxygen
and hydrogen (weight less than 11%), bound as Ca(OH)2,
the missing-energy spectra showed peaks for the reac-
tions 16O(e, e′p)15Ng.s. and 1H(e, e′p). Due to the ex-
cellent missing-energy resolution, these peaks were re-
solved, and, moreover, are outside the missing-energy
range of interest in the present analysis. An example of
the quality of the data is displayed in Fig. 1, demonstrat-
ing the fragmentation of the strength for Tp=100 MeV
and pm=140 MeV/c. Different spin-parity identifications
are displayed when known from other experiments.

The efficiency of coincidence detection ǫc was obtained
from a comparison of the overcomplete coincidence reac-
tion 1H(e, e′p) with a simultaneous measurement of sin-
gles elastic scattering 1H(e, e′) (see Table I).

The data were collected in so called “parallel kinemat-
ics”, in which the momentum p of the ejected proton is
in the same direction as the momentum transfer q of the
virtual photon. Since the cross section for the reaction
depends sensitively on the energy of the ejected proton,
we measured three sets of data at proton kinetic energies
Tp = 70, 100 and 135 MeV, respectively (see Table I).

From the measured coincidence events the experimen-
tal six-dimensional differential cross sections were de-
termined in the standard way described extensively in

TABLE I. Survey of experimental parameters: central ejected
proton energy Tp, range of employed electron beam energies
E0, measured coincidence detection efficiency ǫc, and total
systematic error ∆σ/σsyst.

Tp E0 ǫc ∆σ/σsyst

MeV MeV % %
A 70 299 - 483 97.1± 1.1 6.0
B 100 313 - 532 98.5± 0.5 2.8
C 135 483 97.1± 1.1 6.0

Ref. [2]. These coincidence cross sections were subse-
quently unfolded for radiative effects according to the
method described in Ref. [43] and then converted to re-
duced cross sections using Eq. (21).
The Tp=100 MeV data were analyzed previously in

Ref. [1] with bound-state wave functions calculated
in a Woods-Saxon well (free parameters: well radius
and spectroscopic factor) and distorted outgoing proton
wave functions calculated in a global energy-dependent
optical-model potential described by Schwandt et al. [35].
A study of the mechanism of the reaction (e, e′p), includ-
ing the present 40Ca data, was published earlier by one
of us [44].
In the present paper the experimental data are com-

pared at three proton energies to predictions of the
DWIA using only DOM ingredients discussed in Sec. II B.
For this purpose, the well-resolved transitions to the
ground state (3/2+) and first excited state (1/2+) at
2.522 MeV in 39K were selected. In order to facilitate the
comparison, the reduced cross sections σexp(pm, E

0
i , θi)

in each data set A, B, and C were transformed to the
highest-employed beam energy E0

h in that set according
to

σexp
tr (pm, E

0
h, θh) =

σth(pm, E
0
h, θh)

σth(pm, E0
i , θi)

σexp(pm, E
0
i , θi),

(22)
where in parallel kinematics the scattered electron angle
θh follows directly from momentum and energy conser-
vation given the fixed value of Tp. The model depen-
dence of such a transformation was found to be less than
1%, as derived from a comparison of the transformed
cross section obtained with the Schwandt optical poten-
tial [35] (th=Schwandt) and the present DOM potential
(th=DOM), respectively. In the final step, experimental
momentum distributions for the two transitions were de-
termined by integration of the transformed reduced cross
sections over the missing-energy region covering the cor-
responding peak. The results are compared to theory in
Sec. IV.

IV. RESULTS

The nonlocal DOM description of 40Ca data was pre-
sented in Ref. [16]. In the mean time, additional experi-
mental higher-energy proton reaction cross sections [45]
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FIG. 2. The proton reaction cross section for 40Ca. The solid
line represents the current fit, while the dashed line depicts
the previous fit [16]. The circular data points were included
in the previous fit, while the square data points [45] have been
added in the current fit.

