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and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
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We present a new lattice formulation of chiral effective field theory interactions with a simpler decomposition
into spin channels. With these interactions the process of fitting to the empirical scattering phase shifts is
simplified, and the resulting lattice phase shifts are more accurate than in previous studies. We present results for
the neutron-proton system up to next-to-next-to-next-to-leading order for lattice spacings of 1.97 fm, 1.64 fm,
1.32 fm, and 0.99 fm. Our results provide a pathway to ab initio lattice calculations of nuclear structure,
reactions, and thermodynamics with accurate and systematic control over the chiral nucleon-nucleon force.



2

I. INTRODUCTION

Chiral effective field theory (EFT) organizes the interactions of nucleons in powers of momenta and factors of the pion mass
near the chiral limit where the light quarks are massless. We label the terms that carry a total of n powers of nucleon momenta
or factors of the pion masses as order Qn. The most important interactions at low energy are at order Q0 or leading order (LO).
The next-to-leading order (NLO) interactions correspond to order Q2, next-to-next-to-leading order (N2LO) terms are Q3, and
next-to-next-to-next-to-leading order (N3LO) are Q4. See Ref. [1] for a review of chiral EFT. Nuclear lattice simulations using
chiral EFT have been used in recent years to describe the structure and scattering of atomic nuclei [2–7]. However the treatment
of the nuclear forces at higher orders in the chiral EFT expansion are more difficult on the lattice due to the breaking of rotational
invariance produced by the nonzero lattice spacing [8, 9]. Fitting the unknown coefficients of the short-range lattice interactions
to empirical phase shifts can introduce significant uncertainties.

In this paper we solve these problems by introducing a new set of short-range chiral EFT interactions on the lattice with
a simpler decomposition into spin channels. The angular dependence of the relative separation between the two nucleons is
prescribed by spherical harmonics, and the dependence on the nucleon spins are given by the spin-orbit Clebsch-Gordan coeffi-
cients. The full details of this process are presented in this paper. We start with some definitions for the lattice operator notations
used. After that we discuss the lattice Hamiltonian used in our lattice transfer matrix formalism. The short-range interactions
are presented first, and we then proceed to the long-range interactions. We then compare our neutron-proton scattering results
at lattice spacings of 1.97 fm, 1.64 fm, 1.32 fm, and 0.99 fm, with the empirical phase shifts. After this we compute some
observable properties of the deuteron, discuss theoretical uncertainties, and present a summary and outlook. Certain interactions
such as the Coulomb interaction and some isospin-breaking interactions are not directly relevant to the neutron-proton analysis
that we consider here. However we include these interactions in this work for completeness and future reference.

II. LATTICE OPERATOR DEFINITIONS

Let us define ai,j(n) and a†i,j(n), the lattice annihilation and creation operators on lattice site n with spin i = 0, 1 (up,
down) and isospin j = 0, 1 (proton, neutron). The operators asNL

i,j (n) and asNL†
i,j (n) are defined via nonlocal smearing with real

parameter sNL,

asNL
i,j (n) = ai,j(n) + sNL

∑
|n′|=1

ai,j(n + n′). (1)

asNL†
i,j (n) = a†i,j(n) + sNL

∑
|n′|=1

a†i,j(n + n′). (2)

Next we define the pair annihilation operators [a(n)a(n′)]sNL

S,Sz,I,Iz
, where

[a(n)a(n′)]sNL

S,Sz,I,Iz
=

∑
i,j,i′,j′

asNL
i,j (n)Mii′(S, Sz)Mjj′(I, Iz)a

sNL

i′,j′(n
′) (3)

with

Mii′(0, 0) =
1√
2

[δi,0δi′,1 − δi,1δi′,0], (4)

Mii′(1, 1) = δi,0δi′,0, (5)

Mii′(1, 0) =
1√
2

[δi,0δi′,1 + δi,1δi′,0], (6)

Mii′(1,−1) = δi,1δi′,1. (7)

We define the lattice finite difference operation∇l on a general lattice function f(n) as

∇lf(n) =
1

2
f(n + l̂)− 1

2
f(n− l̂), (8)
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where l̂ is the spatial lattice unit vector in the l direction. It is also convenient to define the lattice finite difference operation
∇1/2,l defined on points halfway between lattice sites.

∇1/2,lf(n) = f(n +
1

2
l̂)− f(n− 1

2
l̂). (9)

We will use this operation only to define the Laplacian operator,

∇2
1/2 =

∑
l

∇2
1/2,l. (10)

Let us define the solid harmonics

RL,Lz
(r) =

√
4π

2L+ 1
rLYL,Lz

(θ, φ), (11)

and their complex conjugates

R∗L,Lz
(r) =

√
4π

2L+ 1
rLY ∗L,Lz

(θ, φ). (12)

Using the pair annihilation operators, lattice finite differences, and the solid harmonics, we define the operator

P 2M,sNL

S,Sz,L,Lz,I,Iz
(n) = [a(n)∇2M

1/2R
∗
L,Lz

(∇)a(n)]sNL

S,Sz,I,Iz
, (13)

where ∇2M
1/2 and ∇ act on the second annihilation operator. More explicitly stated, this means that we act on the n′ in Eq. (3)

and then set n′ to equal n. The even integer 2M gives us higher powers of the finite differences. Writing the Clebsch-Gordan
coefficients as 〈SSz, LLz|JJz〉, we define

O2M,sNL

S,L,J,Jz,I,Iz
(n) =

∑
Sz,Lz

〈SSz, LLz|JJz〉P 2M,sNL

S,Sz,L,Lz,I,Iz
(n). (14)

We also define point-like density operators that depend on spin and isospin. For spin indices S = 1, 2, 3, and isospin indices
I = 1, 2, 3, we define

ρ(n) =
∑
i,j

a†i,j(n)ai,j(n), (15)

ρS(n) =
∑
i,i′,j

a†i,j(n)[σS ]ii′ai′,j(n), (16)

ρI(n) =
∑
i,j,j′

a†i,j(n)[τI ]jj′ai,j′(n), (17)

ρS,I(n) =
∑

i,i′,j,j′

a†i,j(n)[σS ]ii′ ⊗ [τI ]jj′ai′,j′(n), (18)

where σS are Pauli matrices in spin space and τI are Pauli matrices in isospin space.

