
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Shell model study of using an effective field theory for
disentangling several contributions to neutrinoless double-

β decay
Mihai Horoi and Andrei Neacsu

Phys. Rev. C 98, 035502 — Published  4 September 2018
DOI: 10.1103/PhysRevC.98.035502

http://dx.doi.org/10.1103/PhysRevC.98.035502


Shell model study of using an effective field theory for disentangling several

contributions to the neutrinoless double-beta decay

Mihai Horoi∗ and Andrei Neacsu†

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
(Dated: August 9, 2018)

Weak interaction in nuclei represents a well-known venue for testing many of the fundamental
symmetries of the Standard Model. In particular, neutrinoless double-beta decay offers the pos-
sibility to test Beyond Standard Model theories predicting that neutrinos are Majorana fermions
and the lepton number conservation is violated. This paper focuses on an effective field theory ap-
proach to neutrinoless double-beta decay for extracting information regarding the properties of the
Beyond Standard Model Lagrangian responsible for this process. We use shell model nuclear matrix
elements and the latest experimental lower limits for the half-lives to extract 12 lepton number
violating parameters of five nuclei of experimental interest, and lower limits for the energy scales
of the new physics. Using the most stringent limits that we obtain for the values of the lepton
number violating parameters, we predict new half-life limits for the other nuclei of experimental in-
terest, in the case of 12 neutrino double-beta decay mechanisms. We provide an analysis that could
reveal valuable information regarding the dominant neutrinoless double-beta decay mechanism, if
experimental half-life data becomes available for different isotopes.

I. INTRODUCTION

The experimental discovery of neutrino oscillations [1,
2] was awarded the Nobel prize in 2015 [3, 4] for clar-
ifying some of the properties of neutrinos. The impor-
tant consequence of these observations is that neutrinos
have non-zero mass. However, oscillation experiments
alone can only measure squared mass differences, while
other neutrino properties such as their mass hierarchy,
their absolute masses, or their nature (whether neutrinos
are Dirac or Majorana fermions) remain elusive. Never-
theless, the success of these experiments has greatly in-
creased the interest in neutrino physics in general, and
neutrinoless double-beta decay (0νββ) in particular.
The neutrinoless double-beta decay (0νββ) is consid-

ered the best approach to study the yet unknown proper-
ties of neutrinos related to their nature, whether they are
Dirac or Majorana fermions, which the neutrino oscilla-
tion experiments cannot clarify. Should the neutrinoless
double-beta transitions occur, then the lepton number
conservation is violated by two units, and the black-box
theorems [5–8] indicate that the light left-handed neutri-
nos are Majorana fermions. As such, through black-box
theorems alone, it is not possible to disentangle the dom-
inant mechanism contributing to this process. Most of
the theoretical effort dedicated to this subject consists
of calculations of leptonic phase-space factors and nu-
clear matrix elements that are computed via several nu-
clear structure methods and within specific models. One
of the most popular models is the left-right symmetric
model [9–13], which is currently investigated at the Large
Hadron Collider (LHC) [14]. In two recent papers [15, 16]
we have discussed ways to identify some of the possible
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contributions to the decay rate by studying the angular
distribution and the energy distribution of the two out-
going electrons that could be measured. However, there
are still many other possible contributions to this process
that one cannot yet dismiss. For these reasons, a more
general beyond standard model (BSM) effective field the-
ory would be preferable, as it would not be limited to re-
lying on specific models, but rather considering the most
general BSM effective field theoretical approach that de-
scribes this process. An important outcome of such a
theory is the evaluation of the energy scales up to which
the effective field operators are not broken, together with
limits for the effective low-energy couplings.

The analysis of the 0νββ decay process is generally
done at three levels. At the lowest level the weak in-
teraction of the quarks and leptons is considered and
the BSM physics is treated within a low-energy effective
field theory approach. At the next level the hadroniza-
tion process to nucleons and exchanging pion is consid-
ered. The nucleons are treated in the impulse approxi-
mation leading to free space 0νββ transition operators.
At the third level the nucleon dynamics inside the nuclei
is treated using nonperturbative nuclear wave functions,
which are further used to obtain nuclear matrix elements
(NME) needed to calculate the 0νββ observables, such as
half-lives and two-electron angular and energy distribu-
tions [15]. A modern approach that could accomplish this
plan would be based on the chiral effective field theory
of pions and nucleons [17, 18]. This approach introduces
a number of couplings, which in principle can be calcu-
lated from the underlying theory of strong interaction
using lattice QCD techniques [17], or may be extracted
within some approximation from the known experimen-
tal data [18]. These couplings may come with new phases
and they may include effective contributions from the ex-
change of heavier mesons. The lattice QCD approach is
underway, but it proved to be very difficult for extracting
even basic weak nucleon couplings, such as gA [19].
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In this paper we start from the formalism of Ref. [20–
23] that provides a general effective field theory (EFT)
approach to the neutrinoless double-beta decay. How-
ever, at the hadron level three new diagrams are added
for the first time to the effective field theory analysis of
the 0νββ, which were only considered in the literature in
the context of specific mechanisms. Under the assump-
tion that a single coupling in the BSM Lagrangian dom-
inates the 0νββ amplitude, we extract new limits for the
effective Majorana mass and for 11 additional low-energy
EFT couplings using data from five nuclei of current ex-
perimental interest. Some of these couplings correspond
to parameters found in left-right symmetric models, and
we present and compare them. To be able to get the lim-
its of these effective couplings and parameters from the
experimental half-life limits, 20 nuclear matrix elements
(NME) and 9 phase-space factors (PSF) are needed. Fi-
nally, we use the limits for the EFT couplings and the
formalism of the effective field theory to obtain limits for
the energy scale of the new physics that could be respon-
sible for the neutrinoless double beta decay process.

We further extend the use of the EFT to calculate
and study the half-life ratios for pairs from a number
of five experimentally interesting isotopes in the case of
all 12 lepton number violating couplings. The ratio of
half-lives can be used to probe the sensitivity of the five
isotopes in relation to their respective mechanisms and
to predict the half-life limits needed to match the dif-
ferent experimental results. This information could be
useful in estimating scales and costs, fine-tuning the ex-
periments in search for the 0νββ transition mechanism
that is expected to produce the shortest half-life, but also
to get a better view and compare the status of various
experiments. Even more interesting is that in the case of
experimental confirmation of 0νββ for different isotopes,
one could possibly indicate the dominant mechanism of
the transition.

To accomplish this goal we need reliable NME. The
most commonly used nuclear structure methods for
the NME calculation are proton-neutron Quasi Ran-
dom Phase Approximation (pnQRPA) [20–28], Interact-
ing Shell Model (ISM) [29–47], Interacting Boson Model
(IBM-2) [48–51], Projected Hartree Fock Bogoliubov
(PHFB) [52], Energy Density Functional (EDF) [53], and
the Relativistic Energy Density Functional (REDF) [54]
method. The NME calculated with different methods
and by different groups sometimes show large differences,
and this has been debated in the literature [55, 56]. Al-
though there seem to exist many NME results to choose
from, most of the references listed only provide calcu-
lations for the light left-handed Majorana neutrino ex-
change. Ref. [45] provides tables and plots that com-
pare the latest results for the light left-handed neutrino
exchange and for the heavy right-handed neutrino ex-
change.

The NME used in Ref. [20–23] come from older QRPA
calculations, which do not include many of the improve-
ments proposed in recent years [57, 58]. We calculate the

NME using shell model techniques, which are consistent
with previous calculations [31, 36–46]. The reason for
choosing shell model NME is our belief that these are
better suited and more reliable for 0νββ calculations, as
they take into account all the correlations around the
Fermi surface, respect all symmetries, and take into ac-
count consistently the effects of the missing single par-
ticle space via many-body perturbation theory (the ef-
fects were shown to be small, about 20%, for 82Se [59]).
Furthermore, we have tested the shell model methods
and the effective Hamiltonians used by comparing calcu-
lations of spectroscopic observables to the experimental
data, as presented in Ref. [36, 45, 60]. We do not con-
sider any quenching for the bare 0νββ operator in these
calculations. Such a choice is different from that for the
simple Gamow-Teller operator used in the single beta
and 2νββ decays where a quenching factor of about 0.7
is necessary [61]. For the PSF we use an effective theory
based on the formalism of Ref. [62], but fine-tuned as to
take into account the effects of a Coulomb field distorting
finite-size proton distribution in the final nucleus. To our
knowledge, two of the NME presented in this paper are
calculated for the first time using shell model techniques.

