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A(d, p)B reactions on heavier nuclei are peripheral at sub-Coulomb energies and can be peripheral
even at energies above the Coulomb barrier due to the presence of the distorted waves in the
initial and final channels. Usually, to analyze such reactions the distorted-wave-Born-approximation
(DWBA) is used. The DWBA amplitude for peripheral reactions is parametrized in terms of the
asymptotic normalization coefficient (ANC) of the bound state B = (nA). However, in the DWBA,
the coupling of the different channels is not taken into account explicitly. The three-body Faddeev
equations written as the two-particle Alt-Grassberger-Sandhas (AGS) equations are very suitable for
the analysis of the A(d, p)B reactions because they take into account explicitly the coupling of the
different channels. It is well known that the overall normalization of the DWBA amplitude or even
of the more advanced continuum-discretized coupled channels (CDCC) amplitude for peripheral
reactions (both sub-Coulomb and above the Coulomb barrier) is determined by the ANC. However,
it is not apparent that it is the case for the AGS solution due to the coupling of the (d, p) channel to
other channels. In this paper, it is proved that the sub-Coulomb A(d, p)B reaction amplitude, which
is a solution of the two-body AGS equations, is peripheral and is parametrized in terms of the ANC
of the bound state B = (nA) if the corresponding DWBA amplitude is peripheral. Both nonlocal
separable and local nuclear interaction potentials between the constituent particles are considered.
To prove the peripheral character of the AGS amplitude for the sub-Coulomb A(d, p)B reactions the
effective potentials are expressed in terms of the corresponding sub-Coulomb DWBA amplitudes of
the different channels. The analysis of the A(d, p)B reactions above the Coulomb barrier requires
the inclusion of the optical potentials. Hence, to analyze such reactions, the AGS equations are
generalized by including the optical nuclear potentials in the same manner as it is done in the
DWBA. The obtained AGS equations contain the DWBA effective potentials with distorted waves
generated by the sum of the nuclear optical and the channel Coulomb potentials. It is shown that
if the DWBA amplitude is peripheral than it is also the case for the AGS amplitude, which is also
parametrized in terms of the ANC of the bound state B = (nA). The inclusion of the coupling of
the different channels in the AGS formalism allows one to improve the treatment of the peripheral
sub-Coulomb and above the Coulomb (d, p) reactions compared to the DWBA and CDCC method.

PACS numbers: 21.45.v, 24.10.i, 25.45.z,21.10.Jx

I. INTRODUCTION

Peripheral A(d, p)B reactions, asymptotic normaliza-
tion coefficients (ANCs) of the final nuclei bound states,
which play an important role in nuclear astrophysics [1].
Moreover, the deuteron stripping reactions on unstable
nuclei A in the inverse kinematics provide a unique tool
to obtain the spectroscopic information about the (nA)
bound states and resonances.
Usually, for analysis of such reactions the stan-

dard distorted-wave-Born-approximation (DWBA) is
used. For the energies above the Coulomb barrier also
a more advanced, the continuum-discretized-coupled-
channel (CDCC) method or its simplified version, adi-
abatic distorted wave (ADWA) method, are used [2, 3].
While in the DWBA the explicit coupling of the (d, p)
channel to other channels is not taken into account, the
CDCC includes coupling of the (d, p) channel to the
deuteron breakup one. Despite of this coupling, the
CDCC amplitude is still parametrized in terms of the
ANC of the bound state B = (nA).
The way to find the transfer reaction amplitude un-

ambiguously was suggested by Faddeev [4] by using
the coupled Faddeev integro-differential equations in the

three-body problem. This seminal work by Faddeev
showed how to solve exactly the three-body quantum-
mechanical problem and opened a new field in physics:
few-body physics. In his original work Faddeev con-
sidered 3 particles → 3 particles case. Later on in [5]
Alt, Grassberger and Sandhas (AGS) modified the Fad-
deev equations by transforming them into two-particle
ones describing 2 particles → 2 particles processes, which
are called the Faddeev equations in the AGS form. An
important advantage of the AGS formalism is that it
reduces the three-body Faddeev equations to the two-
particle form when the separable potentials are used.
In [6] the AGS equations were modified by including
the Coulomb interaction for the processes involving two
charged particles and a neutron.

The AGS equations offer a very effective way to check
the accuracy of the DWBA and CDCC for the peripheral
A(d, p)B reactions. One of the most challenging problem
is that whether the AGS equations for peripheral reac-
tions can be parametrized in terms of the ANCs. This is
not a trivial question because a solution of the AGS equa-
tions for the A(d, p)B reactions is coupled to the other
channels whose amplitudes do not contain the bound-
state wave function of the final nucleus B.
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In this paper the formalism of the two-body AGS equa-
tions is used to investigate whether their solution for the
A(d, p)B peripheral reactions in the DWBA remains also
peripheral, that is, the AGS solution for the A(d, p)B
channel can be parametrized in terms of ANC of the
bound state B = (nA). For the sub-Coulomb processes
both nonlocal separable and local nuclear interaction po-
tentials between the constituent particles are used. For
the reactions above the Coulomb barrier only the local
nuclear potentials are considered. To compare with the
DWBA formalism for the energies above the Coulomb
barrier the two-body AGS formalism is generalized by
including the optical potentials in the same manner as
it is done in the DWBA. The effective potentials in
the new generalized AGS equations are themselves the
reaction amplitudes and are expressed in terms of the
DWBA amplitudes of the involved channels. It is shown
that the AGS solution in the A(d, p)B channel is periph-
eral if the corresponding DWBA amplitude is peripheral.
Hence, the AGS solution for the A(d, p)B channel can be
parametrized in terms of the ANC for the bound state
B = (nA) although its dependence on the ANC, in con-
trast to the DWBA, not necessarily is linear.
The system of units in which ~ = c = 1 is used

throughout the paper.

II. STANDARD APPROACH

Let us consider the transfer reaction in the three-
body model of three non-identical constituent structure-
less particles:

α+ (β γ) → β + (α γ), (1)

where (β γ) is the bound state of particles β and γ.
The general expression for the reaction amplitude in the
center-off-mass (c.m.) of reaction (1) in the three-body
model for screened Coulomb potentials is

Tβ α(qβ , qα; z) =< ψ(0)
qβ
ϕβ

∣

∣U
(+)
β α (z)

∣

∣ϕα ψ
(0)
qα

>, (2)

U
(+)
β α (z) = V β + V β G(z)V α (3)

is the transition operator, V =
∑

ν=α, β γ

Vν ,

G(z) =
1

z −K − V
(4)

is the three-body Green function resolvent, E and K are
the total energy and kinetic energy operator of the three-
body system. Note that Eq. (2) for the reaction ampli-

tude with the plane-wave ψ
(0)
qβ

in the bra-state is valid
only for the screen Coulomb potentials. In what follows
only the screened Coulomb potentials are used.

Also the following supplemental notations usually ac-
cepted in few-body papers are used: for a one-body quan-
tity an index α characterizes the particle α, for a two-
body quantity the pair of particles (β+γ), with β, γ 6= α
and finally for a three-body quantity the two-fragment
partition α + (β γ) describing free particle α and the

bound state (β γ). ψ
(0)
qα

is the plane wave describing the
relative motion of particles α and the bound state (β γ) of
pair α with the relative momentum qα, ϕα is the bound
state of particles of the pair α.