III. LATTICE HAMILTONIAN AND TRANSFER MATRIX FORMALISM

Let a be the spatial lattice spacing and at be the temporal lattice spacing. We work in lattice units (l.u.) where all quantities
are multiplied by the powers of the spatial spacing to form a dimensionless combination. The normal-ordered transfer matrix is

M =: exp[−Hαt] :, (19)

where :: symbols denote normal ordering where the annihilation operators are on the right and creation operators are on the left.
αt = at/a is the ratio between the temporal lattice spacing and the spacial lattice spacing. For the temporal lattice spacing,
we take at = 1.32 fm for a = 1.97 fm. We rescale at for other lattice spacings so that a2/at is fixed. We partition the lattice
Hamiltonian H into a free Hamiltonian, short-range interactions, and long-range interactions,
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H = Hfree + V short
2N + V long

2N . (20)

For the free Hamiltonian we use an O(a4)-improved action of the form [10],

Hfree =
49

12m

∑
n

a†(n)a(n)− 3

4m

∑
n,i

∑
〈n′ n〉i

a†(n′)a(n)

+
3

40m

∑
n,i

∑
〈〈n′ n〉〉i

a†(n′)a(n)− 1

180m

∑
n,i

∑
〈〈〈n′ n〉〉〉i

a†(n′)a(n). (21)

IV. SHORT-RANGE INTERACTIONS

A. Order Q0

At order Q0 we have two short-range interaction operators, namely the S-wave spin singlet which we will call V0,1S0
(n),

∑
Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n)
]†
O0,sNL

0,0,0,0,1,Iz
(n) (22)

and the S-wave spin triplet V0,3S1
(n),

∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0
(n)
]†
O0,sNL

1,0,1,Jz,0,0
(n). (23)

We note that since we work with interactions that act with a specified parity and specified total intrinsic spin S, when we act
on two-nucleon states with total momentum equal to zero, the total isospin I is completely constrained by the requirement of
overall antisymmetry of the two nucleons. However we will anyway specify the correct total isospin I explicitly in order to
remove lattice artifacts that might otherwise appear in cases when the total momentum is not zero.

Wigner’s SU(4) symmetry [11] is an approximate symmetry of the low-energy nucleon-nucleon interactions where the nucle-
onic spin and isospin degrees of freedom can be rotated as four components of an SU(4) multiplet. As in previous work [7], we
treat the SU(4) part of the short-range interactions separately. This choice allows us to control the strength of the local part of
the SU(4) interaction, which has been shown to be important for the binding of nucleons in nuclei [6]. So at leading order we
also include an SU(4)-invariant short-range operator V0 with the form

V0 =
C0

2
:
∑

n′,n,n′′

∑
i′,j′

asNL†
i′,j′ (n′)asNL

i′,j′(n
′)fsL(n′ − n)fsL(n− n′′)

∑
i′′,j′′

asNL†
i′′,j′′(n

′′)asNL

i′′,j′′(n
′′) :, (24)

where fsL is defined as

fsL(n) = 1 for |n| = 0,

= sL for |n| = 1,

= 0 otherwise. (25)

We repeat again that, in terms of counting powers of momentum, this SU(4) interaction is equivalent to the SU(4)-invariant
interaction we get by adding together V0,1S0

(n) and V0,3S1
(n). However, the separate treatment of this interaction allows us

to control the strength of the local part of the SU(4) interaction in systems with more than a few nucleons. For the purposes
of fitting operator coefficients, we keep the coefficient C0 fixed and tune the coefficients of V0,1S0

(n) and V0,3S1
(n) as needed

to reproduce the scattering phase shifts and mixing angles. In this work we take the smearing parameter sNL for the SU(4)
interaction to be the same as that used in the other short-range interactions. For a = 1.97 fm we take C0 = −0.175 l.u.,
sL = 0.070 l.u, and sNL = 0.080 l.u.. For a = 1.64 fm we use C0 = −0.100 l.u., sL = 0.109 l.u, and sNL = 0.122 l.u.. For
a = 1.32 fm, we use C0 = −0.045 l.u., sL = 0.170 l.u, and sNL = 0.186 l.u.. For a = 0.99 fm, we use C0 = −0.015 l.u.,
sL = 0.265 l.u, and sNL = 0.283 l.u.. In future work, however, we may consider different smearing parameters for the two
cases in order to accelerate the convergence of the effective field theory expansion in many-body systems.
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B. Order Q2

At order Q2 we have the lowest radial excitations of the S-wave spin singlet which we call V2,1S0
(n),

∑
Iz=−1,0,1

[
O2,sNL

0,0,0,0,1,Iz
(n)
]†
O0,sNL

0,0,0,0,1,Iz
(n) +

∑
Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n)
]†
O2,sNL

0,0,0,0,1,Iz
(n), (26)

and the S-wave spin triplet V2,3S1
(n),

∑
Jz=−1,0,1

[
O2,sNL

1,0,1,Jz,0,0
(n)
]†
O0,sNL

1,0,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0
(n)
]†
O2,sNL

1,0,1,Jz,0,0
(n). (27)

At order Q2 there is the 1P1 interaction V2,1P1
(n),

∑
Jz=−1,0,1

[
O0,sNL

0,1,1,Jz,0,0
(n)
]†
O0,sNL

0,1,1,Jz,0,0
(n), (28)

the 3P0 interaction V2,3P0
(n),

∑
Iz=−1,0,1

[
O0,sNL

1,1,0,0,1,Iz
(n)
]†
O0,sNL

1,1,0,0,1,Iz
(n), (29)

the 3P1 interaction V2,3P1
(n),

∑
Iz=−1,0,1

∑
Jz=−1,0,1

[
O0,sNL

1,1,1,Jz,1,Iz
(n)
]†
O0,sNL

1,1,1,Jz,1,Iz
(n), (30)

and the 3P2 interaction V2,3P2
(n),

∑
Iz=−1,0,1

∑
Jz=−2,...2

[
O0,sNL

1,1,2,Jz,1,Iz
(n)
]†
O0,sNL

1,1,2,Jz,1,Iz
(n). (31)

At order Q2 we also have the S −D mixing term V2,SD(n),∑
Jz=−1,0,1

[
O0,sNL

1,2,1,Jz,0,0
(n)
]†
O0,sNL

1,0,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0
(n)
]†
O0,sNL

1,2,1,Jz,0,0
(n). (32)