have been incorporated which caused some adjustments
of the DOM parameters compared to Ref. [16]. The up-
dated parameters are collected in Appendix A. Adjusting
the parameters from the previous values [16] to describe
these additional experimental results leads to an equiv-
alent description for all data except these reaction cross
sections. These higher-energy data dictate that the pro-
ton reaction cross section stay flat for energies in the
region around 150 MeV, as shown in Fig. 2. This means
there is more absorption at higher energies than in the
previous fit, leading to increased strength in the imag-
inary part of the self-energy. Due to the dispersion re-
lation, Eq. (17), this increases the spectral strength at
positive energies when the Dyson equation is solved. The
sum rule pertaining to the integral over all energies of the
strength of the valence holes then implies that strength
is transfered from below the Fermi energy to the ener-
gies with an increased imaginary part. This resulting
loss of strength below the Fermi energy reduces the spec-
troscopic factors by about 0.05 compared to the results
reported in Ref. [16].
To accurately calculate the (e, e′p) cross section in

DWIA, it is imperative that the DOM self-energy de-
scribe not only scattering data but bound-state informa-
tion as well. This is due to the fact that the shape of the
cross section is primarily determined by the bound-state
overlap function [1]. Thus, not only should the experi-
mental charge radius be reproduced, but the charge den-
sity should match the experimental data, as we report in
Fig. 3, where the DOM charge density is shown as the
solid line and compared with the deduced charge den-
sity obtained from [42] with the band representing the
1% error. We employed the Fourier-Bessel parametriza-
tion [42] that accurately reproduces the data reported in
Ref. [46].
The present DOM self-energy leads to the spectral

strength distributions in Fig. 4. The experimental points
are the results of an angular-momentum decomposition

of the experimental spectral function at Tp = 100 MeV as
described in Ref. [8]. The experimental distributions for
ℓ = 0, 2 clearly show that the strength is already strongly
fragmented at low energies. The main peak in each case
represents the valence hole transition of interest in this
paper. The DOM strength is plotted as a continuous
function employing the imaginary part of the self-energy,
which is very small near the Fermi energy, to clarify that
only one peak is generated in the present implementation.
The DOM therefore does not yet include the details of
the low-energy fragmentation of the valence hole states
which requires the introduction of pole structure in the
self-energy [9]. The spectroscopic factor of Eq. (8) cor-
responds to the main peak of each distribution shown in
Fig. 4. It is calculated directly from the 40Ca DOM self-
energy resulting in values of 0.71 and 0.74 for the 0d 3

2

and 1s12 peaks, respectively. The results are probed in
more detail by analyzing the momentum distributions of
the 40Ca(e, e′p)39K reaction.

In the past, the DWIA calculations by the Nikhef
group have been performed using the DWEEPY
code [18]. For the present work the momentum distribu-
tions are calculated by adapting a recent version of the
DWEEPY code [47] to use the DOM bound-states, dis-
torted waves, and spectroscopic factors as inputs. Before
confronting the DOM calculations with the experimental
cross sections it is necessary to consider the consequences
of the low-energy fragmentation as shown in Fig. 4. For
the 0d3

2 ground state transition there is a clear separa-
tion with higher-lying fragments, most of which cannot
be distinguished from 0d 5

2 contributions as the experi-
ments were not able to provide the necessary polariza-
tion information. In addition, these higher-lying frag-
ments appear to carry little 0d 3

2 strength [48] , so the
DOM spectroscopic factor can therefore be directly used

0
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FIG. 3. Experimental and fitted 40Ca charge density. The
solid line is calculated using the DOM propagator, while the
experimental band represents the 1% error associated with
the extracted charge density from elastic electron scattering
experiments [42, 46].
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FIG. 4. Spectral strength as a function of excitation en-
ergy for (a) the 1s 1

2
and (b) the 0d 3

2
proton orbitals, cal-

culated from the DOM using Eq. (4) and extracted from the
40Ca(e, e′p)39K experiment [1, 8]. The peaks in the DOM
curves and experimental data correspond to the quasihole en-
ergies of the protons in 40Ca. The DOM peak in (a) does not
exactly match the experiment (see Ref. [16]). The distance
between the quasihole peak and the smaller contributions is
substantially larger in (b) than in (a). Note that the exper-
imental fragments in (b) above 4 MeV mostly correspond to
0d 5

2
strength.