V α = V − Vα,

Vα ≡ Vβ γ = V N
α + V C

α , (5)

where V N
α ≡ V N

β γ and V C
α ≡ V C

β γ are the nuclear and
screened Coulomb interaction potentials of particles of
pair α. Note that the plane waves in Eq. (2) appear only
for the screened Coulomb potentials.
Taking into account that

Ψ(+)
α =

(

1 +G(E)V α

)

ϕα ψ
(0)
qα

(6)

one gets for the reaction amplitude

Tβ α(qβ , qα;E) =< ψ(0)
qβ
ϕβ

∣

∣V β

∣

∣Ψ(+)
α >, (7)

where V β = Vα + Vγ .
Using the two-potential formula I can rewrite Eq. (7)

as

Tβ α(qβ , qα;E) =< ψγ,β

∣

∣Vα
∣

∣Ψ(+)
α >, (8)

where < ψγ,β is a solution of the Schrödinger equation

< ψγ,β|(E −K − V α) = 0. (9)

Specifically for the A(d, p)B reaction Eq. (10) in the
standard notations takes the form:

Tp d(qpB , qdA; E) =< ψn,B

∣

∣Vpn
∣

∣Ψ
(+)
dA >, (10)

Here, qij is the relative momentum of particles i and j,
B = (nA),

< ψn,B|(E −K − VpA − VnA) = 0. (11)

Equation (11) was derived in [7].
To calculate Tβ α one needs to find two three-body wave

functions, Ψ
(+)
α and ψγ,β. For example, the exact scat-

tering wave function in the initial channel Ψ
(+)
α is a so-

lution of the equation

Ψ(+)
α = ϕα ψ

(0)
α +Gα(E)V α Ψ(+)

α , (12)

where

Gα(z) =
1

z −K − Vα
. (13)
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This equation does not have a unique solution because

one can add to Ψ
(+)
α a linear combination of solutions of

the homogeneous equations

Ψ(+)
ν = Gα(E)V α Ψν , ν = β, γ 6= α. (14)

Faddeev equations provide a tool to find the three-
body wave functions. Below the Faddeev equations for
the A(d, p)B reaction amplitude are considered in the
AGS form.

III. AGS EQUATIONS WITH SEPARABLE

POTENTIALS

Let me consider the system of three distinguishable
constituent particles, 1, 2, 3 with masses mν , ν = 1, 2, 3.
Moreover, it is assumed that particles 1 and 2 are charged
with charges Z1e and Z2e satisfying Z1Z2 > 0. In this
case only one Coulomb potential V C

3 ≡ V C
12 enters the

AGS equations. For simplicity, the nuclear interaction
potential between the particles of the pair α is taken in
the form of the rank one separable potential:

V N
α = |gα > λα < gα|, α 6= 3, (15)

V3 = |g3 λ3 < g3|+ V C
3 , (16)

where gα is the form factor of the pair α and λα is the
strength parameter, V C

3 is the screened Coulomb inter-
action potential between particles 1 and 2. Extension for
the arbitrary separable rank potential is straightforward
[8].
Then the Faddeev equations for the transition opera-

tors take the form

U
(+)
β α (z) = Vβ α +

∑

ν

Vβ ν Sν(z)Gν(z + εν)U
(+)
ν α (z),

(17)

where

Gα(zα) =
1

z + εα −Kα

. (18)

is the two-body free Green function describing the prop-
agation of the system α + (β γ). Kα is the two-body
kinetic energy operator of the relative motion of parti-
cles α and (β γ). The factor Sα(z) is determined in
[5, 6].

Taking into account the matrix elements from both
sides of Eq. (17) and the definition (2) of the reaction
amplitude one gets the two-particle AGS equations. The
main advantage of the AGS equations is that they re-
duce the three-body Faddeev equations to the two-body
ones. This us achieved by using the separable potentials
what allows one to single out explicitly the bound-state
poles. The three-body Green functions in this approach
are absorbed into the effective potentials.

(13)1

(23)

3

2

FIG. 1: Pole diagram describing the (23) + 1 → 2 + (13)
transfer reaction.

A. AGS equation with separable potentials for

A(d, p)B reaction amplitude

Here the AGS equations with separable potentials are
written down explicitly:

T NC
pA (qC(−)

p ,q
C(+)
A ; E+) = VNC

pA (qC(−)
p ,q

C(+)
A ;E+)

+
∑

i=A, p, n

∫

dpi

(2 π)3
ṼNC
p i (qC(−)

p ,p
C(−)
i ;E+)

1

E+ + εi − p2i /(2Mi)
T NC
iA (p

C(−)
i ,q

C(+)
A ; E+). (19)
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(23) 3

1

2

2

(13)

1

FIG. 2: Exchange triangle diagram describing the (23)+1 →
(13) + 2 transfer reaction. Dashed bulb is the 1 + 2 is the
Coulomb elastic scattering amplitude.

The channel p stands for p+B, B = (nA) and the chan-
nel A stands for d + A. Also the channel n stands for
n+F , F = (pA). q

C(±)
i ≡ ψC±

qi
is the Coulomb scatter-

ing wave function in the channel i. The amplitude T NC
pA

corresponds to the reaction d+A→ p+B. In Eq. (19)

the reaction amplitude T NC
pA (q

C(−)
p ,q

C(+)
A ; E+) is on-the

energy-shell (ONES) and E+ = E + i0. Note that the
initial channel d(p n) + A is denoted by the free parti-
cle A, while the final channel p + B(nA) by p. Also
in the c.m. pd = −pA and pp = −pB, εp ≡ εnA,
εn ≡ εpA and εA ≡ εpn, Mp ≡ MpB = mpmnA/M,
Mn ≡ MnF = mnmpA/M and MA ≡ MdA =

mAmpn/M, M = mp +mn +mA. Also the form factor
gp ≡ gnA, gA ≡ gpn and gn ≡ gpF are the form factors,

The ONES effective potential VNC
pA (q

C(−)
p ,q

C(+)
A ;E+)

in Eq. (19) (the first term on the right-hand-side) is

VNC
pA (qC(−)

p ,q
C(+)
A ;E+) =< ψC(−)

qp
gp
∣

∣G0(E+)

+G0(E+)T
C
3 (E+)G0(E+)

∣

∣gA ψ
C(+)
qA

> . (20)

The other three effective potentials under the integral
sign are:

ṼNC
pA (qC(−)

p ,p
C(−)
A ;E+) =< ψC(−)

qp
gp
∣

∣

[

G0(E+) +G0(E+)T
C
3 (E+)G0(E+)

]

SA(E+ −KA)
∣

∣gA ψ
C(−)
pA

>, (21)

ṼNC
pp (qC(−)

p ,pC(−)
p ;E+)

=< ψC(−)
qp

gp
∣

∣G0(E+)
(

TC
n (E+)Sp(E+ −Kp)

− UC
n

)

G0(E+)
∣

∣gp ψ
C(−)
pp

>, (22)

ṼNC
pn (qC(−)

p ,pn;E+)

=< ψC(−)
qp

gp
∣

∣

[

G0(E+) +G0(E+)T
C
3 G0(E+)

]

× Sn(E+ −Kn)
∣

∣gn ψpn
>, (23)
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(13)(13)

(13) 3

2

1

2

-- g

221

(13)

1

FIG. 3: Triangle diagram describing the (13) + 2 → (13) + 2
elastic scattering via the 1 + 2 Coulomb scattering. Dashed
bulb is the 1 + 2 Coulomb elastic scattering amplitude. Also
is shown the subtracted diagram corresponding to the photon
exchange between particle 2 and the c.m. of the bound state
(13)

KA is the kinetic energy operator of the relative motion

of A and d, SA(E+−KA) |pA >= |pA > SA(E+−
p2

A

2MA
).

Each ONES effective potential is described by the
corresponding nonrelativistic Feynman diagrams. The

ONES effective potential ṼNC
pA (q

C(−)
p ,q

C(+)
A ;E+) =

VNC
pA (q

C(−)
p ,q

C(+)
A ;E+) and is given by the sum of

the diagrams in Figs. 1 and 2 sandwiched by the
Coulomb distorted waves. The ONES effective potential

ṼNC
pp (q

C(−)
p ,q

C(−)
p ;E+) = VNC

pp (q
C(−)
p ,q

C(−)
p ;E+) and is

given by the difference of the diagrams in Fig. 3 sand-
wiched by the Coulomb distorted waves. The screened
Coulomb-Born d − A potential UC

dA is subtracted from
the triangular amplitude to compensate for the most sin-
gular term coming from the Born term of the p−A scat-
tering T -matrix. Finally, the ONES effective potential

ṼNC
pn (q

C(−)
p ,qn;E) = VNC

pn (q
C(−)
p ,qn;E) is described by

the sum of the diagram in Fig. 4 sandwiched by the

Coulomb distorted waves. TC
3 ≡ TC

pA is the off-shell
Coulomb p−A T -matrix generated by the screened p−A
Coulomb potential. I note that in all these diagrams

2

(13)3

(12)

1

2

+

(12)

3 (13)

1

FIG. 4: Sum of the diagrams describing the transfer reaction
(12) + 3 → 2 + (13). The dashed bulb is the 1 + 2 Coulomb
scattering amplitude.

1 = A, 2 = p and 3 = n.