C. Order Q4

At order Q4 we have the next-to-lowest radial excitations of the S-wave spin singlet V4,1S0,1(n),

∑
Iz=−1,0,1

[
O2,sNL

0,0,0,0,1,Iz
(n)
]†
O2,sNL

0,0,0,0,1,Iz
(n), (33)

and V4,1S0,2(n),

∑
Iz=−1,0,1

[
O4,sNL

0,0,0,0,1,Iz
(n)
]†
O0,sNL

0,0,0,0,1,Iz
(n) +

∑
Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n)
]†
O4,sNL

0,0,0,0,1,Iz
(n), (34)

and the next-to-lowest radial excitations of the S-wave spin triplet V4,3S1,1(n),

∑
Jz=−1,0,1

[
O2,sNL

1,0,1,Jz,0,0
(n)
]†
O2,sNL

1,0,1,Jz,0,0
(n) (35)
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and V4,3S1,2(n), ∑
Jz=−1,0,1

[
O4,sNL

1,0,1,Jz,0,0
(n)
]†
O0,sNL

1,0,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0
(n)
]†
O4,sNL

1,0,1,Jz,0,0
(n). (36)

If we apply the on-shell equivalence condition that the magnitude of the outgoing relative momentum equals the magnitude of
the incoming relative momentum, then V4,1S0,1 and V4,1S0,2 are equivalent and also V4,3S1,1 and V4,3S1,2 are equivalent. In this
work we make the choice of setting the coefficients of V4,1S0,2 and V4,3S1,2 to zero.

At order Q4 we have the first radial excitations of the 1P1 interaction V4,1P1
(n),∑

Jz=−1,0,1

[
O2,sNL

0,1,1,Jz,0,0
(n)
]†
O0,sNL

0,1,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O0,sNL

0,1,1,Jz,0,0
(n)
]†
O2,sNL

0,1,1,Jz,0,0
(n), (37)

the 3P0 interaction V4,3P0
(n),∑

Iz=−1,0,1

[
O2,sNL

1,1,0,0,1,Iz
(n)
]†
O0,sNL

1,1,0,0,1,Iz
(n) +

∑
Iz=−1,0,1

[
O0,sNL

1,1,0,0,1,Iz
(n)
]†
O2,sNL

1,1,0,0,1,Iz
(n), (38)

the 3P1 interaction V4,3P1
(n),∑

Iz=−1,0,1

∑
Jz=−1,0,1

[
O2,sNL

1,1,1,Jz,1,Iz
(n)
]†
O0,sNL

1,1,1,Jz,1,Iz
(n) +

∑
Iz=−1,0,1

∑
Jz=−1,0,1

[
O0,sNL

1,1,1,Jz,1,Iz
(n)
]†
O2,sNL

1,1,1,Jz,1,Iz
(n), (39)

and the 3P2 interaction V4,3P2
(n),∑

Iz=−1,0,1

∑
Jz=−2,...2

[
O2,sNL

1,1,2,Jz,1,Iz
(n)
]†
O0,sNL

1,1,2,Jz,1,Iz
(n) +

∑
Iz=−1,0,1

∑
Jz=−2,...2

[
O0,sNL

1,1,2,Jz,1,Iz
(n)
]†
O2,sNL

1,1,2,Jz,1,Iz
(n). (40)

At order Q4 we also have the first radial excitations of the S −D mixing term V4,SD,1(n),∑
Jz=−1,0,1

[
O2,sNL

1,2,1,Jz,0,0
(n)
]†
O0,sNL

1,0,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0
(n)
]†
O2,sNL

1,2,1,Jz,0,0
(n), (41)

and V4,SD,2(n), ∑
Jz=−1,0,1

[
O0,sNL

1,2,1,Jz,0,0
(n)
]†
O2,sNL

1,0,1,Jz,0,0
(n) +

∑
Jz=−1,0,1

[
O2,sNL

1,0,1,Jz,0,0
(n)
]†
O0,sNL

1,2,1,Jz,0,0
(n). (42)

If we apply the on-shell equivalence condition then V4,SD,1 and V4,SD,2 are equivalent. In this work we make the choice of
setting the coefficient of V4,SD,1 to zero.

At order Q4 we have the 1D2 interaction V4,1D2
(n),∑

Iz=−1,0,1

∑
Jz=−2,...2

[
O0,sNL

0,2,2,Jz,1,Iz
(n)
]†
O0,sNL

0,2,2,Jz,1,Iz
(n), (43)

the 3D1 interaction V4,3D1
(n), ∑

Jz=−1,0,1

[
O0,sNL

1,2,1,Jz,0,0
(n)
]†
O0,sNL

1,2,1,Jz,0,0
(n), (44)

the 3D2 interaction V4,3D2
(n), ∑

Jz=−2,...2

[
O0,sNL

1,2,2,Jz,0,0
(n)
]†
O0,sNL

1,2,2,Jz,0,0
(n), (45)

and the 3D3 interaction V4,3D3
(n), ∑

Jz=−3,...3

[
O0,sNL

1,2,3,Jz,0,0
(n)
]†
O0,sNL

1,2,3,Jz,0,0
(n). (46)

At order Q4 we also have the P − F mixing term V4,PF (n)∑
Iz=−1,0,1

∑
Jz=−2,...2

[
O0,sNL

1,3,2,Jz,0,0
(n)
]†
O0,sNL

1,1,2,Jz,0,0
(n) +

∑
Iz=−1,0,1

∑
Jz=−2,...2

[
O0,sNL

1,1,2,Jz,0,0
(n)
]†
O0,sNL

1,3,2,Jz,0,0
(n). (47)
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D. Isospin-breaking short-range interactions

We also include additional isospin-breaking 1S0 contact interactions for proton-proton scattering (Iz = 1) and neutron-neutron
scattering (Iz = −1). While these are not relevant for neutron-proton scattering, but we nevertheless discuss the interactions for
completeness. We define the two isospin-breaking interactions V Iz=1

0,1S0
(n),[

O0,sNL

0,0,0,0,1,Iz=1(n)
]†
O0,sNL

0,0,0,0,1,Iz=1(n) (48)

and V Iz=−10,1S0
(n), [

O0,sNL

0,0,0,0,1,Iz=−1(n)
]†
O0,sNL

0,0,0,0,1,Iz=−1(n). (49)

In terms of counting momenta, these are order Q0. However they are suppressed by the small size of the isospin-breaking
coefficient. Following our previous analyses, we count this correction as order Q2. We do not consider higher-order isospin
breaking terms in this work, but they will be included in future studies.