to calculate the cross section of the ground-state peak.
The situation is different for the 1s12 distribution which,
while dominated by the large fragment at 2.522 MeV, ex-
hibits substantial nearby strength as shown in Fig. (4)a.
These contributions come from other discrete poles in the
propagator, reflecting the mixing of the 1s12 orbit to more
complicated excitations nearby in energy. Currently the
origin of these additional discrete poles is not explicitly
included in the DOM, although there is a smooth energy-
dependent imaginary term in the self-energy to approx-
imate their effect on the spectral strength [15]. This
approximation is sufficient when discussing integrated
values such as the charge density and particle number,
but falls short when considering details of the low-energy
fragmentation into discrete energies as in the present sit-
uation. The calculated DOM spectroscopic factor there-
fore includes strength in the neighborhood of the quasi-
hole energy, resulting in an inflated value. This effect
is only noticeable in the ℓ = 0 case because there is a
non-negligible amount of strength in the region near the
peak. We turn to experimental data to account for this
effect by enforcing that the ratio between the strength
of the peak to the total spectral strength shown in the

energy domain of Fig. (4) is the same between the data
as for the DOM,

ZDOM
F

∫

dE SDOM(E)
=

Zexp
F

∫

dE Sexp(E)
. (23)

Accounting for the contributions to the momentum dis-
tribution from different energies by scaling the DOM
spectroscopic factor is justified by observing that the
shape of the momentum distribution calculated at similar
energies is identical, with the strength being the only dif-
ference [1]. The scaling of the spectroscopic factor leads
to a reduction from 0.74 to 0.60. As mentioned, no cor-
rection is needed for the 0d3

2 spectroscopic factor. The
resulting momentum distributions are shown in Figs. 5-7.
The previous analysis of the Nikhef group at Tp = 100
MeV [1] produced a comparable reproduction of the data
with somewhat smaller spectroscopic factors, as shown in
Table II.
In order to estimate the uncertainty for the DOM spec-

troscopic factors, we followed the bootstrap method from
Ref. [49] which was also employed in Ref. [32] to assess
the uncertainty for the neutron skin in 48Ca. New mod-
ified data sets were created from the original data by
randomly renormalizing each angular distribution or ex-
citation function within the experimental error to incor-
porate fluctuations from the systematic errors. Twenty
such modified data sets were generated and refit. The
resulting uncertainties are listed in Table II.
The DOM results yield at least as good agreement

with the data as the standard analysis of Ref. [1] for
the 100 MeV outgoing protons. The main difference in
the description can be pinpointed to the use of nonlo-
cal potentials to describe the distorted waves. Nonlocal
potentials tend to somewhat suppress interior wave func-
tions of scattering states and introduce an additional ℓ
dependence as compared to local potentials. We there-
fore conclude that the current consistent treatment clar-
ifies that spectroscopic factors will be larger by about
0.05 when the proper nonlocal dispersive potentials are
employed. The DOM treatment of experimental data as-
sociated with both the particle and hole aspects of the
single-particle propagator furthermore allows for a posi-
tive assessment of the quality of the DWIA to describe
exclusive (e, e′p) cross sections with outgoing proton en-
ergies around 100 MeV.
It is therefore fortunate that additional data have been

TABLE II. Comparison of spectroscopic factors deduced from
the previous analysis [1] using the Schwandt optical poten-
tial [35] to the normalization of the corresponding overlap
functions obtained in the present analysis from the DOM in-
cluding an error estimate as described in the text.

Z 0d 3

2
1s 1

2

Ref. [1] 0.65 ± 0.06 0.51 ± 0.05
DOM 0.71 ± 0.04 0.60 ± 0.03
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FIG. 5. 40Ca(e, e′p)39K spectral functions in parallel kine-
matics at an outgoing proton kinetic energy of 100 MeV. The
solid line is the calculation using the DOM ingredients, while
the points are from the experiment detailed in [1]. (a) Dis-
tribution for the removal of the 0d 3

2
. The curve contains the

DWIA for the 3/2+ ground state including a spectroscopic
factor of 0.71. (b) Distribution for the removal of the 1s 1

2

proton with a spectroscopic factor of 0.60 for the 1/2+ ex-
cited state at 2.522 MeV.

obtained at 70 and 135 MeV to further delineate the do-
main of validity for the DWIA description of the reaction.
We document in Fig. 6 the results when DOM ingredi-
ents are employed at this lower energy for the two va-
lence hole states in 39K. The only difference in the DOM
calculations for these cases is the use of a different pro-
ton energy, yielding different outgoing proton waves. The
overlap function and the spectroscopic factors remain the
same. In Fig. 6 the results are shown for Tp = 70 MeV.
The description is of similar quality as the 100 MeV case.