When studying the half-life ratios, we found that
the choice of effective Hamiltonians plays an impor-
tant role in the analysis. If the NME of the two iso-
topes that enter the ratio can be calculated both within
the same model space using the same effective Hamil-
tonian, the uncertainties in our analysis are insignifi-
cant. On the other hand, when the NME require differ-
ent Hamiltonians and especially used in different model
spaces, then extra care needs to be given to those cal-
culations. For these reasons, in the analysis of the
half-life ratios, we take into account two sets of effec-
tive Hamiltonians and their corresponding optimal clo-
sure energies [38, 40, 43], 〈E〉, specific for each model
space. One set of NME is obtained using the Hamilto-
nians preferred by our group, and the results are desig-
nated by the ”CMU” label. For 48Ca in the pf model
space (0f7/2, 1p3/2, 0f5/2, 1p1/2) we use GXPF1A [63]

with 〈E〉 = 0.5 MeV, for 76Ge and 82Se in the jj44 model
space (0f5/2, 1p3/2, 1p1/2, 0g9/2) we choose JUN45 [64]

with 〈E〉 = 3.4 MeV, and for 130Te and 136Xe in the
jj55 model space (0g7/2, 1d5/2, 1d3/2, 1s1/2, 0h11/2) we
use SVD [65] with 〈E〉 = 3.5 MeV. The second set of
NME we calculate using the Hamiltonians preferred by
the Strasbourg-Madrid group, and denoted with ”St-
Ma”. In this case, for 48Ca we use KB3G [66] with
〈E〉 = 2.5 MeV, for 76Ge and 82Se GCN.28-50 with
〈E〉 = 10 MeV, and for 130Te and 136Xe we use GCN.50-
82 with 〈E〉 = 12 MeV.

This paper is organized as follows: Section II ana-
lyzes the contributions of several BSM mechanisms to the
neutrinoless double-beta decay. Section III presents the
framework of the effective field theory for the neutrinoless
double-beta decay. Section IV shows the experimental
limits on the BSM lepton number violating (LNV) cou-
plings that we calculate, and is divided into three subsec-
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tions. Subsection IVA is dedicated to revisit of the most
common approach to 0νββ that considers only the light
left-handed Majorana neutrino exchange, presenting shell
model nuclear matrix elements and upper limits for the
Majorana mass. Subsection IVB details the study of the
long-range contributions to the 0νββ decay Lagrangian.
Subsection IVC presents the analysis of the short-range
contribution LNV parameters. Section V contains our
analysis of half-life ratios. The calculated half-lives that
are expected to match the sensitivity of KamLand-Zen
are shown in Subsection VA and a possible way to find
the dominant mechanism is presented in Subsection VB.
Discussions are presented in Section VI, Section VII is
dedicated to conclusions and, last, Section VIII is an
Appendix containing all the relevant formulae for cal-
culating the NME.

II. BSM MECHANISMS CONTRIBUTING TO

NEUTRINOLESS DOUBLE-BETA DECAY

The main mechanism considered to be responsible for
the neutrinoless double beta decay is the mass mechanism
that assumes that the neutrinos are Majorana fermions,
and relies on the assumption that the light left-handed
neutrinos have mass. However, the possibility that right-
handed currents could contribute to the neutrinoless
double-beta decay (0νββ) has been already considered
for some time [62, 73]. Recently, 0νββ studies [13, 74]
have adopted the left-right symmetric model [11, 75] for
the inclusion of right-handed currents. In addition, the
R-parity violating (��Rp) supersymmetric (SUSY) model
can also contribute to the neutrinoless double beta de-
cay process [76–78]. In the framework of the left-right
symmetric model and R-parity violating SUSY model,
the 0νββ half-life can be written as a sum of products
of PSF, BSM LNV parameters, and their corresponding
NME [15]:

[

T 0ν
1/2

]−1

= G01g
4
A

∣

∣η0νM0ν +
(

ηLNR
+ ηRNR

)

M0N

+ ηq̃Mq̃ + ηλ′Mλ′ + ηλXλ + ηηXη|2 . (1)

Here, G01 is a phase-space factor that can be calcu-
lated with good precision for most cases [67, 79–81],

gA is the axial vector coupling constant, η0ν =
〈mββ〉
me

,

with 〈mββ〉 representing the effective Majorana neutrino
mass, and me the electron mass. ηLNR

, ηRNR
are the heavy

neutrino parameters with left-handed and right-handed
currents, respectively [13, 31], ηq̃, ηλ′ are ��Rp SUSY
LNV parameters [82], ηλ, and ηη are parameters for the
so-called ”λ−” and ”η−mechanism”, respectively [13].
M0ν , M0N , are the light and the heavy neutrino ex-
change NME, Mq̃, Mλ′ are the ��Rp SUSY NME, and
Xλ and Xη denote combinations of NME and other PSF
(G02 −G09) corresponding to the λ−mechanism involv-
ing right-handed leptonic and right-handed hadronic cur-
rents, and the η−mechanism with right-handed leptonic

and left-handed hadronic currents, respectively [15]. As-
suming a seesaw type I dominance [83], the term ηLNR

is considered not to contribute if the heavy mass eigen-
states are larger than 1 GeV [47], and we neglect it here.
For consistency with the literature, the remaining term
ηRNR

is labeled as η0N . In Eq. (1) and in all equations de-

scribing half-lives below, we factorize g4A = 1.274 just to
be consistent with the most recent definitions of the PSF
[67, 79–81]. Our view is that if there is any quenching,
that is not of the gA, but rather due to the methodology
of calculating the NME.
In Table I we present the Q0ν

ββ values, the most re-
cent experimental half-life limits from the indicated ref-
erences, and the nine PSF for 0νββ transitions to ground
states of the daughter nucleus for five isotopes currently
under investigation. The PSF were calculated using a
new effective method described in great detail in Ref. [81].
G01 values were calculated with a screening factor (sf )
of 94.5, while for G02 −G09 we used sf = 92.0 that was
shown to provide results very close to those of Ref. [84].
We note that the 82Se experimental half-life used here
and throughout this analysis is preliminary [70]. How-
ever, we believe that this limit is valid and that it may
get improved.
In Ref. [15] we show how one could disentangle con-

tributions form different mechanisms using two-electron
angular and energy distributions, as well as half-life data
from several isotopes. Here, we consider the case where
one mechanism dominates, more explicitly, one single
term in the decay amplitude of Eq. (1). Table II shows
the shell model values of the NME that enter Eq. (1).
The light and heavy neutrino-exchange NME, M0ν and
M0N , are taken from Ref. [44] that describes their for-
malism and calculation. Mq̃ and Mλ′ are calculated us-
ing the description in Eq. (150) and Eq. (155), respec-
tively, of Ref. [82]. Xλ and Xη are adapted from C4

and C5 of Eq. (3.5.15d) and Eq. (3.5.15e), respectively,
in Ref. [62] multiplied by MGT/G01 to fit the factor-
ization of Eq. (1). All NME used in this paper were
calculated using the interacting shell model (ISM) ap-
proach [31, 38–41, 44, 47] (see Ref. [44] for a review),
and include short-range-correlation effects based on the
CD-Bonn parametrization [36], finite-size effects [82] and,
when appropriate, optimal closure energies [60] (see Ap-
pendix for more details).
The upper limits for corresponding LNV parameters

extracted from lower limits of the half-lives under the
assumption that only one term in the amplitude domi-
nates, are also presented in Table II. There are a few
other QRPA [62, 82, 84–86] and ISM [29–32] results in
the literature that were obtained within the framework
of the LRSM and SUSY. However, some of the extracted
LNV parameters rely on some older half-life limits.
One of the main advantages of using models is that

one can relate the neutrino physics parameters, η0ν , η
L
NR

,

ηRNR
, etc, to the underlying model parameters, such as

masses, mixing angles, etc [13, 15, 82]. However, the
models mentioned above provide a limited (incomplete)
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TABLE I. The Q0ν
ββ values in MeV, the experimental T 0ν

1/2 limits in years, and the calculated PSF (G01 − G09) in years−1 for
all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0ν
ββ [67] 4.272 2.039 2.995 2.527 2.458

T 0ν
1/2 > 2.0× 1022 [68] 8.0 × 1025 [69] 2.5 × 1023 [70] 4.0× 1024 [71] 1.07× 1026 [72]

G01 × 1014 2.45 0.23 1.00 1.41 1.45

G02 × 1014 15.5 0.35 3.21 3.25 3.15

G03 × 1015 18.2 1.20 6.50 8.46 8.55

G04 × 1015 5.04 0.42 1.92 2.53 2.58

G05 × 1013 3.28 0.60 2.16 4.12 4.36

G06 × 1012 3.87 0.50 1.66 2.16 2.21

G07 × 1010 2.85 0.28 1.20 1.76 1.80

G08 × 1011 1.31 0.17 0.82 1.72 1.83

G09 × 1010 15.6 1.12 4.42 4.47 4.44

TABLE II. The NME that appear in Eq. (1) for the five
nuclei of current experimental interest, and the corresponding
LNV parameters extracted under the assumption that only
one dominates.

48Ca 76Ge 82Se 130Te 136Xe

M0ν 1.02 3.63 3.40 1.92 1.74

M0N 81.4 196 181 126 113

Mq̃ 107 339 320 185 169

Mλ′ 162 418 395 245 222

Xλ 2.11 4.12 5.68 2.81 2.48

Xη 243 784 716 510 462

106×|η0ν | 27.3 0.40 3.65 1.36 0.28

109×|η0N | 343.8 7.42 68.5 20.6 4.40

109×|ηq̃| 260 4.28 38.8 14.1 2.95

109×|ηλ′ | 172.8 3.47 31.4 10.7 2.24

107×|ηλ| 133 3.52 21.88 9.30 2.01

109×|ηη| 115 1.85 17.3 5.12 1.08

number of Lorentz invariant terms in the low energy La-
grangian that induces contributions to the neutrinoless
double beta decay amplitudes.