V. LONG-RANGE INTERACTIONS

A. One-pion exchange

The one-pion exchange interaction VOPE has the form

VOPE = − g2A
8F 2

π

∑
n′,n,S′,S,I

: ρS′,I(n
′)fS′S(n′ − n)ρS,I(n) :, (50)

where fS′S is defined as

fS′S(n′−n) =
1

L3

∑
q

Q(qS′)Q(qS) exp[−iq · (n′ − n)− bπ(q2 +M2
π)]

q2 +M2
π

, (51)

where L is the length of the cubic periodic box and each lattice momentum component qS is an integer multiplied by 2π/L. The
function Q(qS) is defined as

Q(qS) =
3

2
sin(qS)− 3

10
sin(2qS) +

1

30
sin(3qS), (52)

which equals qS up to a correction of order q7S . The parameter bπ is included to remove short-distance lattice artifacts in the one-
pion exchange interaction. In the present calculation, we set bπ = 0.25 in lattice units. We have used the combination q2+M2

π in
the exponential as suggested in recent work [12] as a momentum-space regulator that does not affect the long-distance behavior.
At leading order we take the pion mass to be the mass of the neutral pion, Mπ = M0

π = Mπ,I=3.

B. Two-pion exchange

The cutoff momentum arising from the lattice regularization is Λlatt = π/awith a the spatial lattice spacing. For coarse lattice
spacings such as a = 1.97 fm and a = 1.64 fm, the corresponding lattice cutoffs are 314 MeV and 377 MeV, respectively.
For momenta lying below these cutoff scales, the two-pion-exchange potential (TPEP) can be expanded in powers of q2/(4π2),
resulting in operators that are exactly the same as our short-range contact terms. We conclude that TPEP at coarse lattice spacings
can be replaced by retuning the low-energy constants (LECs) for these contact terms [13]. For these two coarse lattice spacings,
the TPEP does not have observable effects but only changes the LECs.

For the two smaller lattice spacings, a = 1.32 fm and a = 0.99 fm, however, higher momenta can be reached and the
structure of the two-pion-exchange potential can be resolved. In these cases we include the TPEP explicitly. According to
the power counting of chiral EFT, the TPEP first appears at order O(Q2) or NLO, and the subleading TPEP appears at order
O(Q3) or N2LO, and so on [14]. Similar to what we do to the OPEP, we also regularize the TPEP by a Gaussian form factor in
momentum space,
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F (q) = exp
[
−bπ(q2 +M2

π)
]

= exp

[
−q2 +M2

π

Λ2

]
, (53)

where Λ = 1/
√
bπ [12]. In the present calculation, we set bπ = 0.25 lattice units, which equates to Λ = 300 MeV for

a = 1.32 fm and Λ = 400 MeV for a = 0.99 fm. In this work, the relativistic corrections stemming from the 1/m2
N corrections

to the OPEP and 1/mN correction to the TPEP at order O(Q4) are not taken into account.
The TPEP up to order O(Q4) or N3LO are completely local and can be written in the form

VTPEP = V Q
2

TPEP + V Q
3

TPEP + V Q
4

TPEP

=
1

2

∑
n,n′

: ρ(n)VC(n− n′)ρ(n′) : +
1

2

∑
I

∑
n,,n′

: ρI(n)WC(n− n′)ρI(n
′) :

+
1

2

∑
S

∑
n,n′

: ρS(n)Vσ(n− n′)ρS(n′) : +
1

2

∑
S,I

∑
n,n′

: ρS,I(n)Wσ(n− n′)ρS,I(n
′) : (54)

+
1

2

∑
S1,S2

∑
n,n′

: ρS1(n)(VT )S1,S2(n− n′)ρS2(n′) : +
1

2

∑
S1,S2,I

∑
n,n′

: ρS1,I(n)(WT )S1,S2(n− n′)ρS2,I(n
′) :

where VC/σ , (VT )S1,S2
, WC/σ , and (WT )S1,S2

are scalar functions in the coordinate space, and

VC/σ(n− n′) =
1

L3

∑
q

exp [−iq · (n− n′)]VC/σ(q)F (q), (55)

WC/σ(n− n′) =
1

L3

∑
q

exp [−iq · (n− n′)]WC/σ(q)F (q), (56)

(VT )S1,S2
(n− n′) =

1

L3

∑
q

exp [−iq · (n− n′)] (VT )S1,S2
(q)F (q)Q(qS1

)Q(qS2
), (57)

(WT )S1,S2
(n− n′) =

1

L3

∑
q

exp [−iq · (n− n′)] (WT )S1,S2
(q)F (q)Q(qS1

)Q(qS2
). (58)

The definitions for the functions VC/σ(q), (WT )C/σ(q), (VT )S1,S2
(q), and (WT )S1,S2

(q) are given in Ref. [12, 15–18].

C. Coulomb and long-range strong isospin breaking

The Coulomb interaction will not be relevant for neutron-proton scattering, but we nevertheless discuss it here for complete-
ness. The Coulomb interaction can be written as

VCoulomb = −αEM

2

∑
n′,n

:
1

4
[ρ(n′) + ρI=3(n′)]

1

d(n′ − n)
[ρ(n) + ρI=3(n)] :, (59)

where d(n′ −n) is the shortest length of n′ −n as measured on the periodic lattice, and we define the value of d at the origin to
be 1/2. Our notation ρI=3 refers to the I = 3 isospin component of ρI .