The agreement with the data at 135 MeV shown in
Fig. 7 is slightly worse but still acceptable. At this
energy (and corresponding value of the electron three-
momentum transfer) the contribution of the transverse
component of the excitation operator, where other mech-
anisms contribute in addition to those included in the
present operator, will be larger. Given these results, it
seems that parallel kinematics, in which the longitudi-
nal part of the operator dominates, and a proton energy
around 100 MeV, as chosen by the Nikhef group, is op-
timal for probing the removal probability of valence pro-
tons. We note that this can only be achieved when an
analysis is conducted in which all ingredients are pro-
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FIG. 6. As for Fig. 5, but for an outgoing proton energy of
70 MeV.

vided by a nucleon self-energy that is constrained by
all relevant available data as in the DOM. The excellent
agreement found here therefore supports the validity of
the DOM approach as it is able to automatically account
for the DWIA cross section in the domain where this ap-
proximation is expected to be valid.
The DOM results also generate the complete spec-

tral distribution for the 0d 3
2 and 1s12 orbits according

to Eqs. (5) and (9). These distributions are displayed in
Fig. 8 from -100 to 100 MeV. The energy axis refers to
the A− 1 system below the Fermi energy and the A+ 1
system above. For plotting purposes the small imagi-
nary part near the Fermi energy was employed giving the
peaks a small width. The occupation probabilities are
obtained from Eq. (13) and correspond to 0.80 and 0.82
for the 0d 3

2 and 1s12 orbits, respectively. The strength at
negative energy not residing in the DOM peak therefore
corresponds to 9 and 7%, respectively. This information
is constrained by the proton particle number and the
charge density. The strength above the Fermi energy is
constrained by the elastic-scattering data and generates
0.17 and 0.15 for the 0d3

2 and 1s12 orbits, respectively,
when Eq. (14) is employed up to 200 MeV. The sum rule
given by Eq. (15), associated with the anticommutation
relation of the fermion operators, therefore suggests that
an additional 3% of the strength resides above 200 MeV,
similar to what was found in Ref. [21]. Strength above the
energy where surface physics dominates can be ascribed
to the effects of short-range and tensor correlations. The
main characterizations of the strength distribution shown
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135 MeV.

in Fig. 55 of Ref. [9] are therefore confirmed for 40Ca. The
present results thus suggest that it is possible to gener-
ate a consistent picture of the strength distributions of
these orbits employing all the available experimental con-
straints. We therefore conclude that it is indeed quite
meaningful to employ concepts like spectroscopic factors
and occupation probabilities when discussing correlations
in nuclei.
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FIG. 8. Spectral distribution of the 0d 3

2
and 1s 1

2
orbits as a

function of energy. Additional strength outside this domain
is not shown.

V. CONCLUSIONS

The main conclusion from the present work is that a
consistent description of all available experimental data
that are unambiguously related to the nucleon single-
particle propagator is essential in providing accurate in-
gredients for a DWIA description of the (e, e′p) reaction.
This description is provided by the DOM when it is im-
plemented with nonlocal potentials up to at least 200
MeV in the elastic-scattering domain. The availability of
(e, e′p) data at 70, 100, and 135 MeV of proton outgo-
ing energy also delineates a window in which the DWIA
provides an accurate description of the exclusive cross
section with energies around 100 MeV appearing to be
optimal. We emphasize that it is also essential to con-
sider the kinematical conditions that favor the longitudi-
nal part of the excitation operator which is dominated by
a one-body component. This analysis therefore confirms
the general conclusions reached in the past by the Nikhef
group [6].