B. AGS equations for the sub-Coulomb (d, p)
reactions on heavier nuclei

Let me consider now the application of the AGS equa-
tions for the sub-Coulomb (d, p) reactions on heavier tar-
gets for which the Coulomb penetrability factors are very
small. Because all the amplitudes and effective poten-
tials are sandwiched by the Coulomb scattering wave
functions containing the penetrability factors each effec-
tive potential and amplitude in Eq. (19) also becomes
very small. Hence, one can replace in Eq. (19) the re-

action amplitude T NC
pA (p

C(−)
p ,q

C(+)
A ;E+) under the in-

tegral sign with i = p on the right-hand-side by the

effective potential VNC
pA (p

C(−)
p ,q

C(+)
A ;E+):
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VNC
pA (pC(−)

p ,q
C(+)
A ;E+) =< ψC(−)

pp
gp
∣

∣GC
pA(E+)

∣

∣gA ψ
C(+)
qA

>

=< ψC(−)
pp

gp
∣

∣

[

GC
pA(E+)∆V

C
dA

]]∣

∣ϕA ψ
C(+)
qA

> + < ψC(−)
pp

ϕp

∣

∣Vp
∣

∣ϕA ψ
C(+)
qA

>, (24)

where ∆V C
dA = V C

pA − UC
dA and Vp ≡ VnA. Taking into

account that

< gp|G
C
pA ∆V C

dA =< gp|G
C
pB[1 + ∆V C

pBG
C
pA] ∆V

C
dA

=< gp|G
(0)
nA[1 + ∆EpB G

C
pB] ∆V

C
dA

=< ϕp|[1 + ∆EpB G
C
pB] ∆V

C
dA (25)

I can rewrite

VNC
pA (pC(−)

p ,q
C(+)
A ;E+) =< ψC(−)

pp
gp
∣

∣GC
pA(E+)

∣

∣gA ψ
C(+)
qA

>

=MDWHOES(pC(−)
p , q

C(+)
A )+ < ψC(−)

pp
ϕp

∣

∣∆EpB G
C
pB ∆V C

dA +GC
pB ∆V C

pB G
C
pA∆V

C
dA

∣

∣ϕA ψ
C(+)
qA

> . (26)

Here, the half-off-energy-shell (HOES) prior-form of the
DWBA amplitude is

MDWHOES(pC(−)
p , q

C(+)
A ) =< ψC(−)

pp
gp
∣

∣

∣

∣VnA

+∆V C
dA

∣

∣ϕA ψ
C(+)
qA

> . (27)

∆EpB = EpB −
p2

p

2µpB
, pp ≡ ppB is the off-shell p − B

relative momentum.
The second term on the right-hand-side of Eq. (26)

is significantly smaller than the DWBA amplitude

MDWHOES(p
C(−)
p , q

C(+)
A ) because after the spectral de-

composition of the Coulomb Green functions it contains
four penetrabilities factors.
Similarly, the reaction amplitude

T NC
nA (p

(0)
n ,q

C(+)
A ; E+) can be replaced by the effective

potential VNC
nA (p0

n,q
C(+)
A ;E+):

VNC
nA (p(0)

n ,q
C(+)
A ;E+) =< ψ(0)

pn
gn

∣

∣GC
pA(E+)

∣

∣gA ψ
C(+)
qA

> .

(28)

Note that gA ≡ gpn and gn ≡ gpA. In the channel n =

n+F , where F = (nA), the channel Coulomb interaction
is absent. That is why in the bra state one has the plane
wave rather than the Coulomb distorted wave.
For the sub-Coulomb (d, p) reactions on heavier targets

the elastic d−A scattering is dominated by the Coulomb
one. To simplify Eq. (19) the elastic scattering ampli-

tude T
NC

AA(p
C(−)
A ,q

C(+)
A ;E+) in the term with i = A,

describing the d + A elastic scattering, is replaced by
the HOES pure Coulomb d − A elastic scattering am-

plitude T̃ C
AA(p

C(−)
A ,q

C(+)
A ;E+) generated by the channel

Coulomb potential UC
dA from which the Born Coulomb

term is subtracted.

The amplitude T
(C)

AA(p
C(−)
A ,q

C(+)
A ;E+) is given by the

integral term in Eq. (B.10) [9]. Its operator takes the
form

T
C

AA(z) = UC
dA Ĝ

C
dA(z)U

C
dA. (29)

Here, G
C

dA(z) = (z+εpn−KdA−UC
dA)

−1 is the two-body

d−A Coulomb Green function, KdA is the kinetic energy
operator of the d−A relative motion.
Then Eq. (19) reduces to

T NC
pA (qC(−)

p ,q
C(+)
A ; E+) = VNC

pA (qC(−)
p ,q

C(+)
A ;E+)

+

∫

dpA

(2 π)3
ṼNC
pA (qC(−)

p ,p
C(−)
A ;E+)

1

E+ + εA − p2A/(2MA) + i0
T

C

AA(p
C(−)
A ,q

C(+)
A ;E+)

+

∫

dpp

(2 π)3
ṼNC
pp (qC(−)

p ,pC(−)
p ;E+)

1

E+ + εp − p2p/(2Mp) + i0
VNC
pA (pC(−)

p ,q
C(+)
A ;E+)

+

∫

dpn

(2 π)3
ṼNC
pn (qC(−)

p ,pn;E+)
1

E+ + εn − p2n/(2Mn) + i0
VNC
nA (pn,q

C(+)
A ;E+). (30)
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Thus for the sub-Coulomb A(d, p)B reactions on the
heavier nuclei the AGS coupled equations are reduced
to one equation (30) for the ONES reaction amplitude

T NC
pA (q

C(−)
p ,q

C(+)
A ; E+). The goal is to analyze the pe-

ripheral character of the expression (30) for the sub-
Coulomb (d, p) reactions rather than solving it.
At sub-Coulomb energies, due to the presence of the

Coulomb scattering wave functions in the d−A and p−B
channels, the (d, p) reactions are peripheral and are con-
tributed by a few smallest partial waves. Peripheral char-
acter in the momentum space means that in the inter-
mediate states the integration momenta pi do not devi-
ate much from the on-shell values qi. For the peripheral
(d, p) reactions the dominant contribution comes from
rnA > 1/κnA; rij is the radius-vector connecting par-
ticles i and j, and κij is the bound-state wave number
of the bound state (ij). In the momentum space it is
equivalent to the dominant contribution of the momenta
pij < κij , where pij is the momentum conjugated to rij .
In the DWBA for the peripheral A(d, p)B reaction the

B = (nA) bound-state wave function can be replaced
by its asymptotic tail whose amplitude is the asymptotic
normalization coefficient (ANC) CnA (it is assumed that
the spectroscopic factor is one). Then the DWBA cross
section is proportional to the C2

nA. The ANC can be
determined by normalization of the DWBA differential
cross section to the experimental one. It constitutes the
ANC method [1, 10]. The question is whether the am-
plitude of the sub-Coulomb A(d, p)B reaction calculated

using the AGS equation (30) is peripheral and can be
parametrized in terms of the ANC CnA.
Let me begin with the effective potential

VNC
pA (q

C(−)
p ,q

C(+)
A ;E+), which is the first term on

the right-hand-side of Eq. (30). Repeating the
transformations done for the HOES effective potential

VNC
pA (p

C(−)
p ,q

C(−)
A ;E+) in Eq. (24), it can be shown that

the ONES effective potential VNC
pA (q

C(−)
p ,q

C(+)
A ;E+)

can be expressed in terms of the sub-Coulomb ONES
DWBA amplitude plus next order term.