The long-range isospin-breaking correction, due to differences in the charged and neutral pion mass in one-pion exchange,
has the form

V IB
OPE = − g2A

8f2π

∑
n′,n,S′,S,I

: ρS′,I(n
′)f IBS′SI(n

′ − n)ρS,I(n) :, (60)

where f IBS′SI is defined as

f IBS′SI(n
′−n) =

1

L3

∑
q

Q(qS′)Q(qS) exp[−iq · (n′ − n)− bπ(q2 +M2
π,I)]

q2 +M2
π,I

− fS′S(n′−n), (61)

where Mπ,1 = Mπ,2 = M+
π = M−π and Mπ,3 = M0

π . As in previous analyses we count this correction as order Q2.
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VI. GALILEAN INVARIANCE RESTORATION (GIR)

Galilean invariance is the statement that the laws of Newtonian physics for a non-relativistic system are independent of the
velocity of the center of mass. In a lattice regularized system, however, the effect of the cutoff is different in moving frames, and
this leads to the breaking of Galilean invariance [19]. There is also some breaking of Galilean invariance caused by our nonlocal
smearing parameter sNL that we use in the construction of our interactions. This arises from the residual dependence of the
interactions on the velocity of the center of mass. Fortunately, in many cases of interest these two Galilean invariance breaking
effects have the tendency to partially cancel.

In order to restore Galilean invariance in the two-nucleon system, we include the following two-nucleon nearest-neighbor
hopping operator,

VGIR = V 0
GIR + V 1

GIR, (62)

where

V 0
GIR = CGIR

∑
n,i,j,i′,j′

a†i,j(n)a†i′,j′(n)ai′,j′(n)ai,j(n) (63)

and

V 1
GIR = −CGIR

6

∑
n,i,j,i′,j′

∑
n′

a†i,j(n + n′)a†i′,j′(n + n′)ai′,j′(n)ai,j(n). (64)

Let us write |Ptot〉 as a two-body bound-state wave function with total momentum Ptot. We note that

〈Ptot|V 0
GIR|Ptot〉 (65)

is independent of Ptot, and so we have

〈Ptot|V 0
GIR|Ptot〉 = 〈0|V 0

GIR|0〉, (66)

where |0〉 is the two-body bound-state wave function with zero total momentum. Furthermore,

〈Ptot|V 1
GIR|Ptot〉 = −1

6
〈0|V 0

GIR|0〉
∑
n′

e−iPtot·~n′

=

[
−1

3
cos(Ptot,1)− 1

3
cos(Ptot,2)− 1

3
cos(Ptot,3)

]
〈0|V 0

GIR|0〉. (67)

Therefore

〈Ptot|VGIR|Ptot〉

= [1− 1

3
cos(Ptot,1)− 1

3
cos(Ptot,2)− 1

3
cos(Ptot,3)]〈0|V 0

GIR|0〉. (68)

In this manner we can restore Galilean invariance up to order Q2 by tuning the coefficient of VGIR according to the dispersion
relation of the deuteron and the 1S0 ground state at finite volume. The deuteron dispersion relation is far more useful for this
purpose, however, since the 1S0 ground state is a continuum state that shows negligible Galilean invariance breaking in its
dispersion relation. This is true for all continuum states, and this is why the amount of Galilean invariance breaking seen in the
higher partial waves are also negligible. We will consider Galilean invariance breaking effects beyond order Q2 in future work.

As an example of how to determine the Galilean invariance restoration operator coefficient, we show the results for lattice
spacing a = 1.97 fm in Fig. (1). The left and right panels are the deuteron dispersion relations before and after including
the Galilean invariance restoration operator respectively. We see that the amount of correction is relatively small. The fitted
coefficient for VGIR is found to be CGIR = −0.0658. The amount of Galilean invariance breaking is somewhat smaller than this
for the smaller lattice spacings.

VII. SCATTERING ON THE LATTICE

In order to calculate the scattering phase shifts and mixing angles, we first construct radial wave functions through the spherical
harmonics with quantum numbers (L,Lz) [20, 21],

|r〉L,Lz =
∑
r′

YL,Lz
(r̂′)δ|r′|=r |r′〉 , (69)
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FIG. 1. (Color online) The dispersion relation of the deuteron. The left panel is without any Galilean invariance restoration (GIR), and the
right panel is with GIR as provided by the operator VGIR with coefficient CGIR = −0.0658.

where r′ runs over all lattice grid points having the same radial lattice distance. We group together data into a large number of
radial bins so that in each bin, r−δr/2 < |r′| < r+δr/2, with very small width parameter δr. Using this definition of the radial
wave function, the Hamiltonian matrix over a three-dimensional lattice can be reduced to a one-dimensional radial Hamiltonian,
Hr,r′ → Hr,r′ .

We follow the method describe in Ref. [20] which uses an auxiliary radial potential. We extract the phase shifts as well as the
mixing angles from the radial wave functions in the region where the NN force and auxiliary potentials are vanishing. In this
range, the wave function has the form,

ALh
−
L (kr)−BLh+L(kr), (70)

where h−L (kr) and h+L(kr) are the spherical Bessel functions, k =
√

2µE, µ is the reduced mass, and E is the energy. The
scattering coefficients AL and BL satisfy the relations,

BL = SLAL, (71)

where SL = exp (2iδL) is the S-matrix and δL is the phase shift. The phase shift is determined by setting

δL =
1

2i
log

(
BL
AL

)
. (72)

In the case of the coupled channels with J > 0, both of the coupled partial waves, L = J − 1 and L = J + 1, satisfy Eq. (71),
and the S-matrix couples the two channels together. Throughout this work we adopt the so-called Stapp parameterization of the
phase shifts and mixing angles for the coupled channels [22],

S =

[
cos(2ε) exp

(
2iδ1JJ−1

)
i sin(2ε) exp

(
iδ1JJ−1 + iδ1JJ+1

)
i sin 2ε exp

(
iδ1JJ−1 + iδ1JJ+1

)
cos(2ε) exp

(
2iδ1JJ+1

) ]
. (73)

VIII. RESULTS FOR THE NEUTRON-PROTON PHASE SHIFTS

Different lattice spacings introduce different lattice artifacts. We make calculations using four different lattice spacings,
a = 1.97 fm, 1.64 fm, 1.32 fm and 0.99 fm to study the lattice spacing effects. We choose these values because the correspond-
ing lattice momentum cutoffs, Λlatt = π/a, remain below the estimated breakdown scale of chiral effective field theory and
the order-by-order convergence has been demonstrated to be favorable in few-body and many-body calculations. As noted in
discussion above, we do not include the TPEP for the two coarse lattice spacings, a = 1.97 fm and 1.64 fm. For the two smaller
lattice spacings, a = 1.32 fm and 0.98 fm, we present results both with and without the TPEP in order to discern the effect of
the TPEP.