III. EFFECTIVE FIELD THEORY APPROACH

TO NEUTRINOLESS DOUBLE-BETA DECAY

A more general approach is based on the effective
field theory extension of the Standard Model. The anal-
ysis based on the BSM contributions to the effective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0νββ data, and by
data from LHC and other experiments. In fact, the mod-
els considered in section II always lead to a subset of
terms in the low-energy (∼ 200 MeV) effective field the-
ory Lagrangian. Here we consider all the terms in the
Lagrangian allowed by the symmetries. Some of the cou-

0νββ

e
L/ R
−

u

u

d

d

e
L/ R
−

(a) The generic 0νββ decay
diagram at the quark-level.

=

d

d

u

u

e
L

−

ν

W
L

W
L

e
L

−

(b) Light left-handed neutrino
exchange diagram.

+

(c) The long-range part of the
0νββ diagram.

+

e
L/ R
−

u

u

d

d

e
L/ R
−

ε

(d) The short-range part of
the 0νββ diagram.

FIG. 1. The 0νββ decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0νββ decay
diagram, while (1d) displays the short-range part.

plings will correspond to the model couplings in Eq. (1),
but they might have a wider meaning. Others are new,
not corresponding to specific models.
At the quark-level, we present in Figure 1 the generic

0νββ Feynman diagrams contributing to the 0νββ pro-
cess. We consider contributions coming from the light
left-handed Majorana neutrino (Fig. 1b), a long-range
part coming from the low-energy four-fermion charged-
current interaction (Fig. 1c), and a short-range part
(Fig. 1d).
We treat the long-range component of the 0νββ dia-

gram as two point-like vertices at the Fermi scale, which
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exchange a light neutrino. In this case, the dimension
6 Lagrangian can be expressed in terms of effective cou-
plings [23]:

L6 =
GF√
2



jµV−AJ
†
V −A,µ +

∗
∑

α,β

ǫβαjβJ
†
α



 , (2)

where J†
α = ūOαd and jβ = ēOβν are hadronic and lep-

tonic Lorentz currents, respectively. The definitions of
the Oα,β operators are given in Eq. (3) of Ref. [23]. The

LNV parameters are ǫβα = {ǫV+A
V−A, ǫV+A

V+A, ǫS+P
S±P , ǫTR

TR}.
The ”*” symbol indicates that the term with α = β =
(V − A) is explicitly taken out of the sum. However,
the first term in Eq. (2) still entails BSM physics
through the dimension-5 operator responsible for the
Majorana neutrino mass (see also section VI). Here
GF = 1.1663787× 10−5 GeV−2 denotes the Fermi cou-
pling constant. Refs. [20–23] also include a ǫTL

TR contri-
bution. We recently found [87] that this contribution is
actually zero, and we removed it from our analysis.
As already mentioned, some of these couplings play

the same role as some of the model couplings listed in
Eq. (1), but they have more general meaning here. For

example, ǫV+A
V−A play the same role as ηη and ǫV+A

V+A play
the same role as ηλ in the effective Lagrangian associated
to models.
In the short-range part of the diagram presented in

Fig. 1d we consider the interaction to be point-like.
Expressing the general Lorentz-invariant Lagrangian in
terms of effective couplings [22], we get:

L9 =
G2

F

2mp

[

ε1JJj + ε2J
µνJµνj + ε3J

µJµj

+ε4J
µJµνj

ν + ε5J
µJjµ

]

, (3)

with the hadronic currents of defined chirality J =
ū(1±γ5)d, J

µ = ūγµ(1±γ5)d, J
µν = ū i

2 [γ
µ, γν ](1±γ5)d,

leptonic currents j = ē(1 ± γ5)e
C , jµ = ēγµ(1 ± γ5)e

C ,

and εβα = εxyzα = {ε1, ε2, εLLz(RRz)
3 , ε

LRz(RLz)
3 , ε4, ε6}.

These parameters have dependence on the chirality of
the hadronic and the leptonic currents involved, with
xyz = L/R,L/R,L/R. In the case of ε3, one can distin-
guish between different chiralities, thus we express them

separately as ε
LLz(RRz)
3 and ε

LRz(RLz)
3 .

The contribution of the diagrams 1b and 1c to the
0νββ decay amplitude is proportional to the time-
ordered product of two effective L6 Lagrangians [23],

T (L(1)
6 L(2)

6 ) =
G2

F

2
T
[

jV −AJ
†
V−AjV −AJ

†
V−A

+ ǫβαjβJ
†
αjV−AJ

†
V −A + ǫβαǫ

δ
γjβJ

†
αjδJ

†
γ

]

, (4)

while the contribution of the diagram 1d is proportional
to L9. This description of the effective Lagrangian con-
tributing to the decay misses the specificity of the ǫ/ε
parameters to any underlying physics/model, but they

can be used to assess the scale of the BSM physics (see
section VI).
However, when calculating the 0νββ half-life it is nec-

essary to identify the contributions corresponding to dif-
ferent hadronization prescriptions. Figure 2 shows the
nucleon-level diagrams in a similar way to Figure 1.
The first 3 contributions, Figs. 2b, 2c, and 2d are simi-
lar to the corresponding amplitudes at the quark level
(see Fig. 1). In addition to these contributions that
were also considered in Ref. [23], here we also include
the long range diagrams that involve pion(s) exchange,
Figs. 2e, 2f, and 2g. These diagrams were considered
before as contributing to the 0νββ decay rate, but in
the context of ��Rp SUSY mechanism. For example, the
diagram 2e was considered to describe the contribution
of the squark-exchange mechanism [78], and the dia-
grams 2f and 2g were considered to describe the con-
tribution of the gluino exchange mechanism [88]. One
should also mention that the diagram 2g was also con-
sidered in Refs. [89, 90], but its contribution to the 0νββ
half-life was estimated differently, and cannot be directly
compared to the other contributions analyzed here.
After hadronization (see Fig. 2), the extra terms in

the Lagrangian require the knowledge of 20 individual
NME [21–23, 76, 82, 91]. We can write the half-life in a
factorized compact form

[

T 0ν
1/2

]−1

=g4A





∑

i

|Ei|2 M2
i +Re





∑

i6=j

EiEjMij







 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = η0ν representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2−6 =
{ǫV+A

V−A, ǫ
V +A
V +A, ǫ

S+P
S±P , ǫ

TR
TR, ηπν} are the long-range LNV

parameters appearing in Figs. 2c and 2e, and E7−14 =

{ε1, ε2, ε
LLz(RRz)
3 , ε

LRz(RLz)
3 , ε4, ε5, η1π, η2π} denote

the short-range LNV parameters at the quark level in-
volved in the diagrams of Fig. 2d, 2f, 2g. The rational for
including the ηπν in the same class with the LNV entering
the quark-level long range diagrams is that Ref. [78] in-
dicates that ηπν is proportional to ǫTR

TR (see Section IVB
below). In the same vein, Ref. [88] indicates that ε1
and ε2 are proportional to a combination of η1π and
η2π (see Section IVC below). Therefore the η1π and η2π
were included in the list LNV couplings associated with
quark-level short-range diagrams. Contributions of pion-
exchange diagrams similar to those of Figs. 2f and 2g
are also included in the so called ”higher order term in
nucleon currents” [82]. However, they are constrained
by PCAC, and are only included in light-neutrino ex-
change contribution of diagram 2a. This contribution
changes the associated NME by only 20%. Therefore,
we conclude that this does not represent a serious double
counting issue.
Following Refs. [21–23, 82], we write M2

i as combina-
tions of NME described in Eqs. (8, 10, 12, 14, and 16)
(see also Eq.(20) in the Appendix for the individual
NME) and integrated PSF [81] denoted with G01 −G09.
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(a) The generic 0νββ decay
process nucleon-level diagram.

=

(b) Light left-handed neutrino
exchange diagram.

+

(c) The nucleon-nucleon
long-range L6 mode.

+

e
L/�
−

�

�

�

�

e
L/�
−

ε

(d) The nucleon-nucleon
short-range part of the 0νββ

diagram.

+

(e) The pion-neutrino
long-range diagram.

+

(f) The one-pion long-range
diagram.

+

(g) The two-pion long-range
diagram.

FIG. 2. Similar to Fig.1, we present the nucleon-level diagrams of 0νββ decay process : (2a) presents the generic description
of the process, (2b) shows the light left-handed neutrino exchange, (2c) is the long-range component, Subfigure 2d shows the
short-range contribution. On the second line, (2e) is the pion-neutrino component, (2f) is the one-pion long-range contribution
of the✚Rp SUSY induced 0νββ diagram, and (2g presents the two-pion long-range contribution of the✚Rp SUSY induced 0νββ.
The effective couplings η1π and η2π are related to Eq. (16) as η1π = c1πηπN and η2π = c2πηπN .