The confrontation of the DOM ingredients with the
(e, e′p) cross sections also demonstrates a necessary av-
enue for its further improvement. It is fortunate that a
rather complete experimental picture of the ℓ = 0 frag-
mentation at low energy has also been determined uti-
lizing the (e, e′p) reaction [8]. Using the experimental
strength distribution without relying on their absolute
values, it is possible to determine the fraction carried by
the largest fragment at 2.522 MeV. Since the DOM does
not yet provide the details of this low-energy fragmenta-
tion, it was possible to identify the fraction of the DOM
strength to be compared to the experimental cross sec-
tion for the 2.522 MeV transition using this experimen-
tal information. The resulting cross sections for both the
ground state and 2.522 MeV state are then accurately de-
scribed by the DWIA employing the DOM results. Nev-
ertheless, the DOM requires further improvement to in-
corporate more details on the low-energy fragmentation
leading possibly to additional state dependence. This im-
provement is particularly relevant for the description of
strength distributions of weakly or deeply bound nucle-
ons as they occur in N − Z asymmetric nuclei. Indeed,
this feature must be addressed in the ongoing discus-
sion related to spectroscopic factors deduced from trans-
fer [50] and knockout [51] reactions, which appear to be in
contradiction with each other. As has been highlighted
here, it is important to clarify the amount of spectro-
scopic strength in the immediate vicinity of the main
fragment. This issue will only be more critical when a
continuum of one of the nucleon species is nearby [52].

The success of the DWIA for the description of the
(e, e′p) reaction has implications for the possibility of
employing other reactions. In particular, the (p, pN) re-
action above approximately 200 MeV incoming energy
appears an attractive possibility [53]. The availability of
a proper description of the three distorted waves and the
normalized overlap function using the DOM implies that
it is possible to gauge the effective nucleon-nucleon in-
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teraction for this process by comparing with the (e, e′p)
results. If successful, such an analysis would lend itself
to an extension to rare isotopes for which this reaction
is available [54, 55]. The current status of transfer reac-
tions also suggests that the DOM can provide important
contributions to the extraction of spectroscopic informa-
tion [56, 57]. Before a consistent description of transfer
reactions utilizing the DOM can be implemented, it will
be necessary to improve the description of the deuteron
distorted wave to the level currently achieved for single
nucleons.
Finally, we can now shift the discussion of absolute

spectroscopic factors to the level of observable (e, e′p)
cross sections in which the quality of the reaction de-
scription (DWIA) can be tested by a direct comparison
with data. Of particular value in reaching agreement
with (e, e′p) cross sections within the DOM framework is
the availability of reaction cross section data, including
those above 100 MeV, that directly quantify the strength
of the coupling of the single-particle degree of freedom to
other excitations through the imaginary part of the self-
energy. Our values for the valence spectroscopic factors
of 0.71 for the 3/2+ ground state in 39K and 0.60 for the
1/2+ excited state appear to be the final answer in the
quest for absolute values for 40Ca. Taking into account
the uncertainties associated with all the data that pro-
vide the presented self-consistent analysis, we employed
a bootstrap error analysis to estimate that the accuracy
in these values is ±0.04.
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Appendix A: Description of the DOM potential

Parametrization

We provide a detailed description of the parametriza-
tion of the proton and neutron self-energies in 40Ca used
in the fits to bound and scattering data. The functional
forms are the same as those from our previous study of
40Ca [16] with the addition of a spin-orbit nonlocality.
Including spin-orbit nonlocality requires an additional
parameter, βnl. We use a simple Gaussian nonlocality
in all instances [23], corresponding to the HF term, real
spin-orbit term, and to the volume and surface contribu-
tions to the imaginary part of the potential. We write

the HF self-energy term in the following form with the
local Coulomb contribution.

ΣHF (r, r
′) = Σnl

HF (r, r
′) + V nl

so (r, r
′) + δ(r − r′)VC(r),

The nonlocal term is split into a volume and a narrower
Gaussian term of opposite sign to make the final potential
have a wine-bottle shape.

Σnl
HF (r, r′) = −V vol

HF (r, r′) + V wb
HF (r, r

′),

where the volume term is given by

V vol
HF (r, r′) = V HF f

(

r̃, rHF
(p,n), a

HF
)

×
[

xH
(

s;βvol1
)

+ (1− x)H
(

s;βvol2
)]

(A1)

allowing for two different nonlocalities with different
weights (0 ≤ x ≤ 1). With the notation r̃ = (r + r′)/2
and s = r − r′, the wine-bottle (wb) shape is described
by

V wb
HF (r, r

′) = V wb
(p,n) exp

(

−r̃2/(ρwb)2
)

H
(

s;βwb
)

, (A2)

where nonlocality is represented by a Gaussian form

H (s;β) = exp
(

−s2/β2
)

/(π3/2β3).