In previous lattice studies we had to contend with interactions that had an effect in all channels. With these new lattice
interactions this problem is now completely solved. We need only to consider the interactions that participate in a given channel,
and our labelling of the operators makes clear which channels these are. We determine the LECs by reproducing the neutron-
proton scattering phase shifts and mixing angles of the Nijmegen partial wave analysis (NPWA) [23]. Since the NPWA only
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provides the statistical errors but not the systematic errors, we use the procedure described in Ref. [16] to account for the
systematic uncertainties. Specifically, we use

∆X = max
(

∆NPWA
X , |δNijmI

X − δNPWA
X |, |δNijmII

X − δNPWA
X |, |δReid93

X − δNPWA
X |

)
, (74)

where δiX are the phase shifts (mixing angles ) in channelX based on different NPWA potentials, while ∆NPWA
X are the statistical

error of the phase shifts (mixing angles) of the NPWA.
For the coupled channel, 3S1 − 3D1, we define the χ2 as

χ2 =
∑
i

(δLatti − δNPWA
i )2

∆2
i

+
(ELatt

b − EExp
b )2

∆E2
Exp

, (75)

with the deuteron binding energy EExp
b = 2.224575 MeV and corresponding error ∆EExp = 9 × 10−6 MeV. For the other

channels, we define the χ2 as

χ2 =
∑
i

(δLatt − δNPWA
i )2

∆2
i

. (76)

In our fits we choose energy ranges that are appropriate for the chiral order and lattice spacing used. Specifically, for the
coarser lattice spacings, a = 1.97 fm and 1.64 fm, we take the energy range Elab ≤ 50 MeV for the LO, NLO/N2LO and N3LO
fits. In those cases we use five points, Elab = 1, 5, 10, 25, and 50 MeV, to compute the corresponding χ2. For the fits with the
smaller lattice spacings, a = 1.32 and 0.99 fm, we take the energy range Elab ≤ 50 MeV for LO, NLO and N2LO fits, and
Elab ≤ 100 MeV for the N3LO fits. Thus we determine the χ2 for the N3LO fits using six points, Elab = 1, 5, 10, 25, 50 and
100 MeV. The LECs determined by the N3LO fits are given in Table I for each of the lattice spacings.

In Fig. (2) we show the phase shifts and mixing angles versus the relative momenta calculated using the coarsest lattice
spacings, a = 1.97 fm. We plot the results for relative momenta up to prel = 200 MeV. The error bars we quote in this plot
and in the following plots indicate uncertainties from the fitting procedure only. A more comprehensive analysis that includes
systematic errors due to the truncated chiral EFT expansion is presented later in our discussion. From the results, it is clear that
with the new lattice operators the N3LO calculations reproduce the NPWA phase shifts and mixing angles for most of the S, P
and D waves with good accuracy for relative momenta less than 200 MeV. One can also see clearly that the agreement improves
with chiral order. Unfortunately, the mixing angle ε2 bends up for the relative momenta prel at around 150 MeV, which indicates
that higher order corrections, e.g., N4LO terms, or smaller lattice spacings would be needed to get the proper behavior for ε2 at
larger momenta.

In Fig. (3) we show the neutron-proton scattering phase shifts and mixing angles versus the relative momenta calculated using
lattice spacing a = 1.64 fm. The results are very similar to those of a = 1.97 fm, but the mixing angle ε2 stays accurate up
to higher momenta compared with that of a = 1.97 fm. The smaller errors for the channels, 3P2 and ε2, indicate the results of
a = 1.64 fm have smaller lattice artifacts than those of a = 1.97 fm, as one might expect.

For the calculations involving the two smaller lattice spacings, a = 1.32 fm and 0.99 fm, we use the full NN interactions up to
chiral order O(Q4) or N3LO. The results are presented in Fig. (4) and (5), respectively. We plot the results for relative momenta
up to prel = 250 MeV. Compared to the results using the larger lattice spacings, one can see clear improvement. Again good
convergence is observed with increasing chiral order. With the full NN interactions up to order O(Q4), the calculation using
a = 0.99 fm can describe the S, P and D waves with good accuracy over the whole momentum range, 0 < prel < 250 MeV.

To study the importance of the long-range part of the TPEP in the calculations, we also redo the same fits without the TPEP
for a = 1.32 fm and a = 0.99 fm. Our results are shown in Fig. (6) and (7). For the calculations using a = 1.32 fm and
a = 0.99 fm, the phase shifts and mixing angles without the TPEP are very similar to those with the TPEP, though the LECs are
quite different. This indicates that the TPEP can be emulated by a retuning of the LECs. At the rather low scattering energies
we are probing, we do not see clear improvement due to TPEP from the phase shifts and mixing angles. However, we do expect
that this will change at higher scattering energies.

IX. PROPERTIES OF THE DEUTERON

In this section, we calculate the properties of the deuteron using the radial deuteron wave function obtained in the calculations
with a = 0.99 fm and the full NN interactions up to order Q4 or N3LO. At distance r beyond the range of the interaction, the
radial wave function for the deuteron in the 3S1 channel behaves as,

u(r) = ASe
−γr, (77)
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TABLE I. The low-energy contacts determined by N3LO fits using lattice spacings, a = 1.97 fm , 1.64 fm, 1.32 fm and 0.99 fm, respectively.
For the calculations using a = 1.32 fm and 0.99 fm, the full NN interactions are used. All the LECs are given in lattice units.