Our values of the PSF are presented in Table I. In some
cases the interference terms EiEjMij are small [92] and
can be neglected, but not all of them. In Ref. [15] we
analyzed a subset of terms contributing to the half-life
formula, Eq. (1) originating from the left-right symmet-
ric model. In that restrictive case we showed that one
can disentangle different contributions to the 0νββ de-
cay process using two-electron angular and energy dis-
tributions as well as half-lives of two selected isotopes.
Obviously, this number of observables is not enough to
extract all coupling appearing in the effective field the-
ory Lagrangian. However, they can be used to constrain
these couplings, thus adding to the information extracted
from the Large Hadron Collider and other related ex-
periments. Here we attempt to extract these couplings
assuming that only one of them can have a dominant
contribution to the half-life, Eq. (5). We call this ap-
proach “on-axis“. Considering the “on-axis“ approach
to extracting limits of the LNV parameters, the interfer-
ence terms are neglected in our analysis. In the following,
we extract the “on-axis“ upper limits of these parame-
ters using the most recent experimental half-lives lower
limits, as presented in Table I.

IV. EXPERIMENTAL LIMITS ON THE BSM

LNV COUPLINGS

To obtain experimentally constrained upper limits of
the effective LNV couplings one needs experimental half-
life lower limits, accurate calculations of the PSF, to-
gether with reliable NME results calculated using nu-
clear structure methods tested to correctly describe the
experimental nuclear structure data available for the nu-
clei involved. We split our analysis of the LNV parame-
ters into three subsections corresponding the exchange of
light left-handed Majorana neutrinos, the LNV couplings
entering the remaining quark-level long-range diagrams,
and the LNV couplings entering the quark-level short-
range diagrams.

A. The exchange of light left-handed neutrinos

Most studies in the literature have considered just the
case where only the exchange of light left-handed Ma-
jorana neutrinos contribute to the 0νββ decay process,
presented in Figs. 1b and 2b. Therefore, one can eas-
ily find calculations of NME and PSF for this scenario.
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TABLE III. The first line shows values of the M2
0ν coefficients

containing combinations of NME and PSF, and the second
line presents the extracted neutrino physics parameter |η0ν |
for the most studied case, assuming only the exchange of light
left-handed Majorana neutrinos.

48Ca 76Ge 82Se 130Te 136Xe

M2
0ν×1014 2.57 3.00 11.5 5.22 4.40

|η0ν |×106 27.3 0.40 3.65 1.36 0.28

Considering this case, we reduce the half-life equation to:

[

T 0ν
1/2

]−1

= g4A |η0ν |2 M2
0ν , (6)

where gA = 1.27, M2
0ν contains the coefficients contain-

ing combinations of NME and PSF (see Eq. (8) be-

low). η0ν =
〈mββ〉
me

, where me is the electron mass and

〈mββ〉 represents the effective Majorana neutrino mass
described as [74]:

〈mββ〉 =

∣

∣

∣

∣

∣

∣

3
∑

j=1

U2
ejmj

∣

∣

∣

∣

∣

∣

. (7)

Here Uej are the PMNS mixing matrix elements [93, 94]
and the summation is performed over all the three light
neutrino mass eigenstates mj . Also in Eq. (6)

M2
0ν = G01

[

MGT −
(

gV
gA

)2

MF +MT

]2

, (8)

where gV = 1 is the vector coupling constant, gA = 1.27
is the axial coupling constant, and G01 is the phase-space
factor. The three NME, MGT , MF , and MT (shown
in Table XV) correspond to the Gamow-Teller, Fermi
and Tensor transition operators, respectively, and are
described in the Appendix. All the NME listed in the
tables of the Appendix have the correct signs relative to
that of MGT , which is chosen to be positive. The M2

coefficients correctly include these relative signs, but the
overall sign of the M in Eqs. (8, 10, 12, 14, and 16) is
lost due to squaring.
In Table III we present the M2

0ν values and their cor-
responding η0ν limits. We find the lowest upper-limit of
this parameter for 136Xe, which leads to a limit for the
Majorana neutrino mass 〈mββ〉 ∼ 140 meV.

B. The long-range effective LNV couplings

Investigating the “on-axis“ LNV parameters of the di-
agram of Fig. 2c, the half-life is factorized as:

[

T 0ν
1/2

]−1

= g4A

[

∣

∣ǫβα
∣

∣

2 M2
αβ

]

, (9)

with ǫβα = {ǫV+A
V−A, ǫV+A

V+A, ǫS+P
S±P , ǫTR

TR}. Here and below
the αβ combination corresponds to some index i in Eq.

(5), as described in the definition of Ei after Eq. (5).
Following the formalism presented in Refs. [21, 23, 62]
and including the G01 − G09 PSF, we write the long-
range coefficients containing combinations of NME and
PSF as:

M2
V +A/V−A = G02M2

2+−
2

9
G03M1−M2++

1

9
G04M2

1−

−G07MPMR +G08M
2
P +G09M

2
R, (10a)

M2
V +A/V+A = G02M2

2−

− 2

9
G03M1+M2− +

1

9
G04M2

1+, (10b)

with M1± = MGTq ± 3

(

gV
gA

)2

MFq − 6MTq

and M2± = MGTω ±
(

gV
gA

)2

MFω − 1

9
M1±,

M2
S+P/S±P =

(

F
(3)
P

RmegA

)2

G01

(

MT ′ +
1

3
MGT ′

)2

,

(10c)

M2
TR/TR =

(

4T
(3)
1 gV (1 + (µp − µn))

Rmeg2A

)2

×G01

(

MT ′ − 2

3
MGT ′

)2

. (10d)

In these equations, R = 1.2A1/3 fm is the nuclear radius,
me = 0.511 MeV is the electron mass, mπ = 139 MeV is
the pion mass, mp = 938 MeV is the proton mass, (µp −
µn) ≃ 3.7, and the parameters F

(3)
P = 4.41, T

(3)
1 = 1.38

are taken from Ref. [95] where they have been calculated
using the MIT bag model. Detailed expressions for the
individual Mα (with α = GTq, Fq, Tq, GTω, Fω, P , R,
GT ′, T ′) are found in the Appendix.
It is possible to obtain another limit for ǫTR

TR by con-
sidering a different hadronization procedure [78] depicted
in Fig. 2e, where our ηπν plays the same role as η11(q)LR

in Eq.(22) of Ref. [78]. In this case we can obtain an
alternative value for ǫTR

TR, ǫ̃
TR
TR = ηπν/8.

[

T 0ν
1/2

]−1

= g4A

[

∣

∣8 ǫ̃TR
TR

∣

∣

2 M2
πν

]

, (11)

with

M2
πν = G01 [MGTπν +MTπν ]

2 . (12)

The MGTπν and MTπν are the same NME as MGT (q̃)

and MT (q̃) in Eq.(155) of Ref.[82] (also described in the
Appendix).
Table IV shows our shell model M2

αβ coefficients. We
present our values for the long-range LNV parameters in
Table V, where ǫ̃TR

TR represents the alternative limit for
ǫTR
TR that is obtained using Mπν . With the exception of

48Ca, the ǫ̃TR
TR upper-limits are slightly lower than those

of ǫTR
TR.
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The shell model values for Mα, with α = GTq, Fq,
Tq, GTω, Fω, P , R, GT ′, T ′, GTπν, Tπν, are shown in
Table XVI of the Appendix.

C. The short-range LNV couplings

Similar to the case of the long-range component, we
extract the “on-axis“ values of the short-range LNV pa-
rameters using the following expression for the half-life
corresponding to the diagram of Fig. 1d:

[

T 0ν
1/2

]−1

= g4A

[

∣

∣εβα
∣

∣

2 M2
αβ

]

, (13)

with εβα = {ε1, ε2, ε
LLz(RRz)
3 , ε

LRz(RLz)
3 , ε4, ε6}. The

index β = xyz, with xyz = L/R,L/R,L/R, indicates the
chirality of the hadronic and the leptonic currents. It is
only possible to distinguish between the different chiral-
ities in the case of ε3 where we denote them explicitly as

ε
LLz(RRz)
3 and ε

LRz(RLz)
3 . For the other cases we omit

this labeling.
Adapting the formalism of Ref. [22, 23, 82], we can

write the coefficients containing combinations of NME
and PSF as:

M2
1 = G01





(

F
(3)
S

gA

)2

MFN





2

, (14a)

M2
2 = G01



8

(

T
(3)
1

gA

)2

MGTN





2

, (14b)

M2
3LLz = M2

3RRz

= G01

[

MGTN −
(

gV
gA

)2

MFN

]2

, (14c)

M2
3LRz = M2

3RLz

= G01

[

MGTN +

(

gV
gA

)2

MFN

]2

, (14d)

M2
4 = G09

(meR)
2

8

[

T
(3)
1

gA
MGTN

]2

, (14e)

M2
5 = G09

(meR)2

8

[

F
(3)
S gV
g2A

MFN

]2

. (14f)

TABLE IV. The M2
αβ values for the long-range part of the

0νββ decay process.
48Ca 76Ge 82Se 130Te 136Xe

109×M2
V +A/V −A 1.45 1.40 5.11 3.67 3.09

1013×M2
V +A/V +A 1.09 0.39 3.21 1.11 0.89

1010×M2
S+P/S±P 8.85 1.33 5.11 2.72 2.15

108×M2
TR/TR 0.25 1.09 4.04 3.28 2.79

1010×M2
πν 2.84 2.62 10.2 4.85 4.13

TABLE V. The “on-axis“ values of the long-range LNV pa-
rameters ǫβα. The last two lines present ηπν and its corre-
sponding ǫ̃TR