VNC
pA (qC(−)

p ,q
C(+)
A ;E+) =< ψC(−)

qp
gp
∣

∣G0(E+)

+G0(E+)T
C
3 (E+)G0(E+)

∣

∣gA ψ
C(+)
qA

>

=< ψC(−)
qp

gp
∣

∣GC
pA(E+)

∣

∣gA ψ
C(+)
qA

> . (31)

For the Coulomb Green function GC
pA(z) of the parti-

cles p and A interacting via the screened Coulomb po-
tential V C

n ≡ V C
pA in the three-body space the post-

transformation is used:

GC
pA(z) =

1

z −K − V C
pA

=
1

z −K −∆V C
pB − UC

p

= GC
pB(z)

(

1 + ∆V C
pB G

C
pA(z)

)

. (32)

Here, GC
pB(z) = (z −K −UC

pB)
−1, UC

p ≡ UC
pB, ∆V C

pB =

V C
pA − UC

pB. Then

VNC
pA (qC(−)

p ,q
C(+)
A ;E+) =< ψC(−)

qp
gp
∣

∣GC
pB(E+)

(

1 + ∆V C
pB G

C
pA(E+)

)

∣

∣gA ψ
C(+)
qA

>

=< ψC(−)
qp

ϕp

∣

∣1 + ∆V C
pB G

C
pA(E+)

∣

∣gA ψ
C(+)
qA

> . (33)

Here the equation

< ψC(−)
qp

gp
∣

∣GC
pB(E+)

= − < ψC(−)
qp

gp
∣

∣

1

εp +Kp

=< ψC(−)
qp

ϕp

∣

∣ (34)

is used. The bound-state wave function ϕp ≡ ϕnA is the
B = (nA), εp ≡ εnA is the binding energy of the bound-

state (nA), Kp ≡ KnA is the n− A free Green function
at energy −εnA.
Now, instead of the post transformation, one can use

the prior transformation of GC
pA(z) is used in Eq. (33) :

GC
pA(z) =

1

z −K −∆V C
dA − UC

dA

=
(

1 +GC
pA(z)∆V

C
dA

)

GC
dA(z), (35)

where GC
dA(z) = (z −K −UC

dA)
−1, ∆V C

dA = V C
pA −UC

dA.
Taking into account the equation

GC
dA(E+)

∣

∣gAψ
C(+)
qA

>

= −
1

εA +KA

< gA ψ
C(+)
qA

∣

∣ =< ϕA ψ
C(−)
qA

∣

∣, (36)

KA ≡ Kpn is p − n two-body Green function at energy
−εA = −εpn.

Then
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VNC
pA (qC(−)

p ,q
C(+)
A ;E+) = T DW

pA (qC(−)
p ,q

C(+)
A )+ < ψC(−)

qp
ϕp

∣

∣∆V C
pB G

C
pA(E+)∆V

C
dA

∣

∣ϕA ψ
C(+)
qA

>, (37)

where the post-form of the sub-Coulomb DWBA ampli-
tude is

T DW
pA (qC(−)

p ,q
C(+)
A ;E+)

=< ψC(−)
qp

ϕnA

∣

∣Vpn + V C
pA − UC

pB

∣

∣ϕpn ψ
C(−)
qA

> . (38)

If one would change the order of application of the prior
and post transformations of GC

pA(E+), then the effec-

tive potential VNC
pA (q

C(−)
p ,q

C(+)
A ;E+) can be expressed

in terms of the prior-form DWBA amplitude. The sec-
ond term in Eq. (38) is small compared to the DWBA
amplitude because, after the spectral decomposition of
the Green function it contains four penetrability factors
at sub-Coulomb energies.
It is well known that the sub-Coulomb (d, p) reac-

tions are peripheral [11, 12]. Nevertheless, for the
general reader it will be useful to see directly that

the amplitude T DW
pA (q

C(−)
p ,q

C(+)
A ;E+) is peripheral for

the sub-Coulomb A(d, p)B on heavier targets for which
the Coulomb parameters in the initial and final states
ηqA , ηqp >> 1, where ηqA = (Zd ZA/137)µdA/qA, qA ≡
qdA, and ηqp = (Zp ZB/137)µpB/qp, qp ≡ qpB , Zp =
Zd = 1 and ZB = ZA.
First, one should introduce the partial wave decompo-

sition of the DWBA amplitude which can be schemati-
cally written as

T DW
pA (qCp lp , q

C
A lA ;E+) =< ψC

qp lp

∣

∣O(r)
∣

∣ψC
qA lA >, (39)

where ψC
qA lA

and ψC
qp lp are the Coulomb scattering wave

functions in the initial and final states; lA ≡ ldA (lp ≡
lpB) is the relative orbital angular momentum in the ini-
tial d + A (final p + B) channel. All other functions
of the matrix elements, except for the partial Coulomb
distorted waves, are absorbed into O(r). Now it is conve-
nient to use the quasiclassical approach for the Coulomb
partial waves [11]:

ψq l ∼

√

[f(r)

q2

]−1/4

sin φ, (40)

f(r) = q2 −
2 q η

r
−
l(l+ 1)

r2
, (41)

φ =
π

4
+

r
∫

r0

dr
√

[f(r)]1/2. (42)

r0 is the classical turning point determined by the con-
dition: f(r0) = 0. r0 increases with increasing of the

Coulomb parameter η. Thus from the classical approach,
which is valid at large Coulomb parameter η, follows that
the dominant contribution to the Coulomb partial wave
give distances r > r0, while the internal distances r < r0,
which are located in the classically forbidden region, give
negligible contribution. Hence, any matrix element sand-
wiched by the partial Coulomb distorted waves, is periph-
eral. For example, for the 208Pb(d, p)209Pb reaction at
EdA = 5 MeV (the Coulomb barrier is VCB = 12.2 MeV)
and the head-on collision ldA = 0 in the initial chan-
nel r0 = 23.6 fm. Such a large r0 makes the reaction
amplitude both peripheral and small. Head-on collision
is dominant because for ldA > 0 r0 increases decreasing
the reaction amplitude. The Rutherford trajectory at
head on-collisions is peaked backward. Hence the pro-
ton differential cross section generated by the amplitude

T DW
pA (q

C(−)
p ,q

C(+)
A ;E+) is backward peaked.

To demonstrate it in Fig. 5 is shown the proton’s
angular distribution in the direct 208Pb(d, p)209Pb re-
action at EdA = 5 MeV calculated using the DWBA
FRESCO code [13]. It is a sub-Coulomb reaction be-
cause the Coulomb barrier is VCB ≈ 12.2 MeV and the
Coulomb parameter in the initial state is ηdA = 8.16.
Thus this process demonstrates a perfect example of the
sub-Coulomb reaction with large Coulomb parameters.
The proton’s angular distribution, as explained, has a
pronounced backward peak. In the calculations the Reid
soft-core potential for the deuteron bound state and stan-
dard Woods-Saxon for the neutron 2g9/2 bound state in
209Pb are used. However, the details of the adopted po-
tentials are not important because the backward peak is
an universal pattern of the angular distribution of sub-
Coulomb direct transfer reactions on nuclei with higher
charges.

In summarizing the analysis of the effective poten-

tial VpA(q
C(−)
p ,q

C(+)
A ;E+), it is useful to remind the

proved essential results: for the sub-Coulomb (d, p) reac-

tions the effective potential VpA(q
C(−)
p ,q

C(+)
A ;E+) whose

mechanism is described by the sum of the pole and
triangular exchange diagrams in Figs. 1 and 2, cor-
respondingly, is dominantly contributed by the DWBA

amplitude T DW
pA (q

C(−)
p ,q

C(+)
A ;E+). The second term in

Eq. (37) is significantly smaller then the DWBA am-
plitude because, after the spectral decomposition of the
Green function, it contains four penetrability factors ver-
sus two in the DWBA amplitude. If the energies in
the initial and final states are well below the Coulomb
barrier then the amplitude T DW

pA (q
C(−)
p ,q

C(+)
A ;E+) of

the A(d, p)B is peripheral and parametrized in terms of
the ANC CnA. The differential cross section generated

by T DW
pA (q

C(−)
p ,q

C(+)
A ;E+) is backward peaked at sub-
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FIG. 5: Proton’s angular distribution for the 208Pb(d, p)209Pb
reaction at EdA = 5 MeV populating the 2g9/2 ground state

in 209Pb. θc.m. is the proton scattering angle in the c.m. of
the reaction.

Coulomb energies on heavier targets [12].

Let us return to Eq. (30). The integrand of the
second term on the right-hand-side of this equation

contains the effective potential ṼNC
pA (q

C(−)
p ,p

C(−)
A ;E+),

which is expressed in terms of the HOES DWBA

T DW
pA (q

C(−)
p ,p

C(+)
A ;E+). The matrix element of the par-

tial wave HOES DWBA amplitude written in the qua-
siclassical approach is peripheral and contains the fac-
tor e−|ζ|π/2 [11], where ζ = ηqp − ηpA

. Hence, at large
Coulomb parameter ηqp the dominant contribution in the
integral over pA comes from minimal ζ. From the previ-

ous discussion it is evident that ṼNC
pA (q

C(−)
p ,p

C(−)
A ;E+)

is peripheral with regard to the bound-state wave func-
tion ϕp ≡ ϕnA and is parametrized in terms of the ANC
CnA. Hence, the second term of Eq. (30) is also periph-
eral and is parametrized in terms of the ANC CnA.