LECs a = 1.97 fm a = 1.64 fm a = 1.32 fm a = 0.987 fm

C0,1S0
0.1050± 0.0006 0.0879± 0.0004 0.0833± 0.0010 0.0860± 0.0004

C0,3S1
0.0256± 0.0056 0.0322± 0.0031 0.0455± 0.0289 0.0520± 0.0006

C2,1S0
0.0217± 0.0002 0.0242± 0.0002 0.0271± 0.0007 0.0256± 0.0005

C2,3S1
0.0267± 0.0020 0.0280± 0.0014 0.0310± 0.0179 0.0263± 0.0005

C2,SD −0.0605± 0.0041 −0.0421± 0.0047 −0.0291± 0.0137 −0.0089± 0.0021

C2,1P1
0.1930± 0.0012 0.1758± 0.0013 0.1469± 0.0003 0.1321± 0.0002

C2,3P0
−0.0084± 0.0004 0.0190± 0.0007 0.0495± 0.0004 0.0940± 0.0003

C2,3P1
0.1332± 0.0013 0.1217± 0.0007 0.1186± 0.0034 0.1300± 0.0007

C2,3P2
0.0441± 0.0001 0.0461± 0.0018 0.0584± 0.0021 0.0665± 0.0002

C4,1S0
0.0073± 0.0001 0.0081± 0.0001 0.0108± 0.0005 0.0148± 0.0006

C4,3S1
0.0079± 0.0007 0.0081± 0.0006 0.0119± 0.0109 0.0153± 0.0004

C4,SD 0.0005± 0.0003 −0.0011± 0.0006 −0.0026± 0.0029 −0.0098± 0.0011

C4,1P1
−0.0004± 0.0006 −0.0057± 0.0006 −0.0104± 0.0001 −0.0105± 0.0002

C4,3P0
−0.0001± 0.0002 −0.0006± 0.0005 −0.0024± 0.0001 −0.0022± 0.0007

C4,3P1
−0.0006± 0.0004 −0.0004± 0.0004 −0.0019± 0.0013 0.0063± 0.0013

C4,3P2
0.0080± 0.0002 0.0090± 0.0012 0.0105± 0.0008 0.0078± 0.0003

C4,PF 0.0072± 0.0002 0.0041± 0.0011 0.0017± 0.0002 0.0026± 0.0002

C4,1D2
0.0105± 0.0006 0.0088± 0.0005 0.0136± 0.0001 0.0190± 0.0050

C4,3D1
0.0327± 0.0023 0.0319± 0.0039 0.0318± 0.0134 0.0720± 0.0122

C4,3D2
−0.032± 0.0017 −0.0324± 0.0019 −0.0187± 0.0022 −0.0005± 0.0014

C4,3D3
0.0030± 0.0026 0.0088± 0.0027 0.0059± 0.0013 0.0127± 0.0041

where AS is the S-wave asymptotic normalization coefficient. Here γ =
√
m|Ed| with Ed denoting the deuteron binding

energy. In the 3D1 channel, the radial wave function behaves as

w(r) = ηAS

[
1 +

3

γr
+

3

(γr)2

]
e−γr. (78)

In Fig. (8), we show the radial wave functions of the deuteron calculated using a = 0.99 fm with the full NN interaction up to
chiral order O(Q4). The left panel shows the S-wave radial wave function while the right panel is for the D-wave radial wave
function. In calculating the asymptotic normalization factors, we take the range 8 < r < 14 fm. From the plots, one can see
clearly that when the neutron and proton are well separated the S and D waves behave as the asymptotic forms in Eq. (77) and
(78) respectively. The numerical values for AS and η are shown in Table II.

Using the radial wave functions, we can compute the root-mean-square radius of the deuteron,

rd =
1

2

[∑
δrr2

[
u2(r) + w2(r)

]]1/2
, (79)

where δr is the small separation between the radial bins we are using for the radial deuteron wave function, and the summation
is over all the radial bins. In the same manner, we can also compute the quadrupole moment of the deuteron,

Qd =
1

20

∑
δrr2w(r)

[√
8u(r)− w(r)

]
, (80)

In addition to the deuteron properties, we can also compute the S-wave effective range parameters at very low energies. The
effective range expansion has the form

p cot(δ) = −1

a
+

1

2
rp2 +O(p4), (81)
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FIG. 2. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
1.97 fm is used. The TPEP is not included explicitly as discussed in the text.

TABLE II. The deuteron properties and S-wave parameters calculated with the full NN interaction up to chiral orderO(Q4) using a = 0.99 fm.
The error bars we quote in this table indicate uncertainties from the fitting procedure only.

LO NLO N2LO N3LO Empirical

Ed (MeV) 2.2246± 0.0002 2.224575± 0.000016 2.224575± 0.000025 2.224575± 0.000011 2.224575(9)[24]

As(fm
−1/2) 0.8662± 0.0007 0.8772± 0.0003 0.8777± 0.0004 0.8785± 0.0004 0.8846(9)[25]

η 0.0212± 0.0000 0.0258± 0.0001 0.0257± 0.0002 0.0254± 0.0001 0.0256(4) [26]

Qd(fm
2) 0.2134± 0.00000 0.2641± 0.0016 0.2623± 0.0023 0.2597± 0.0013 0.2859(3) [27]

rd (fm) 1.9660± 0.0001 1.9548± 0.0005 1.9555± 0.0008 1.9545± 0.0005 1.97535(85) [28]

a3S1
5.461± 0.000 5.415± 0.001 5.421± 0.002 5.417± 0.001 5.424(4) [29]

r3S1
1.831± 0.0003 1.759± 0.002 1.760± 0.003 1.758± 0.002 1.759(5)[29]

a1S0
−23.8± 0.1 −23.69± 0.05 −23.8± 0.2 −23.678± 0.038 −23.748(10)[29]

r1S0
2.666± 0.001 2.647± 0.003 2.69± 0.02 2.647± 0.004 2.75(5) [29]

PD(%) 1.92 3.48 3.41 3.36

where p is the relative momenta between the neutron and proton, while a and r are the scattering length and effective range
respectively. Using these formula, we can extract the scattering length and effective range for 3S1 and 1S0.

In Table II, we present the properties of the deuteron and S-wave parameters obtained using the a = 0.99 fm and the full
NN interactions up to order Q4. In order to provide some insight into the nature of the lattice wave functions, we also list the
computed D-wave probabilities of the deuteron, PD. We note, however, that PD is strongly dependent on short-distance physics
and the scale at which it is regulated [30].

From the results in Table II, it is clear than the deuteron properties can be reproduced accurately at lattice spacing a = 0.99 fm.
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FIG. 3. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
1.64 fm is used. The TPEP is not included explicitly as discussed in the text.