TR limit.
48Ca 76Ge 82Se 130Te 136Xe

∣

∣ǫV +A
V −A

∣

∣ 1.2 × 10−7 1.9× 10−9 1.7× 10−8 5.1 × 10−9 1.1× 10−9

∣

∣ǫV +A
V +A

∣

∣ 1.3 × 10−5 3.5× 10−7 2.2× 10−6 9.3 × 10−7 2.0× 10−7

∣

∣ǫS+P
S±P

∣

∣ 1.5 × 10−7 6.0× 10−9 5.5× 10−8 1.9 × 10−8 4.1× 10−9

∣

∣ǫTR
TR

∣

∣ 8.8 × 10−8 6.6× 10−10 6.2× 10−9 1.7 × 10−9 3.6× 10−10

|ηπν | 4.3 × 10−9 4.3× 10−9 3.9× 10−8 1.4 × 10−8 2.9× 10−9

∣

∣ǫ̃TR
TR

∣

∣ 3.3 × 10−8 5.4× 10−10 4.8× 10−9 1.8 × 10−9 3.7× 10−10

TABLE VI. The M2
αβ values for the short-range LNV param-

eters.
48Ca 76Ge 82Se 130Te 136Xe

1013×M2
1 2.63 1.83 6.86 4.83 4.03

108× M2
2 0.68 0.50 1.87 1.34 1.11

1010×M2
3LLz(RRz) 1.20 0.87 3.26 2.33 1.93

1011×M2
3LRz(RLz) 4.27 3.16 11.8 8.50 7.03

1010×M2
4 0.91 0.70 2.50 1.74 1.44

1012×M2
5 1.15 0.84 3.01 2.06 1.72

1010×M2
πN 6.44 3.99 15.6 8.43 7.14

The parameters F
(3)
S = 0.48 and T

(3)
1 = 1.38 are taken

form Ref. [95]. The values of these M2
αβ are presented in

Table VI. Detailed expressions for MGTN and MFN are
presented in the Appendix, and their shell model values
are shown in Table XVII.
Considering the 0νββ amplitudes displayed in Figs. 2f

and 2g in the one-pion and two-pion exchange modes it is
possible to get alternative limits for ε1 and ε2 considering
a different coefficient, MπN . The analysis of Ref. [88]
suggests these alternative values, here denoted by ε̃1 and
ε̃2, can be obtained as ε̃1 = 64

16ηπN , and ε̃2 = 2
3ηπN , using

[

T 0ν
1/2

]−1

= g4A

[

|ηπN |2 M2
πN

]

, (15)

where

M2
πN = G01

[

c1π (MGT1π +MT1π)

+ c2π (MGT2π +MT2π)
]2

. (16)

The expressions for the factors c1π and c2π are found
in Eq. (151) of Ref. [82]. These factors depend on the
masses of the up and down quark, and choosing (mu +
md) = 11.6 MeV [31, 96], one gets c1π = −83.598, c2π =
359.436 that we use in these calculations. The description
of Mα (with α = GT 1π, T 1π, GT 2π, T 2π) is presented
in the Appendix.
Shown in Table VII are the values of the short-range

LNV parameters. Using the different hadronization pre-
sented in Figs. 2f and 2g, ε̃1 provides significantly more
stringent upper-limits than ε1. The ε̃2 upper-limits are
almost double those of ε2, and therefore, we conclude
that ε2 are better constrained.
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TABLE VII. The “on-axis“ values of the short-range LNV pa-
rameters εβα. The last three lines present the ηπN limits for✚Rp

SUSY, and their corresponding ε̃1 and ε̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|ε1| 8.6× 10−6 1.6 × 10−7 1.5× 10−6 4.6× 10−7 9.3× 10−8

|ε2| 5.3× 10−8 9.8 × 10−10 9.1× 10−9 2.7× 10−9 5.7× 10−10

|ε
LLz(RRz)
3 |4.0× 10−7 7.4 × 10−9 6.9× 10−8 2.0× 10−8 4.3× 10−9

|ε
LRz(RLz)
3 |6.7× 10−7 1.2 × 10−8 1.1× 10−7 3.4× 10−8 7.1× 10−9

|ε4| 4.6× 10−7 8.3 × 10−9 7.8× 10−8 2.4× 10−8 5.0× 10−9

|ε5| 4.1× 10−6 7.6 × 10−8 7.1× 10−7 2.2× 10−7 4.6× 10−8

|ηπN | 1.7× 10−7 3.5 × 10−9 3.1× 10−8 1.1× 10−8 2.2× 10−9

|ε̃1| 6.9× 10−7 1.4 × 10−8 1.3× 10−7 4.3× 10−8 9.0× 10−9

|ε̃2| 1.2× 10−7 2.3 × 10−9 2.1× 10−8 7.1× 10−9 1.5× 10−9

The expression for the M2
πN contains the c1π and c2π

parameters, which carry information from the hadroniza-
tion procedure. The two terms in Eq. (16) contribute
with similar strength, but as mentioned before, the
hadronization procedure used here does not provide re-
liable relative phases of the c1π and c2π parameters.
Therefore, the values of ε̃1 and ε̃2 extracted in Table
VII may be uncertain. Fortunately, there are no othe
NME/parameters affected by relative phases, and in ad-
dition, these two values don‘t influence the analysis of
the scale of the BSM physics given in the next section.

V. ANALYSIS OF NEUTRINOLESS

DOUBLE-BETA DECAY HALF-LIFE RATIOS

Under the assumption that a single mecha-
nism/coupling dominates, we can reduce the expression
of the half-life for all 12 mechanisms to the following
form :

[

T 0ν
1/2

]−1

= g4A |ηLNV |2 M2
LNV , (17)

where, similar to Eq. (5), gA = 1.27 is the axial-vector
coupling constant, ηLNV represents the effective LNV pa-
rameter, while the M2

LNV coefficient contains the com-
bination of NME and PFS associated to the LNV pa-
rameter. For example, in the case of the heavy neutrino
exchange mechanism M2

0N = gA
4|η0ν|2G01M0N

2. Using
this equation is particularly useful in predicting the ex-
perimental sensitivity of different isotopes with respect
to certain 0νββ mechanisms.
The current best experimental 0νββ half-life limit is

provided by the KamLand-Zen Collaboration T
1/2
136Xe =

1.07× 1026 [72]. Based on this limit, we extract on-axis
the ηLNV effective LNV parameters of interest for 136Xe.
Equation (17) is factorized in such a way that the half-

life ratio of two isotopes, or even between different mech-
anisms assumed to dominate the transition in the same
isotope, can be easily obtained simply from the inverse
of the M2

LNV ratio. This eliminates the need to rely

on any experimental half-life limit, or extracted LNV pa-
rameters for evaluating the relative sensitivity of different
isotopes to various mechanisms. We present our analy-
sis and results from two perspectives: on one side, we
evaluate the equivalent half-lives required to match the
current 136Xe sensitivity to the LNV parameters, and on
the other side, we search for the best half-life ratios that
are expected to help distinguish between the different
possible contributions to the decay rate, under the one
mechanism/coupling dominance assumption.
We calculate the NME components of the M2

LNV co-
efficients within the interacting shell model (ISM). For
each of the isotopes we obtain results using two sets of
effective Hamiltonians, denoted as ”CMU” and ”St-Ma”,
which are popular in the literature and have been thor-
oughly tested against experimental data. Their descrip-
tion is given in the Introduction. All the NME used in
this analysis were calculated using a Jastrow short-range
correlation (SRC) method using the CD-Bonn and AV-18
parametrizations (see e.g. Ref. [36] and Refs. therein).
Different choices for the method of including the SRC af-
fect the values of the NME, as has been discussed in many
papers in recent literature. One can find a graphical rep-
resentation of these effects on the NME in Fig. 6 and Fig.
7 of Ref. [45] for the light left-handed neutrino exchange
and for the heavy right-handed neutrino exchange, re-
spectively. Although the differences in NME values can
be large, in the case of shell model calculations, the ratio
of M2

LNV coefficients are usually stable when calculated
consistently with the same parametrization. This behav-
ior is detailed in the following subsections.
The PSF components are calculated using a recently

proposed effective method described in great detail in
Ref. [81]. G01 values were calculated with a screening
factor (sf ) of 94.5, while for G02−G09 we used sf = 92.0
that was shown to provide results very close to those of
Ref. [84].

A. Calculated half-lives for 48Ca, 76Ge, 82Se, and
130Te expected to match the current 136Xe sensitivity

In this subsection we extract the LNV parameters from
the current 136Xe experimental limit of 1.07× 1026 years
[72]. We take into account two SRC parameterizations
(CD-Bonn and AV-18) and two sets of effective Hamil-
tonians. The values of the LNV parameters are shown
in the upper parts of all the Tables VIII - XIII as ηLNV .
The upper limits of ηLNV extracted from the present
lower limit of the 136Xe half-life using calculations done
with CMUHamiltonians and CD-Bonn SRC are repeated
from Tables II, V and VII, while those extracted using
matrix elements calculated with AV-18 SRC or/and St-
Ma Hamiltonians are displayed in these tables for the
first time. For consistency and an easier comparison, the
M2

LNV coefficients calculated with CD-Bonn SRC and
CMU Hamiltonians in Tables X and XII are repeated
from Tables IV and IV. All the other M2

LNV coefficients



10

presented in the Tables VIII - XIII are new. We use
these parameters together with shell model NME to pre-
dict the half-life limits of 48Ca, 76Ge, 82Se, and 130Te
that are needed to match the current limit for 136Xe for
each of the LNV mechanisms. This could prove particu-
larly useful in determining the minimum required isotope
quantities needed by the experiments in order to obtain
better constraints on the LNV parameters. This informa-
tion will, however, need to be adjusted to the particular
setup of each experiment and correlated with their de-
tection efficiency of 0νββ transitions for their isotopes of
choice.