The same is true for the third term on the right-hand-

side of Eq. (30), which contains VNC
pA (p

C(−)
p ,q

C(+)
A ;E+).

This amplitude has been discussed above and is dom-
inantly contributed by the HOES DWBA amplitude

T DW
pA (p

C(−)
p ,q

C(+)
A ;E+). Evidently that the DWBA am-

plitude is peripheral and parametrized in terms of the

3

(12)1

(23)

2

3

+

(23)

1

2

(12)

FIG. 6: Sum of the diagrams describing the (23)+1 → 3+(12)
reaction. The dashed bulb is the 1 + 2 Coulomb scattering
amplitude.

ANC CnA what is also true for the whole third term.

Now let me consider the fourth term. This term
contains only two Coulomb penetrability factors corre-
sponding to the initial and final states because there
is no channel Coulomb interaction in the intermediate
n + F channel. The fourth team describes the two-
step reaction d + A → n + F → B + p. The in-
tegrand of the fourth term contains two amplitudes,

VNC
nA (pn,q

C(+)
A ;E+) and ṼNC

pn (q
C(−)
p ,pn;E+) describing

the first and second steps, correspondingly. The effec-

tive potential VNC
nA (pn,q

C(+)
A ;E) described by the sum

of the diagrams shown in Fig. 6. The notations of the
particles are the same as in the previous cases. This sum
of the diagrams can be replaced by one diagram shown
in Fig. 7.

In this diagram is introduced the Coulomb-modified
form factor of the pair 3, which takes into account the
Coulomb interaction between the particles 1 and 2:

|φ3(z3) >=
[

1 + T
C(R)
3 (z3) Ĝ0(z3)

]
∣

∣g3 >, (43)
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(12)1

(23)

2

3

FIG. 7: Diagram describing the (23) + 1 → 3 + (12) transfer
reaction in which the vertex 1 + 2 → (12) is described by the
form factor (|φ3 >)∗.

∣

∣q3 >
∣

∣φ3(z −
q23

2M3
) >

=
[

1 + T
C(R)
3 (z)G0(z)

]
∣

∣g3(z) >
∣

∣q3 > . (44)

Here q3 is the relative momentum of particle 3 and the
bound state (12). M3 is the reduced mass of the particle
3 and the bound state (12). The properties of |φ3(z3) >
were discussed in details in [14].

The effective potential ṼNC
pn (q

C(−)
p ,pn;E+) is the am-

plitude of the proton transfer reaction A(d, n)F , where
F = (pA) and ONES is given by the sum of diagrams in
Fig 4 which can be replaced by the diagram in Fig 8.
Combining the diagrams in Figs 7 and 8 one obtains

the rectangular diagram shown in Fig. 9 describing the
fourth term (without the Coulomb distorted waves in the
initial and final states of the reaction, which do not affect
the location of the singularities of the diagram).
To find its nearest to the physical region singularity in

the cos(qp ·qd) plane (qd = −qA), which governs the an-
gular distribution of the cross section generated by this
diagram, one can contract the line F in the rectangular
diagram in Fig. 9 reducing it to the triangular diagram
in Fig. 10 , which is the skeleton diagram of the rect-
angular diagram. The nearest to the physical region sin-

(13)3

(12)

1

2

FIG. 8: Diagram describing the (12) + 3 → 2 + (13) transfer
reaction in which the vertex (12) → 1 + 2 is described by the
form factor |φ3 >.

gularity of the ONES triangular diagram, and, hence, of
the rectangular diagram, generated by the propagators
(all the vertices are taken to be constant) is located in
the cos(qp · qd) plane at

zt = −
mdmB

2m2
n

(mn

md
)2q2d + (mn

mB
)2q2p + (κpn + κnA)

2

qd qp
< −1.

(45)

qp is the p − B(nA) relative momentum and qd is the
d−A relative momentum.
This singularity is located quite far away from the bor-

der of the physical region cos(qp ·qd) = −1. The nearest
to the physical region singularity of the ONES ampli-
tude of the pole diagram in Fig. 1 (the notations of the
particles are the same as in the previous cases) is

zp =
md

2mp

q2p + (
mp

md
)2q2d + κ2pn

qd qp
> 1. (46)

It is located on the opposite site of the unphysical re-
gion but much closer to the border of the physical region
cos(qp · qd) = 1 than the singularity of the triangular
diagram.
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p

B

A

FA

d

p

n

FIG. 9: Rectangular diagram describing the two-step process
d+ A → B + p.

As an example, is considered the sub-Coulomb
208Pb(d, p)209Pb reaction at EdA = 5 MeV. For this
case one gets zt = −432.048 and zp = 1.11. These
singularities govern the angular distributions generated
by the corresponding diagrams. In Fig. 11 are shown
the angular distributions generated by (cosθ− zt)

−2 and
(cosθ − zp)

−2. As one can see, the angular distribution
generated by the pole singularity has pronounced forward
peak while the triangular singularity produces absolutely
flat angular distribution. The folding of the amplitude of
the pole diagram with the Coulomb distorted waves in
the initial and final states converts the forward peak into
the backward one because of the dominant head-on colli-
sion while the angular distribution generated by the rect-
angular diagram sandwiched with the Coulomb distorted
waves remains flat.
Therefore, one can neglect the contribution of the

fourth term in Eq. (30) at the backward proton angles
compared to the first three terms on the right-hand-side
of Eq. (30).
Because the second and third terms contain four pen-

etrability factors each, they are smaller than the first

term, VNC
pA (q

C(−)
p ,q

C(+)
A ;E+). Thus it is shown that for

the sub-Coulomb A(d, p)B reactions on heavier nuclei the

AGS amplitude T NC
pA (q

C(−)
p ,q

C(+)
A ; E+) with separable

p

B

A

A

d

p

n

FIG. 10: Triangular diagram describing the reaction d+A →
B + p obtained from the rectangular diagram in Fig. 9 by
contracting the line F .

potentials is well approximated by the post form of the
sub-Coulomb DWBA amplitude:

T NC
pA (qC(−)

p ,q
C(+)
A ; E+)

≈ VNC
pA (qC(−)

p ,q
C(+)
A ;E+)

= T DW
pA (qC(−)

p ,q
C(+)
A ;E+). (47)

Since the sub-Coulomb DWBA amplitude is peripheral
and parametrized in terms of the ANC CnA of the bound
state (nA), the same is also the case for the AGS A(d, p)B

reaction amplitude T NC
pA (q

C(−)
p ,q

C(+)
A ; E+). For better

accuracy one can add to the DWBA amplitude the second
and third terms of the right-hand-side of Eq. (30), which
can become important when energy E increases but still
below the Coulomb barrier.

IV. AGS EQUATIONS WITH GENERAL LOCAL

POTENTIALS

In this section the AGS equations are written for gen-
eral forms of the two-body local potentials rather than
for nonlocal separable potentials. I briefly describe the
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FIG. 11: Angular distributions of the protons from the d +
A → B + p reaction at EdA = 5 MeV generated by (cosθ −
zt)

−2, dashed blue line, and by (cosθ − zp)
−2, solid red line.

derivation of these equations because it will be used in
the next section where the AGS equations are modified
by including the optical potentials. The AGS equations
can be derived directly from the equations for the tran-
sition operator:

U
NC(+)
β α (z) = ∆V β +∆V β G(z)∆V α

= ∆V β +
[

V N
α G(z) + V N

γ G(z) + ∆V
C

β G(z)
]

∆V α

= ∆V β +
[

V N
α Gα(z)

(

∆V αG(z) + 1
)

+ V N
γ Gγ(z)

(

∆V γ G(z) + 1
)

+∆V
C

β Gβ(z)
(

∆V β G(z) + 1
)

]

∆V α

= ∆V β +
∑

ν

[

δβ ν V
N
ν + δβ ν ∆V

C

ν

]

Gν(z)U
NC(+)
ν α (z), (48)

Gα(z) =
1

z −K − Vα − UC
α

. (49)

∆V α = V α − UC
α = V

N

α +∆V
C

α , (50)

∆V
C

α = V
C

α − UC
α . (51)

Here, V α is determined in Eq. (5), V
N

α = V N
β + V N

γ ,

V
C

α = V C
β + V C

γ , UC
α is the channel Coulomb potential

describing the interaction between particle α and the c.m.
of the bound state (β γ).
To derive the coupled equations for the transition oper-

ator the potential ∆V α has been split into three terms:
two nuclear potentials V N

β and V N
γ , and one Coulomb

term ∆V
C

α . This allows one to express U
NC(+)
β α (z) in

terms of the three components, U
NC(+)
ν α (z), ν = β, γ, α.