There are however still some small systematic discrepancies that suggest additional corrections are needed. While these could
be due to corrections beyond N3LO in the lattice Hamiltonian, they could also be due to missing corrections to the observables
themselves such as the r2 operator. Such corrections are needed to cancel ambiguities on how the operators are defined on
a discrete lattice. For example, the nucleons could be regarded as exactly localized as delta functions on the lattice sites or
they could be viewed as having some other distribution with width comparable to the lattice spacing. While numerically small,
these corrections to the operator observables are required for a full accounting of all lattice and regularization artifacts. See for
example Ref. [31]. This is an interesting but extensive subject that requires further investigation in future studies.

X. THEORETICAL UNCERTAINTIES

It is necessary to also address the convergence of the effective field theory expansion on the lattice and their associated
systematic errors. These important topics have generated much recent interest [16, 32–34]. We follow the prescription in
Ref. [16, 32] in which the theoretical uncertainty for some observable X(p) at order NmLO and momentum p is given by

∆XNmLO(p) = max
(
Qm+2

∣∣XLO(p)
∣∣ , Qm ∣∣XLO(p)−XNLO(p)

∣∣ , · · · , Q1
∣∣∣XNm−1LO(p)−XNmLO(p)

∣∣∣) . (82)

Here Q is the estimated expansion parameter controlling the rate of convergence,

Q = max (p/Λb,Mπ/Λb) , (83)

and Λb the breakdown momentum scale. On the lattice, cubic symmetry replaces the rotational symmetry of the continuum,
and the (2L+ 1)-dimensional irreducible representation of SO(3) decomposes into irreducible representations of the rotational
octahedral group O. For example, L = 0 corresponds to the A1 of O, and L = 1 corresponds to the T1 of O. However L = 2
splits into the E and T2 representations of O, and similar splittings occur in all of the larger L representations. As a result
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FIG. 4. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
1.32 fm and the full NN interactions are used.

the breaking of rotational symmetry for L ≥ 2 is numerically larger than that for L < 2. This leads to a lower momentum
breakdown scale for D waves and above compared to the S and P waves. To account for this in our calculations, we take Λb
to be the lattice momentum cutoff Λlatt = π/a for the lower partial waves, and we take Λb = (2/3)Λlatt for ε2, D waves, and
higher partial waves.

We will study the dependence of the lattice breakdown scale on L and J in more detail in future work. The theoretical
error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta for a = 1.97, 1.64,
1.32 and 0.99 fm are shown in Fig. (9-12), from which we see a systematic decrease of the uncertainties for the S and D
wave phase shifts with decreasing lattice spacing. The unexpectedly small NLO uncertainties for the 3P0 phase shifts at coarse
lattice spacing are caused by the rather good but accidental accuracy of the 3P0 phase shifts at LO. We also show the estimated
theoretical uncertainties for the neutron-proton scattering phase shifts and mixing angles for a = 1.32 and 0.99 fm without the
long-range TPEP in Fig. (13) and (14). With only a few exceptions, the error bands for each order generally overlap with each
other and cover the empirical phase shifts. This is a promising sign of convergence of the chiral effective field theory expansion
on the lattice.

XI. SUMMARY AND OUTLOOK

We have proposed a new lattice formulation of the chiral NN force which is easily decomposed into partial waves. The
new lattice operators work as projection operators, which only survive in particular channels. This advantage simplifies the
fitting procedure very much. Instead of fitting the phase shifts and mixing angles for all the channels simultaneously, only one
uncoupled channel or two coupled channels is needed to be computed for each calculation.

To study the dependence on the lattice spacing, we have computed neutron-proton phase shifts and mixing angles using four
different lattice spacings, a = 1.97 fm, 1.64 fm, 1.32 fm and 0.99 fm. For two coarser lattice spacings, a = 1.97 fm or 1.64 fm,
we did not explicitly include the TPEP, whereas for those using a = 1.32 fm or 0.99 fm, we did. Our numerical results indicate
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FIG. 5. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
0.99 fm and the full NN interactions are used.

good convergence with respect to chiral order. One also observes an obvious improvement when the lattice spacing is decreased
When comparing the results obtained with and without the TPEP at lattice spacings of a = 1.32 or 0.99 fm, we did not find
significant differences. This may, however, be a consequence of the rather low scattering energies we are probing, and we expect
that differences would appear at higher scattering energies.

We also studied the properties of the deuteron wave function and the S wave effective range parameters obtained with the full
NN interaction at lattice spacing a = 0.99 fm. The numerical values are very close to the empirical values, which indicate the
current version of NN interactions are quite accurate, and very significant improvement over previous lattice studies. Some small
discrepancies remain, but these may well be fixed in studies that reach higher-order in the chiral effective field theory expansion.

In summary, the new lattice interactions are far more efficient and accurate in reproducing physical data than previous lattice
interactions. We have begun studying the properties of light and medium-mass nuclei using these interactions, and the results
are promising. These interactions were specifically designed to facilitate very efficient Monte Carlo simulations of few- and
many-body systems using auxiliary fields. The results of these studies using these new interactions will be reported in several
future publications.
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FIG. 6. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
1.32 fm is used. The TPEP is not included in this case for comparison.
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FIG. 7. (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative momenta. The lattice spacing a =
0.99 fm is used. The TPEP is not included in this case for comparison.
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FIG. 9. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta
for a = 1.97 fm. The blue and red bands signify the estimated uncertainties at NLO and N3LO respectively. The black solid line and diamonds
denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation at N3LO, respectively.
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FIG. 10. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta
for a = 1.64 fm. The blue and red bands signify the estimated uncertainties at NLO and N3LO respectively. The black solid line and diamonds
denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation at N3LO, respectively.
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FIG. 11. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative
momenta for a = 1.32 fm with the full NN interaction. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and
N3LO respectively. The black solid line and diamonds denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice
calculation at N3LO, respectively.
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FIG. 12. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative
momenta for a = 0.99 fm with the full NN interaction. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and
N3LO respectively. The black solid line and diamonds denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice
calculation at N3LO, respectively.
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FIG. 13. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta
for a = 1.32 fm without the TPEP. The blue and red bands signify the estimated uncertainties at NLO and N3LO respectively. The black solid
line and diamonds denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation at N3LO, respectively.
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FIG. 14. (Color online) The theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta
for a = 0.99 fm without the TPEP. The blue and red bands signify the estimated uncertainties at NLO and N3LO respectively. The black solid
line and diamonds denote phase shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation at N3LO, respectively.
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