Table VIII presents upper-limit values of the ηα LNV
parameters for the LRSM and��Rp extracted on-axis from
the most recent 136Xe experiment [72], the CMU M2

LNV

coefficients containing NME and PSF, and the calculated
half-life limits for the other isotopes of experimental in-
terest predicted when taking into account the 136Xe ηα
LNV parameters. The effect of the SRC parameteriza-
tions on the different NME can be easily seen in this
table. The M2

LNV coefficients can almost double when
changing from AV-18 to CD-Bonn in the case of M2

0N .
Nevertheless, the predicted half-life limits are very stable
if the extracted 136Xe LNV parameters are chosen from
calculations with the same SRC.

Using the St-Ma effective Hamiltonians, in Table IX
we recalculate the quantities from Table VIII. The same
observations related to the SRC are valid also in this
case. The most significant M2

LNV change occurs for the
M2

0N coefficient, but the predicted half-life limits remain
stable. Regarding how the effective Hamiltonians affect
the NME, one can see that KB3G preferred by St-Ma
provides higher values for 48Ca than GXPF1A preferred
by us (CMU), GCN.28-50 yields lower NME than JUN45
for 76Ge and 82Se, and GCN.50:82 results in higher NME
than SVD for 130Te and 136Xe.

Within the framework of the EFT, in Table X we in-
vestigate the M2

LNV coefficients, and the half-lives cor-
responding to the dimension 6 Lagrangian in Eq. (2).

In this case, the |ǫV+A
V−A| LNV parameters, the

M2
V+A/V −A coefficients, and the TV+A/V−A half-lives of

the EFT also correspond to the so-called ”η−mechanism”
in the LRSM and presented in Table VIII. Similarly
the |ǫV+A

V+A| LNV parameters, the M2
V +A/V+A coeffi-

cients, the TV+A/V+A half-lives, correspond the so-called
”λ−mechanism”. One can obtain another alternative
value for |ǫTR

TR|, |ǫ̃TR
TR| = |ηπν |/8, where our ηπν plays

the same role as η11(q)LR in Eq.(22) of Ref. [78] and ηq̄ in

Table VIII (see also Eq. (154) of Ref. [82]). Here, we
notice a significant effect of the SRC choice on the NME,
but also on the predicted half-life limits, especially in the
case of 48Ca. The 136Xe alternative |ǫ̃TR

TR| = |ηπν |/8 LNV
parameter is similar to |ǫTR

TR|, but the associated NME
and half-life limits are very stable with respect to the
choice of SRC.

For the second set of Hamiltonians, we present the
results corresponding to the dimension 6 Lagrangian of

Eq. (2) in Table XI. The same conclusions and observa-
tions that we made for Table X are also valid here.
The results corresponding to the dimension 9 La-

grangian of Eq. (3) are displayed in Table XII as in the

previous tables. Regarding |εRRz(LLz)
3 |, we note that the

results closely correspond to the ones for |η0N | in Ta-
ble VIII for the LRSM, but the tensor component of the
NME is missing in the formalism associated to this case.
The NME that enter the M2

LNV coefficients manifest the
same behavior as the M2

0N when changing SRC param-
eterizations, but the predicted half-life limits are very
stable.
Finally, we show our results corresponding to the di-

mension 9 Lagrangian of Eq. (3) when using the second
set of Hamiltonians in Table XIII. The dependence of the
M2

LNV coefficients and of the predicted half-life limits is
similar to that found in Table XII.

B. Disentangling contributions to the 0νββ decay

rate from half-life ratios

The analysis is based on choosing a pair of isotopes,
calculating the ratio of half-lives for different mecha-
nisms, and identifying results that stand out and do not
overlap. This means that we use the figures to search for
bars that have a noticeable gap between them and other
higher or lower bars. Quite obviously, the lower values
could also be important and one could inverse the ratio
to better see the gap between them and other results.
One can easily notice in the following figures and in

the tables of the previous subsection that the M2
LNV co-

efficients of 130Te are very close to those of 136Xe. This
feature can be understood as due to the similar Qββ val-
ues of these two isotopes leading to similar PSF, and due
to the fact that in the same valence space the NME is
changing very slowly with the mass A when the same
effective Hamiltonian is used. The main consequence of
this fact is that both half-lives are of the same order.
Due to this resemblance, measuring any of these two nu-
clei is equally desirable as they can easily substitute each
other in the analysis of half-lives. The downside of this
feature is that the half-life ratio among themselves can-
not provide us with information that would enable one to
distinguish different contributions to the 0νββ rate. Al-
though the predicted half-life for 130Te is slightly lower
than that of 136Xe, and this could be favorable in some
of the half-life ratios, the current experimental limits and
trends lead us to believe that 136Xe and 76Ge are likely to
be the first ones to be experimentally measured. Based
on this assumption about the experimental expectations,
we present our analysis in relation to these two isotopes.
The reader can, however, use the calculated M2

LNV co-
efficients listed in the tables of the previous Subsection
to investigate the half-life ratios of any pairs of nuclei.
In Fig. 3 we present the half-life ratio of 136Xe over an-

other isotope for the mechanisms discussed, in the case of
our preference of Hamiltonians (CMU). The bars connect



11

TABLE VIII. The upper part presents the ηα LNV parameters for the LRSM and SUSY
extracted on-axis from the most recent 136Xe experiment [72], the middle part shows our
shell model M2

LNV coefficients containing NME and PSF, and the lower part lists the
calculated half-life limits in years for the isotopes of experimental interest predicted when
taking into account the 136Xe LNV parameters. The NME are calculated with the CMU
effective Hamiltonians and two SRC parameterizations: CD-Bonn and AV-18.

SRC ηLNV |η0ν | × 107 |η0N | × 109 |ηλ| × 107 |ηη | × 109 |ηq̃ | × 109 |ηλ′ | × 109

CD-Bonn 2.84 4.40 2.01 1.08 2.95 2.24

AV-18 3.08 6.11 2.17 1.31 3.10 2.12

M2
LNV M2

0ν × 1014 M2
0N × 1010 M2

λ × 1013 M2
η × 109 M2

q̃ × 1010 M2
λ′ × 1010

CD-Bonn

48Ca 2.57 1.63 1.09 1.45 2.83 6.44
76Ge 3.00 0.87 0.39 1.40 2.62 3.99
82Se 11.5 3.28 3.21 5.11 10.20 15.6
130Te 5.22 2.25 1.11 3.67 4.85 8.43
136Xe 4.40 1.86 0.89 3.09 4.13 7.14

AV-18

48Ca 2.19 0.94 0.90 0.92 2.57 7.08
76Ge 2.67 0.46 0.34 0.95 2.41 4.40
82Se 10.3 1.75 2.85 3.47 9.43 17.1
130Te 4.49 1.17 0.96 2.48 4.38 9.43
136Xe 3.79 0.96 0.77 2.10 3.73 7.97

TLNV × 10−26 T0ν T0N Tλ Tη Tq̃ Tλ′

CD-Bonn

48Ca 1.83 1.22 0.87 2.28 1.56 1.19
76Ge 1.57 2.28 2.45 2.36 1.69 1.92
82Se 0.41 0.61 0.30 0.65 0.43 0.49
130Te 0.90 0.88 0.85 0.90 0.91 0.91

AV-18

48Ca 1.85 1.09 0.91 2.45 1.55 1.20
76Ge 1.52 2.22 2.39 2.37 1.66 1.94
82Se 0.39 0.59 0.29 0.65 0.42 0.50
130Te 0.90 0.88 0.86 0.90 0.91 0.90

two values for each ratio. One value is obtained using the
CD-Bonn parametrization for the SRC, while the other
value is the result of our calculations using the AV-18
parametrization. The graphical representation empha-
sizes the impact of the choice of SRC for the ratio of
the half-lives. It is easy to notice that for most cases,
the SRC plays an insignificant role for the half-life ra-
tios, and the bars of the plots had to be increased for
the reader to see them. In the two cases where SRC did
make a difference (S + P/S ± P and TR/TR ), the bars
are completely outside of the range of those provided by
the other mechanisms, and the analysis is not affected
by their spread. From this figure, it appears that the
dominance of the ǫS+P

S±P and ǫTR
TR contributions could be

confirmed or ruled out by the 136Xe/48Ca ratio, while

the ǫV+A
V+A could be investigated by the 136Xe/82Se ratio.

Then, the dominance of ǫV+A
V−A mechanism (known also

as the η mechanism) could be identified from the two-
electron angular and energy distributions [15, 16].