The ONES reaction amplitude is given by the matrix

element from U
NC(+)
β α (z) taken between the initial and
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final physical states:

T NC
β α (q

C(−)
β , qC(+)

α ;E+) =< ψC(−)
qβ

ϕβ

∣

∣

∣
U

NC(+)
β α (E+)

∣

∣

∣
ϕα ψ

C(+)
qα

>, (52)

where ψ
C(+)
qα and ψ

C(−)
qβ

are the Coulomb scattering wave
functions in the initial and final states calculated for the
screened channel Coulomb potentials UC

α and UC
β , corre-

spondingly.

Instead of the transition operator U
NC(+)
β α (z) one may

consider the transition operator

UNC
β α (z) = δβ α [Gα(z)]

−1 + U
NC(+)
β α (z). (53)

Then UNC
β α (z) satisfies the equation

UNC
β α (z) = δβ α

(

[Gα(z)]
−1 + V N

α

)

+ δβ α ∆V
C

β

+
∑

ν

[

δβ ν V
N
ν + δβ ν ∆V

C

ν

]

Gν(z)U
NC
ν α (z). (54)

Equations (54) were derived in [15]. Note that the

ONES matrix elements from U
NC(+)
β α (z) and UNC

β α (z),
in which the initial state is physical, coincide:

< ψC(−)
pβ

ϕβ

∣

∣

∣
U

NC(+)
β α (E+)

∣

∣

∣
ϕα ψ

C(+)
qα

>

=< ψC(−)
pβ

ϕβ

∣

∣

∣
UNC
β α (E+)

∣

∣

∣
ϕα ψ

C(+)
qα

> (55)

because

[Gα(E+)]
−1

∣

∣ϕα ψ
C(+)
qα

>= 0. (56)

After having derived the Faddeev equations for the

transition operators U
NC(+)
β α (z) one can write down the

Faddeev equations in the AGS form for the reaction am-
plitude. For the separable potentials the Faddeev three-
body equations are reduced to the two-body AGS equa-
tions. For general potentials it is not the case. When
writing the AGS equations for the general potentials Eq.
(48) is used in which one needs to introduce the spectral

decomposition of the Green functions Gν(z). This spec-
tral decomposition contains both two-body and three-
body terms. Here, when deriving the AGS equations
for the reaction amplitudes, the three-body terms in the
spectral decomposition of Gν(z) are neglected, that is,
the contribution from the three-body continuum in the
intermediate states is neglected. Thus the spectral de-
composition of the Green functions Gν(z) is used:

Gν(z) =

∫

dpν

(2 π)3
|p

C(−)
ν ϕν >< ϕν p

C(−)
ν |

z + εν −
p2
ν

2Mν

. (57)

Neglecting the contribution from the three-body contin-
uum in the spectral decomposition of the channel Green
functions Gν(z) allows one to derive the two-particle Fad-
deev equations in the AGS form in which the effective
potentials are expressed in terms of the DWBA ampli-
tudes for the sub-Coulomb transfer reactions. Also only
one bound state is taken into account in each channel.
The extension for a few bound states is straightforward.
Taking the matrix elements from the left- and right-

hand-sides of Eq. (48) and using the spectral decom-
position (57) one can get the desired coupled Faddeev
equations.

A. Sub-Coulomb (d, p) reactions

Here the described above formalism is applied for the
analysis of the peripheral character of the sub-Coulomb
A(d, p)B reactions because they contain the Coulomb
distorted waves in the initial and final states of the ma-
trix elements, which have crucial importance for the sub-
Coulomb reactions. The transition operator in this case
satisfies equation

U
NC(+)
pA (z) = ∆V p +

∑

i=A,p,n

[

δp i V
N
i + δp i ∆V

C

i

]

Gi(z)U
NC(+)
iA (z). (58)

The channel indexes p, A, n correspond to the channels
p+B(nA), d(pn)+A, n+F (pA), correspondingly, while
the potential Vp ≡ VnA, VA ≡ Vpn and Vn ≡ VpA, ∆V p ≡

V p − UC
p , V p = Vpn + VpA, UC

p ≡ UC
pB, ∆V

C

p ≡ V C
pA −

UC
pB.

Then the two-particle AGS equation for the A(d, p)B
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reaction amplitude takes the form

T NC
pA (qC(−)

p , q
C(+)
A ;E+) = T DW

pA (qC(−)
p , q

C(+)
A ;E+)

+
∑

i=A,p,n

∫

dpi

(2 π)3
T̃ DW
p i (q

C(−)
p , p

C(−)
i ;E+) T

NC
iA (p

C(−)
i , q

C(+)
A ;E+)

E+ + εi −
p2

i

2Mi

. (59)

Thus one of the important goals of the paper is achieved:
the Faddeev equations in the two-particle AGS form with
local potentials for the sub-Coulomb A(d, p)B reactions
has been derived. The next goal is to demonstrate that
this equation is peripheral. Note that on the left-hand-
side of Eq. (59) one has the ONES reaction amplitude

T NC
pA (q

C(−)
p , q

C(+)
A ;E+), while under the integral sign

the same reaction amplitude (at i = p) is the HOES
because the momentum pp is the integration variable.
The first term on the right-hand-side of Eq. (59) is the

effective potential

T DW
pA (qC(−)

p , q
C(+)
A ;E+) =< ψC(−)

qp
ϕnA

∣

∣

∣
Vpn

+ V N
pA + V C

pA − UC
pB

∣

∣

∣
ϕpn ψ

C(+)
qA

>, (60)

which is the ONES sub-Coulomb post-form of the DWBA
A(d, p)B reaction amplitude. The effective potential in
the second term on-the right-hand-side (i = A)

T̃ DW
pA (qC(−)

p , p
C(−)
A ;E+)

=< ψC(−)
qp

ϕnA

∣

∣Vpn
∣

∣ϕpn ψ
C(−)
pA

>, (61)

is the HOES post-form of the DWBA A(d, p)B re-
action amplitude with Vpn as the transition op-
erator. The HOES elastic scattering amplitude

T NC
AA (p

C(−)
A , q

C(+)
A ;E+) under the integral in the second

term at the sub-Coulomb energies can be replaced by
the HOES pure Coulomb d − A elastic scattering am-

plitude T̃ C
AA(p

C(−)
A ,q

C(+)
A ;E+) generated by the channel

Coulomb potential UC
dA from which the Born Coulomb

term is subtracted.
The effective potential in the third term ( i = p ) on

the right-hand-side

T̃ DW
pp (qC(−)

p , pC(−)
p ;E+)

=< ψC(−)
qp

ϕnA

∣

∣

∣
V C
pA − UC

pB

∣

∣

∣
ϕnA ψ

C(−)
pp

> (62)

is the p + B → p + B HOES DWBA elastic
scattering amplitude with the pure Coulombic tran-
sition operator V C

pA − UC
pB. The reaction ampli-

tude T NC
pA (p

C(−)
p , q

C(+)
A ;E+) in the third term at sub-

Coulomb energies is small and in the leading or-
der can be replaced by the HOES DWBA amplitude

T DW
pA (p

C(−)
p , q

C(+)
A ;E+).

Finally, the effective potential in the fourth term ( i =
n ) is the HOES DWBA amplitude of the n+F → B+ p
reaction:

T̃ DW
pn (qC(−)

p , pn;E+)

=< ψC(−)
qp

ϕnA

∣

∣

∣
V N
pA

∣

∣

∣
ϕpA ψ

(0)
pn

> . (63)

The reaction amplitude T NC
nA (pn, q

C(+)
A ;E+) at the

sub-Coulomb energies in the leading order can be
replaced by the HOES DWBA reaction amplitude

T DW
nA (pn, q

C(+)
A ;E+).