As usual, we employ a Woods-Saxon shape

f(r, ri, ai) =

[

1 + exp

(

r − riA
1/3

ai

)]−1

. (A3)

The Coulomb term is obtained from the experimental
charge density distribution for 40Ca [42].
The inclusion of additional high-energy proton reaction

cross section data necessitated a more dynamic spin-orbit
potential. To achieve this, we implemented a nonlocality
contribution in the real potential:

V nl
so (r, r

′) =

(

~

mπc

)2

V so 1

r̃

d

dr̃
f(r̃, rso(p,n), a

so) ℓ · σ

×H(s;βso),

(A4)

where (~/mπc)
2=2.0 fm2 as in Ref. [26].

The introduction of nonlocality in the imaginary part
of the self-energy is well-founded theoretically both for
long-range correlations [28] as well as in short-range
ones [29]. Its implied ℓ-dependence is essential in re-
producing the correct particle number for protons and
neutrons. The assumed imaginary component of the po-
tential has the form

Im Σ(r, r′, E) = Im Σnl(r, r′;E) + δ(r − r′)Wso(r;E).

The nonlocal contribution is represented by

Im Σnl(r, r′;E) = (A5)

−W vol
0± (E)f

(

r̃; rvol± ; avol±

)

H
(

s;βvol
)

+ 4asurW sur
± (E)H (s;βsur) d

dr̃f(r̃, r
sur
± , asur± ).
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At energies well removed from εF , the form of the imag-
inary volume potential should not be symmetric about
εF as indicated by the ± notation in the subscripts and
superscripts [29]. While more symmetric about εF , we
have allowed a similar option for the surface absorption
that is also supported by theoretical work reported in
Ref. [28]. We include a local spin-orbit contribution with

the same form as in Eq. (A4)

Wso(r, E) =

(

~

mπc

)2

W so(E)
1

r

d

dr
f(r, rso(p,n), a

so) ℓ · σ,

(A6)

using the same geometry parameters as in Eq. (A4). Al-
lowing for the aforementioned asymmetry around εF the
following form was assumed for the depth of the volume
potential [26]

W vol
0± (E) = ∆W±

NM (E) +







0 if |E − εF | < Evol

[

Avol ± ηvol
] (|E−εF |−Evol)

4

(|E−εF |−Evol)4+(Bvol)4
if |E − εF | > Evol,

(A7)

where ∆W±
NM (E) is the energy-asymmetric correction

modeled after nuclear-matter calculations. The asym-
metry above and below εF is essential to accommodate
the Jefferson Lab (e, e′p) data at large missing energy.
The energy-asymmetric correction was taken as

∆W±
NM (E) =















α
[

Avol
+ ± ηvol

]

[√
E + (εF+E+)3/2

2E − 3
2

√

εF + E+

]

for E − εF > E+

−
[

Avol
− ± ηvol

] (εF−E−E−)2

(εF−E−E−)2+(E−)2 for E − εF < −E−

0 otherwise.

(A8)

To describe the energy dependence of surface absorp-
tion we employed the form of Ref. [25].

W sur
± (E) = ω4(E,A

sur , Bsur1 , 0)−
ω2(E,A

sur , Bsur2 , Csur), (A9)

where

ωn(E,A
sur , Bsur , Csur) = Asur Θ(X)

Xn

Xn + (Bsur)
n ,

(A10)

and Θ (X) is Heaviside’s step function and X =
|E − εF | − Csur . As the imaginary spin-orbit compo-
nent is generally needed only at high energies, we have
kept the form employed in Ref. [26]

W so(E) = Aso (E − εF )
4

(E − εF )4 + (Bso)4
. (A11)

All ingredients of the self energy have now been identified
and their functional form described. In addition to the
Hartree-Fock contribution and the absorptive potentials,
we also include the dispersive real part from all imaginary
contributions according to the corresponding subtracted
dispersion relation (see Eq. (17)).

Parameters

The constraint of the number of particles was incorpo-
rated to include contributions from ℓ = 0 to 5. Such a
range of ℓ-values generates a sensible convergence with ℓ
when short-range correlations are included as in Ref. [29].
We obtain 19.8 protons from all ℓ = 0 to 5 partial wave
terms including j = ℓ ± 1

2 and 19.7 for neutrons. This
is within the error we assigned to the particle number of
1%. If in future higher ℓ-values are included, we expect a
slight but not essential change in the fitted parameters.
The values of the fitted parameters are listed in Table III.