The same analysis performed in Fig. 3 is done for the
St-Ma choice of Hamiltonians, and we present those re-
sults in Fig. 4. The y-axis ranges are kept identical for

an easier observation of the effect of changing the shell
model Hamiltonians. Different from the previous figure
is that the 130Te almost flat line has shifted higher, while
the other ratios have decreased in magnitude. The ǫS+P

S±P

and ǫTR
TR contributions can still be identifiable with the

136Xe/48Ca ratio, but the ǫV+A
V+A from 136Xe/82Se identi-

fication would be not as sensitive as for the CMU NME.
Similar to Fig. 3, we also represent in Fig. 5 the half-

life ratios of 76Ge over those of other isotopes to search
for potentially other identifiable mechanisms. As in the
previous cases, it is easy to see the consistency of results
using the same SRC. Because both 76Ge and 82Se can
be calculated with the same Hamiltonian, we consider
the ratios of half-lives for these nuclei to be the ones
with the least uncertainties. Due to this feature, the
dominance of the ǫV+A

V+A contribution could be reliably
validated or ruled-out with this pair of isotopes. Very
similar to the previous two figures, the ǫS+P

S±P and ǫTR
TR

contributions could also be confirmed or ruled out by the
76Ge/48Ca ratio.
As in Fig. 5, we show the results for the St-Ma Hamil-

tonians in Fig. 6 in the same y-axis range. From this
image we could identify the ǫV+A

V+A contribution by the
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TABLE IX. Same as Table VIII, but with M2
LNV coefficients obtained using St-Ma

Hamiltonians.

SRC ηLNV |η0ν | × 10−7 |η0N | × 10−9 |ηλ| × 10−7 |ηη| × 10−9 |ηq̃ | × 10−9 |ηλ′ | × 10−9

CD-Bonn 2.09 3.14 1.62 0.82 2.19 1.61

AV-18 2.24 4.34 1.74 1.00 2.30 1.52

M2
LNV M2

0ν × 1014 M2
0N × 1010 M2

λ × 1013 M2
η × 109 M2

q̃ × 1010 M2
λ′ × 1010

CD-Bonn

48Ca 3.13 1.91 1.48 1.80 3.19 7.43
76Ge 1.98 0.71 0.22 1.05 1.73 3.01
82Se 7.54 2.57 1.84 3.74 6.51 11.30
130Te 12.5 5.57 2.19 8.29 11.4 21.3
136Xe 8.22 3.64 1.38 5.35 7.47 13.9

AV-18

48Ca 2.66 1.08 1.23 1.13 2.87 8.21
76Ge 1.75 0.38 0.19 0.70 1.58 3.33
82Se 6.68 1.37 1.62 2.52 5.97 12.5
130Te 10.8 2.92 1.89 5.58 10.3 23.8
136Xe 7.14 1.91 1.19 3.60 6.78 15.5

TLNV × 10−26 T0ν T0N Tλ Tη Tq̃ Tλ′

CD-Bonn

48Ca 2.81 2.04 1.00 3.17 2.51 2.01
76Ge 4.44 5.49 6.65 5.43 4.62 4.96
82Se 1.17 1.52 0.80 1.53 1.23 1.32
130Te 0.70 0.70 0.67 0.69 0.70 0.70

AV-18

48Ca 2.87 1.90 1.03 3.41 2.52 2.03
76Ge 4.37 5.41 6.57 5.47 4.57 4.99
82Se 1.14 1.49 0.79 1.53 1.21 1.33
130Te 0.71 0.70 0.67 0.69 0.70 0.70

76Ge/82Se ratio, but the ǫS+P
S±P and ǫTR

TR mechanisms are
more difficult to confirm or rule out than in the previous
figure using the 76Ge/48Ca ratio.

One can notice that using different effective Hamilto-
nians can produce significant changes in the half-lives
ratios, much more than changing the SRC and finite nu-
cleon size parametrization. Previously, the effects of dif-
ferent effective shell model Hamiltonians on the neutri-
noless half-lives have not been considered. Usually just
one set of NME was taken into account. We empha-
size that in the half-lives formulae the NME values are
squared, thus making any significant change due to dif-
ferent effective Hamiltonian amplified in the ratios of the
half-lives. These differences lead to large effects, which
can be observed when comparing Fig. 5 with Fig. 6.

In all cases presented, the short-range contributions
corresponding to the dimension 9 Lagrangian cannot be
disentangled from each other using ratios of half-lives. In
the Tables and in the Figures the results for these cases
correspond to |εβα|. None of the half-lives, or the ratios of
half-lives, are different enough to be distinguishable from
the others.

VI. DISCUSSIONS

From the η0ν limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Ma-
jorana neutrino mass 〈mββ〉 ∼ 140 meV. A wider range
of values, 60− 165 meV can be found if the NME calcu-
lated with a larger number of nuclear models are consid-
ered [72].

Considering the diagram in Fig. 2e, it is possible to
get lower limits for ǫTR

TR, denoted as ǫ̃TR
TR in Table V, than

those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the different hadronization scenario presented in Figs. 2f
and 2g, ε̃1 provides a significantly more stringent upper-
limits than ε1. The ε̃2 upper-limits are almost double
those of ε2.

As suggested in Ref. [91] (see the diagrams of their
Fig.1), at the electroweak scale when the appropriate
Higgs fields are included, the diagram 1.b originates
from a dimension-5 BSM Lagrangian, O5, responsible for
the Majorana neutrino mass. Similarly the low-energy
dimension-6 Lagrangian L6 corresponds to a dimension-
7 BSM operator, O7, and the low energy dimension-9
Lagrangian L9 can be rearranged as dimension-9 and
dimension-11 operators, O9 and O11. Using the effec-
tive field theory one can infer the energy scale ΛD up to
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TABLE X. Same as Table VIII, but for the long-range contribution to the 0νββ diagram, corresponding to the dimension 6
Lagrangian for the CMU set of Hamiltonians.

SRC ηLNV |ǫV +A
V −A| × 109 |ǫV +A

V +A| × 107 |ǫS+P
S±P | × 109 |ǫTR

TR| × 1010 |ηπν | × 109

CD-Bonn 1.08 2.01 4.09 3.59 2.95

AV-18 1.31 2.17 5.65 4.63 3.10

M2
LNV M2

V +A/V −A × 1014 M2
V +A/V +A × 1010 M2

S+P/S±P × 1010 M2
TR/TR × 108 M2

πν × 1010

CD-Bonn

48Ca 1.45 1.09 8.85 0.25 2.83
76Ge 1.40 0.39 1.33 1.09 2.62
82Se 5.11 3.21 5.12 4.04 10.2
130Te 3.67 1.11 2.72 3.28 4.85
136Xe 3.09 0.89 2.15 2.79 4.13

AV-18

48Ca 0.92 0.90 7.03 0.04 2.57
76Ge 0.95 0.34 0.78 0.63 2.41
82Se 3.47 2.85 3.05 2.34 9.43
130Te 2.48 0.96 1.45 1.96 4.38
136Xe 2.10 0.77 1.13 1.67 3.73

TLNV × 10−26 TV +A/V −A TV +A/V +A TS+P/S±P TTR/TR Tπν

CD-Bonn

48Ca 2.28 0.87 0.26 12.0 1.56
76Ge 2.36 2.45 1.73 2.74 1.69
82Se 0.65 0.30 0.45 0.74 0.43
130Te 0.90 0.85 0.85 0.91 0.91

AV-18

48Ca 2.45 0.91 0.17 45.1 1.55
76Ge 2.37 2.39 1.54 2.83 1.66
82Se 0.65 0.29 0.40 0.76 0.42
130Te 0.90 0.86 0.83 0.91 0.91

0
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3

4
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6

�
0� εV�� εV-A εS±P εTR ηπν ε1 ε2 �

0N
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V+A V+A S+P TR RR LR

FIG. 3. The ratio between the 136Xe half-life and the Tα half-lives of several experimentally interesting
isotopes, in the case of 12 EFT LNV couplings plus η0N . The left to right order of the bars corresponds
to up to down order in the Legend. The height of the bars represents the difference between results

obtained with different SRC parameterizations. η0N plays a similar role to ε
RRz(LLz)
3 .
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TABLE XI. Same as Table X, but with M2
LNV coefficients calculated with St-Ma Hamiltonians.