Then for the sub-Coulomb A(d, p)B reaction the AGS
Eq. (59) reduces to the expression for the AGS reaction
amplitude:

T NC
pA (qC(−)

p , q
C(+)
A ;E+) = T DW

pA (qC(−)
p , q

C(+)
A ;E+)

+

∫

dpA

(2 π)3
T̃ DW
pA (q

C(−)
p , p

C(−)
A ;E+) T̃

C
AA(p

C(−)
A , q

C(+)
A ;E+)

E+ + εA −
p2

A

2MA

+

∫

dpp

(2 π)3
T̃ DW
pp (q

C(−)
p , p

C(−)
p ;E+) T

DW
pA (p

C(−)
p , q

C(+)
A ;E+)

E+ + εp −
p2
p

2Mp

+

∫

dpn

(2 π)3
T̃ DW
pn (q

C(−)
p , p

C(−)
n ;E+) T

DW
nA (pn, q

C(+)
A ;E+)

E+ + εn −
p2
n

2Mn

. (64)
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Now, word by word one can repeat the end of sub-
section III B. The proof that for the sub-Coulomb (d, p)
reaction the AGS amplitude determined by expression
(64) is peripheral is the same as in section III B for
the AGS equation with separable potentials. Thus the
sub-Coulomb A(d, p)B reaction amplitude on heavier

nuclei T NC
pA (q

C(−)
p ,q

C(+)
A ; E+) with local potentials is

peripheral and its normalization is determined by the
ANC CnA of the bound state (nA).

V. AGS EQUATIONS WITH INCLUDED

OPTICAL POTENTIALS

In this section the Faddeev equations in the AGS
form are generalized by including the optical poten-
tials. Usually the Faddeev equations were derived for
real Vα, α = 1, 2, 3 potentials. For the first time the op-
tical potentials in the AGS formalism were introduced in
[16] and in practice were used in [17] in the calculations of
the 12C(d, p)13C reactions using the AGS equations with
separable potentials. The optical potential appeared be-
cause the excitation of the target 12C was taken into ac-
count. In [18, 19] the VpB optical potential was used when
solving the AGS equations for the A(d, p)B reactions.
In this paper a generalization of the Faddeev equa-

tions in the AGS form is achieved by including the op-
tical potentials in addition to the basic real nuclear po-
tentials V N

α , α = 1, 2, 3, which describe the interaction
between the constituent particles 1, 2 and 3. The op-
tical potentials introduced in a way which is similar to
the procedure used in the DWBA. The inclusion of the
optical potentials in the transition operators will gener-

ate the optical model distorted waves in the initial and
final channels of the reaction. These distorted waves are
the solutions of the Schrödinger equation with the optical
potentials, which are given by the sum of the nuclear op-
tical and Coulomb channel potentials. Until now only the
Coulomb distorted waves generated by the corresponding
channel Coulomb potentials have been used. Introducing
the optical potentials allows one to express the effective
potentials in the AGS equations in terms of the DWBA
amplitudes. The goal is to derive the Faddeev equations
in the two-particle AGS form with optical potentials.
One can start from the modified equation for the tran-

sition operator

Ũ
ONC(+)
β α (z)

= ∆V
ONC

β +∆V
ONC

β G(z)∆V
ONC

α . (65)

Here

∆V
ONC

α = ∆V
ON

α +∆V
C

α , (66)

∆V
ON

α = V N
β + V N

γ − UON
α , (67)

where UON
α is the α-channel nuclear optical potential de-

scribing the interaction between particle α and the c.m.

of the bound state (β γ). ∆V
C

α is given by Eq. (51).
Superscript ON means the channel optical nuclear po-
tential, superscript C stands for the screened Coulomb
potential.
To obtain the Faddeev equations in the AGS form one

needs to write down the Faddeev equations for the oper-

ator Ũ
ON(+)
β α (z):

Ũ
ONC(+)
β α (z) = ∆V

ONC

β +∆V
ONC

β G(z)∆V
ONC

α

= ∆V
ONC

β +
[

(

V N
α − cαβ U

ON
β

)

G(z) +
(

V N
γ − cγβ U

ON
β

)

G(z) + ∆V
C

β G(z)
]

∆V
ONC

α

= ∆V
ONC

β +
[

(

V N
α − cαβ U

ON
β

)

G
ONC

α (z)
(

∆V
ONC

α G(z) + 1
)

+
(

V N
γ − cγβ U

ON
β

)

G
ONC

γ (z)
(

∆V
ONC

γ G(z) + 1
)

+∆V
C

β G
ONC

β (z)
(

∆V
ONC

β G(z) + 1
)

]

∆V
ONC

α

= ∆V
ONC

β +
∑

ν

[

δβ ν (V
N
ν − cνβ U

(ON)
β ) + δβ ν ∆V

C

ν

]

G
ONC

ν (z) Ũ (+)
ν α (z), (68)

G
ONC

α (z) =
1

z − T − Vα − U
(ON)
α − UC

α

, (69)

Vα = V N
α + V C

α , cαβ + cγβ = 1, α 6= β 6= γ.

For the diagonal transition one gets from Eq. (68)

ŨONC(+)
αα (z) = ∆V

ONC

α +
∑

ν

[

δα ν (V
N
ν − cνα U

(ON)
α )

+ δα ν ∆V
C

ν

]

G
ONC

ν (z) Ũ (+)
ν α (z). (70)

Equations (68) and (70) are exact three-body Faddeev

equations for the transition operators Ũ
ONC(+)
β α (z). The
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AGS equations are the Faddeev equations for the transi-
tion operators written for the matrix elements from the
transition operators taken between the coupled two-body
channels.

A. AGS equations with optical potentials for

A(d, p)B reaction

In this section the developed in the previous section
formalism is applied for the A(d, p)B reaction. To ob-
tain the AGS equations for the reaction amplitudes one
needs to use the spectral decomposition for the interme-

diate Green functions G
ONC

ν (z) in terms of the distorted
waves in the channel ν generated by the channel poten-

tial U
(ON)
ν +UC

ν . The channel potential now contains the

complex optical potential U
(ON)
ν . Hence the distorted

waves are not orthogonal. To derive the AGS equations
from the Faddeev equations for the transition operator I
use the following approximation. First, the AGS equa-
tions are derived for the real ”optical” potentials and
then in the obtained equations the distorted waves gen-
erated by the real channel nuclear plus Coulomb poten-
tials are replaced by the optical model distorted waves
which are solutions of the Schrödinger equations for the

complex channel potentials U
(ON)
ν + UC

ν .

The final AGS equations with the optical potentials for
the reaction amplitude of the A(d, p)B reaction are:

TpA(q
ONC(−)
p , q

ONC(+)
A ;E+) = T DW

pA (qONC(−)
p , q

ONC(+)
A ;E+)

+
∑

i=A,p,n

∫

dpi

(2 π)3
T̃ DW
p i (q

ONC(−)
p , p

ONC(−)
i ;E+) Ti A(p̃

ONC(−)
i , q

ONC(+)
A ;E+)

E+ + εi −
p2

i

2Mi

. (71)

q
ONC(+)
i is the distorted wave, which is the solution of

the Schrödinger equation with the nuclear optical plus
channel Coulomb potentials in the channel i = A, p,

p̃
ONC(−)
i is the distorted wave from the dual space

to p
ONC(−)
i . Note that for the channel n p

ON(−)
n is

the pure nuclear distorted wave because the channel
Coulomb interaction n− F is absent.
The effective potential

T DW
pA (qONC(−)

p , q
ONC(+)
A ;E+)

=< ψONC(−)
qp

ϕnA

∣

∣Vpn + VpA − UON
pB

− UC
pB

∣

∣ϕpn ψ
ONC(+)
qA

> (72)

is the post form of the ONES DWBA amplitude for the
A(d, p)B reaction. The other DWBA amplitudes in Eqs.
(71) are:

T̃ DW
pA (qONC(−)

p , p
ONC(−)
A ;E+)

=< ψONC(−)
qp

ϕnA

∣

∣

∣
Vpn

∣

∣

∣
ϕpn ψ

ONC(−)
pA

> (73)

is the post form of the HOES DWBA amplitude for the
A(d, p)B reaction with the transition operator Vpn,

T̃ DW
pp (qONC(−)

p , pONC(−)
p ;E+)

=< ψONC(−)
qp

ϕnA

∣

∣

∣
V C
pA − UC

pB

∣

∣

∣
ϕnA ψ

ONC(−)
pp

> (74)

is the HOES DWBA p + (nA) elastic scattering ampli-
tude,

T̃ DW
pn (qONC(−)

p , pON(−)
n ;E+)

=< ψONC(−)
qp

ϕnA

∣

∣

∣
V N
pA − UON

pB

∣

∣

∣
ϕpA ψ

ON(−)
pn

> (75)

is the HOES DWBA n+ (pA) → p+ (nA) reaction am-
plitude.