Results

We found the DOM self-energy by minimizing the χ2

using experimental data in the form of elastic-scattering
cross sections, total and reaction cross sections, bound-
state energy levels, charge density, and particle number.
The results of this fit led to the curves shown in this
supplementary material. The charge density and proton
reaction cross section are reported in the main text.

The resulting elastic-scattering cross sections are
shown in Fig. 9, analyzing powers are shown in Fig. 10,
and the neutron reaction and total cross sections results
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TABLE III. Fitted parameter values for proton and neutron
potentials in 40Ca. This table also lists the number of the
equation that defines each individual parameter.

parameter value Eq.
Hartree-Fock

V HF [MeV] 93.6 (A1)
aHF [fm] 0.68 (A1)
βvol1 [fm] 1.48 (A1)
βvol2 [fm] 0.70 (A1)

x 0.48 (A1)
ρwb [fm] 0.69 (A2)
βwb [fm] 0.41 (A2)

Spin-orbit
V so[MeV ] 12.4 (A4)
aso [fm] 0.762 (A4)
βso [fm] 0.792 (A4)

Aso [MeV] -2.37 (A11)
Bso [MeV] 31.8 (A11)

Volume imaginary

avol
+ [fm] 0.698 (A5)

βvol
+ [fm] 1.15 (A5)

avol
− [fm] 0.470 (A5)

βvol
− [fm] 0.26 (A5)

Avol
+ [MeV] 6.61 (A7)

Bvol
+ [MeV] 17.6 (A7)

E
vol
+ [MeV] 4.42 (A7)

Avol
− [MeV] 17.4 (A7)

Bvol
− [MeV] 30.6 (A7)

E
vol
− [MeV] 1.29 (A7)
E+ [MeV] 25.0 (A8)
E− [MeV] 124 (A8)

α 0.130 (A8)
Surface imaginary

asur
+ [fm] 0.688 (A5)

βsur
+ [fm] 3.38 (A5)

asur
− [fm] 1.48 (A5)

βsur
− [fm] 1.72 (A5)

Asur
+ [MeV] 14.2 (A9)

Bsur1
+ [MeV] 5.21 (A9)

Bsur2
+ [MeV] 145 (A9)

Csur
+ [MeV] 71.1 (A9)

Asur
− [MeV] 5.33 (A9)

Bsur1
−

[MeV] 9.73 (A9)
Bsur2

−
[MeV] 30.2 (A9)

Csur
− [MeV] 56.9 (A9)

TABLE IV. Comparison of experimental and fitted mean en-
ergies for various proton and neutron orbitals for 40Ca.

orbit Neutrons Protons
Fitted Exp. Fitted Exp.
[MeV] [MeV] [MeV] [MeV]

0d3/2 -15.4 -15.6 -8.13 -8.3
0d5/2 -21.72 -22.3 -14.4 -14.3
1s1/2 -16.5 -18.3 -9.19 -10.8
0f7/2 -9.80 -8.36 -2.85 -1.09

are shown in Fig. 11. Each fit is of the same quality as
those of Refs. [26] and [25].

Now that positive energies are accurately described by
the DOM self-energy, the dispersion relation also con-
strains negative energy values. Negative energy infor-
mation can be properly described due to the nonlocal
implementation of the current analysis. This leads to
the charge density detailed in Fig. 3, particle numbers,
as well as the bound-state energy levels, shown in Table
IV.
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FIG. 9. Calculated and experimental proton and neutron
elastic-scattering angular distributions of the differential cross
section dσ

dΩ
. The data at each energy is offset by factors of ten

and plotted with a log scale to help visualize all of the data
at once. References to the data are given in [26].
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FIG. 10. Results for proton and neutron analyzing power
generated from the DOM self-energy. References to the data
are given in [26].
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FIG. 11. Neutron total cross section (solid line) and reac-
tion cross section (dashed line) generated from the DOM self-
energy. The circles represent measured total cross sections
and the squares measured reaction cross sections. References
to the data are given in [26].
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