It is taken into account that ∆V
C

p ≡ ∆V
C

nA = V C
pA −

UC
pB and that cβα + cγα = 1. Because there is no optical

potential in the p−n channel one can adopt cAp = 0 and
cnp = 1.
Now Eq. (71) can be analyzed. For the sub-Coulomb

case the Coulomb distortion in the initial and final states
is dominant and the proof of the peripheral character of
Eq. (71) is the same as in section III B, that is, the AGS
amplitude of the A(d, p)B reaction is well approximated
by the corresponding DWBA amplitude:

TpA(q
ONC(−)
p , q

ONC(+)
A ;E+)

≈ T DW
pA (qONC(−)

p , q
ONC(+)
A ;E+). (76)

One important thing to note. The sub-Coulomb reaction
amplitudes in subsections III B and IVA are well approx-
imated by the sub-Coulomb DWBA amplitudes when the
energies are so low that the nuclear optical potentials can
be neglected and the distorted waves in the initial and
final states can be approximated by the Coulomb ones.
However, when the energy, still being sub-Coulomb, in-
creases, the approximation of the AGS reaction ampli-
tude by the sub-Coulomb DWBA one fails. Meantime,
approximation (76) works practically at all sub-Coulomb
energies because the DWBA amplitude determined by
Eq. (72) contains the distorted waves generated by the
sum of the channel Coulomb and nuclear optical poten-
tials. It also contains the optical potential in the transi-
tion operator.
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Now one can consider the A(d, p)B reaction at the en-
ergies above the Coulomb barrier on heavier nuclei. Ow-
ing to the presence of the distorted waves in the initial
and final channels the DWBA amplitude can be periph-
eral and dominantly contributed by the tail of the (nA)
bound-state wave function. It can be easily checked us-
ing the FRESCO code [13] Assume that it is the case and
let me analyze the AGS Eq. (71).
The first term on the right-hand-side of this equation

is the post-form of the ONES DWBA amplitude. As-

sume that the amplitude T DW
pA (q

ONC(−)
p , q

ONC(+)
A ;E+)

is peripheral. Its peripheral character means that it is
contributed by the tail of the (nA) bound-state wave
function and, hence, is parametrized in terms of the ANC
CnA of this bound state.
The second term contains

T̃ DW
pA (q

ONC(−)
p , p

ONC(+)
A ;E+), which is the DWBA

A(d, p)B reaction amplitude with the Vpn as the
transition operator. It is also peripheral and can be
easily estimated because one can use the zero-range
approximation for the Vpn. Then the radial integration
in this amplitude is carried over rnA. Since it is assumed

that T DW
pA (q

ONC(−)
p , q

ONC(+)
A ;E+) is peripheral, it is

also true for T̃ DW
pA (q

ONC(−)
p , p

ONC(+)
A ;E+), which is

aslo is parameterized in terms of the ANC CnA of the
(nA) bound state.
The third terms contains the HOES amplitude

TpA(p̃
ONC(−)
p , q

ONC(+)
A ), which is the same reaction am-

plitude as the one on the left-hand-side but the HOES.
All three first terms on the right-hand-side of Eq. (71)
provide forward peaked proton’s angular distribution.
The fourth term, as in all the previous considerations,
has a flat angular distribution and can be neglected com-
pared to the first three terms when considering the an-
gular distributions near the stripping peak.
To further simplify the AGS equation the d + A elas-

tic scattering amplitude TAA(p̃
ONC(−)
A , q

ONC(+)
A ;E+) is

replaced by the DWBA elastic scattering amplitude in
which the Born term is subtracted:

T DW
AA (p̃

ONC(−)
A , q

ONC(+)
A ;E+)

=< ψ
ONC(−)
p̃A

ϕpn

∣

∣

∣
∆V

ONC

A

∣

∣

∣
ϕpn ψ

ONC(+)
qA

> . (77)

Here ∆V
ONC

A = ∆V
ONC

pn = VpA + VnA − UON
dA − UC

dA.
Then AGS Eq. (71) reduces to the equation

TpA(q
ONC(−)
p , q

ONC(+)
A ;E+) = T DW

pA (qONC(−)
p , q

ONC(+)
A ;E+)

+

∫

dpA

(2 π)3
T̃ DW
pA (q

ONC(−)
p , p

ONC(−)
A ;E+) T

DW
AA (p̃

ONC(−)
A , q

ONC(+)
A ;E+)

E+ + εA −
p2

A

2MA

+

∫

dpp

(2 π)3
T̃ DW
pp (q

ONC(−)
p , p

ONC(−)
p ;E+) TpA(p̃

ONC(−)
p , q

ONC(+)
p ;E+)

E+ + εp −
p2
p

2Mp

. (78)

This is an integral equation for the A(d, p)B reaction

amplitude TpA(q
ONC(−)
p , q

ONC(+)
A ;E+) for the ener-

gies above the Coulomb barrier. It is assumed that
the DWBA reaction amplitude is peripheral, that is,
parametrized in terms of the ANC CnA. Hence two
amplitudes on the right-hand-side of Eq. (78) are
paramtrized in terms of the ANC. Then a solution of
this equation is also parametrized in terms of the ANC
CNA although its dependence on the ANC may be
complicated. The more dominant contribution of the
first term on the right-hand-side of Eq. (78) the closer
to the linear the dependence on the ANC of its solution.

VI. SUMMARY

Usually, for the analysis of the (d, p) reactions the
DWBA, ADWA or CDCC methods [2, 3, 20] are used.
In these last two approaches the coupling of the neutron

transfer channel with the deuteron breakup channel is
taken effectively into account, while the explicit coupling
to the proton and heavy-particle transfer channels and
elastic scattering is neglected. Meantime, the Faddeev
equations take into account the coupling of all the trans-
fer, elastic and breakup channels simultaneously. In this
paper the formalism of the three-body Faddeev equations
for the (d, p) reactions is formulated using the two-body
AGS equations. For separable potentials these equations
are exact and can be used for the analysis of the direct
A(d, p)B reactions on heavier nuclei at sub-Coulomb en-
ergies. The advantage of the AGS equations with sepa-
rable potentials is that the effective potentials are given
by a few simple diagrams. The sum of the pole and tri-
angle exchange diagrams can be expressed in terms of
the DWBA amplitude for the sub-Coulomb (d, p) reac-
tions. To obtain the two-body AGS equations for local
potentials the contribution from the deuteron breakup
channel is neglected but the coupling to the transfer and
elastic scattering channels is taken into account explicitly.
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For low-energy reactions, especially for the sub-Coluomb
ones, the contribution from the breakup channel is small
and the developed formalism is well suited for the di-
rect sub-Coulomb A(d, p)B reactions on heavier nuclei.
It is shown that the AGS equation for the sub-Coulomb
A(d, p)B reactions is peripheral and dominated by the
post-form of the DWBA amplitude, which is peripheral.
Hence, the AGS amplitude is also parametrized in terms
of the ANC.
In this paper the two-body AGS equations are also

generalized by including the optical potentials in the
same manner as it is done in the DWBA. Naturally, the
effective potentials in the obtained AGS equations are
the DWBA amplitudes. Although it is shown that the
AGS A(d, p)B reaction amplitude can be parametrized
in terms of the ANC CnA of the bound state (nA), there

is a conceptual problem of determination of the ANC
from comparison of the AGS cross section with experi-
mental data. The problem is that the AGS equations are
based on the three-body model. Hence the AGS ampli-
tude contains only the single-particle (nA) bound-state
wave function rather than the overlap integral, which in-
cludes the spectroscopic factor. This issue will be ad-
dressed in another paper.
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