SRC ηLNV |ǫV +A
V −A| × 109 |ǫV +A

V +A| × 107 |ǫS+P
S±P | × 109 |ǫTR

TR| × 1010 |ηπν | × 109

CD-Bonn 0.82 1.62 2.86 2.80 2.19

AV-18 1.00 1.74 3.87 3.67 2.30

M2
LNV M2

V +A/V −A × 1014 M2
V +A/V +A × 1010 M2

S+P/S±P × 1010 M2
TR/TR × 108 M2

πν × 1010

CD-Bonn

48Ca 1.80 1.48 7.50 0.73 3.19
76Ge 1.05 0.22 1.03 0.81 1.73
82Se 3.74 1.84 3.63 3.01 6.51
130Te 8.29 2.19 6.65 7.09 11.40
136Xe 5.35 1.38 4.39 4.58 7.47

AV-18

48Ca 1.13 1.23 5.63 0.26 2.87
76Ge 0.70 0.19 0.61 0.46 1.58
82Se 2.52 1.62 2.11 1.73 5.97
130Te 5.58 1.89 3.61 4.13 10.30
136Xe 3.60 1.19 2.40 2.66 6.78

TLNV × 10−26 TV +A/V −A TV +A/V +A TS+P/S±P TTR/TR Tπν

CD-Bonn

48Ca 3.17 1.00 0.63 6.74 2.51
76Ge 5.43 6.65 4.55 6.03 4.62
82Se 1.53 0.80 1.29 1.63 1.23
130Te 0.69 0.67 0.71 0.69 0.70

AV-18

48Ca 3.41 1.03 0.46 10.80 2.52
76Ge 5.47 6.57 4.23 6.15 4.57
82Se 1.53 0.79 1.21 1.64 1.21
130Te 0.69 0.67 0.71 0.69 0.70

which these effective field operators are not broken:

LD =
g

(ΛD)
D−4

OD, (18)

where D is the dimension of the effective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [91] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the effective field theory Lagrangians
above the electroweak scale, Eq. (18).

meǭ5 =
g2(yv)2

Λ5
,

GF ǭ7√
2

=
g3(yv)

2(Λ7)3
,

G2
F ǭ9

2mp
=

g4

(Λ9)5
,

G2
F ǭ11
2mp

=
g6(yv)2

(Λ11)7
. (19)

Here, me = 0.511 × 10−3 GeV is the electron mass,
g = 1 is a generic coupling constant, v = 174 GeV is
the Higgs vacuum expectation value, y is a Yukawa cou-
pling associated to the interaction with the Higgs bosons,
GF = 1.166×10−5 GeV−2 is the Fermi coupling constant,
and mp = 0.938 GeV is the proton mass. The ǭD (with
D = {5, 7, 9, 11}) can be extracted from the LNV pa-
rameters in Eqs. (2) and (3). Considering that values
of these LNV parameters may be affected by mixing an-
gles that might distort the scales in Eq. (18), we choose

their maximum values: ǭ5 = |η0ν |, ǭ7 = Max
[

|ǫV+A
V−A|,

|ǫV+A
V+A|, |ǫS+P

S±P |, |ǫTR
TR|
]

, ǭ9 = Max
[

|ε1|, |ε2|, |εLLz(RRz)
3 |,

|εLRz(RLz)
3 |, |ε4|, |ε5|

]

, and ǭ11 = ǭ9.

To extract the limits of the BSM scales Λ5,7,9,11 we
need the most stringent limits for the LNV parameters,
which are found for the case of 136Xe. Inspecting Ta-
bles V and VII we found that ǭ5 corresponds to the η0ν
parameter of the light left-handed Majorana neutrino ex-
change mechanism. For ǭ7 we choose ǫV+A

V+A, that is the

largest long-range ǫβα parameter. In the case of ǭ9 = ǭ11
we select ε1, being the largest short-range εβα parameter.
These values are listed in Table XIV.

As in Ref. [91] we take g = 1 in Eq. (18). However, we
introduce here the Yukawa coupling y between the Higgs
boson field and the fermion fields, and we consider two
cases: (i) y = 1 corresponding to the top quark mass
(choice made in Ref. [91]), and (ii) y = 3 × 10−6 corre-
sponding to the electron mass. Based on these values we
calculate the limits of the new BSM scales or different
dimension-D operators. The results are shown in Ta-
ble XIV. The Λ0

D scales are calculated using the present
lower limit for the half-life of 136Xe, 1.1 × 1026. ΛD is
estimated assuming a half-life of T1/2 ≈ 1.1× 1028 years,
which would correspond to a 〈mββ〉 ≈ 14 meV.

The Λ9 scale does not depend on the unknown Yukawa
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TABLE XII. Same as Tables VIII and X, for the short-range contribution to the 0νββ diagram, corresponding to the dimension
9 Lagrangian for the CMU set of Hamiltonians.

SRC ηLNV |ε1| × 108 |ε2| × 1010 |ε
RRz(LLz)
3 | × 109 |ε

LRz(RLz)
3 | × 109 |ε4| × 109 |ε5| × 108 |ηπN | × 109

CD-Bonn 9.44 5.70 4.31 7.15 5.00 4.58 2.24

AV-18 11.4 8.14 5.95 10.9 7.15 5.52 2.12

M2
LNV M2

1 × 1013 M2
2 × 108 M2

3/LLz(RRz) × 1010 M2
3/LRz(RLz) × 1011 M2

4 × 1010 M2
5 × 1012 M2

πN × 1010

CD-Bonn

48Ca 2.63 0.68 1.21 4.27 0.91 1.15 6.44
76Ge 1.83 0.50 0.87 3.16 0.70 0.84 3.99
82Se 6.86 1.87 3.26 11.8 2.50 3.01 15.6
130Te 4.83 1.34 2.33 8.50 1.74 2.06 8.43
136Xe 4.03 1.11 1.93 7.03 1.44 1.71 7.14

AV-18

48Ca 1.81 0.33 0.63 1.81 0.44 0.80 7.08
76Ge 1.27 0.25 0.46 1.38 0.35 0.58 4.40
82Se 4.77 0.93 1.74 5.19 1.24 2.09 17.1
130Te 3.32 0.65 1.22 3.66 0.85 1.41 9.43
136Xe 2.77 0.54 1.02 3.03 0.70 1.18 7.97

TLNV × 10−26 T1 T2 T3/RRz(LLz) T3/LRz(RLz) T4 T5 TπN

CD-Bonn

48Ca 1.64 1.73 1.71 1.76 1.68 1.59 1.19
76Ge 2.36 2.38 2.38 2.38 2.20 2.18 1.92
82Se 0.63 0.63 0.63 0.64 0.62 0.61 0.49
130Te 0.89 0.89 0.89 0.89 0.88 0.89 0.91

AV-18

48Ca 1.64 1.74 1.72 1.79 1.69 1.59 1.20
76Ge 2.35 2.35 2.35 2.35 2.17 2.17 1.94
82Se 0.62 0.62 0.62 0.63 0.61 0.60 0.50
130Te 0.89 0.89 0.89 0.89 0.89 0.89 0.90

coupling, and from that point of view, if O9 amplitude
is dominant, that would indicate that the scale of new
physics should be found around 3 TeV. Unfortunately,
the Λ9 scale, as well as all other high D scales, are not
very sensitive to the 0νββ half-life, because they scale

as T
1

2(D−4)

1/2 . O7 and O11 provide small low-limits for Λ7

and Λ11. This feature is likely related to the fact that
these terms are originating from small terms in the mix-
ing matrix (e.g. the small S matrix in Eq. (A3) of [15]),
and thus g ∼ 1 in Eq. (18) is not a good choice. The
most sensitive scale to both the unknown Yukawa and the
0νββ half-life is Λ5. Assuming a Yukawa coupling corre-
sponding to the electron mass, one can conclude that the
0νββ decay could be consistent with a new physics scale
somewhere between 2 TeV and 20 TeV.

VII. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (MGT ′ , MT ′) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered

in the full analyses based on the effective field theory ap-
proach to 0νββ decay (they were only considered in the
past in the context of particular mechanisms).

Using a general effective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0νββ decay amplitude, we extract limits for the effective
Majorana mass and 11 effective low-energy couplings in
the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass 〈mββ〉 of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0νββ decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0νββ decay half-life.

If the neutrinoless double-beta decay process is experi-
mentally confirmed, an analysis of possible contributions
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TABLE XIII. Same as Table XII, for the short-range contribution to the 0νββ diagram, corresponding to the dimension 9
Lagrangian for the St-Ma set of Hamiltonians.

SRC ηLNV |ε1| × 108 |ε2| × 1010 |ε
RRz(LLz)
3 | × 109 |ε

LRz(RLz)
3 | × 109 |ε4| × 109 |ε5| × 108 |ηπN | × 109

CD-Bonn 6.77 4.12 3.12 5.19 3.62 3.28 1.61

AV-18 8.15 5.89 4.29 7.90 5.17 3.95 1.52

M2
LNV M2

1 × 1013 M2
2 × 108 M2

3/LLz(RRz) × 1010 M2
3/LRz(RLz) × 1011 M2

4 × 1010 M2
5 × 1012 M2

πN × 1010

CD-Bonn

48Ca 3.31 0.89 1.56 5.61 1.19 1.45 7.43
76Ge 1.47 0.40 0.70 2.55 0.57 0.68 3.01
82Se 5.38 1.46 2.56 9.26 1.96 2.36 11.3
130Te 12.0 3.25 5.68 20.5 4.22 5.11 21.3
136Xe 7.83 2.11 3.70 13.3 2.74 3.33 13.9

AV-18

48Ca 2.28 0.43 0.82 2.40 0.58 1.00 8.21
76Ge 1.02 0.20 0.37 1.11 0.28 0.47 3.33
82Se 3.73 0.73 1.36 4.05 0.97 1.64 12.5
130Te 8.26 1.59 2.99 8.86 2.07 3.52 23.8
136Xe 5.41 1.04 1.95 5.75 1.34 2.30 15.5

TLNV × 10−26 T1 T2 T3/RRz(LLz) T3/LRz(RLz) T4 T5 TπN

CD-Bonn

48Ca 2.53 2.54 2.54 2.54 2.46 2.45 2.01
76Ge 5.68 5.61 5.62 5.58 5.18 5.25 4.96
82Se 1.56 1.54 1.55 1.54 1.50 1.51 1.32
130Te 0.70 0.70 0.70 0.69 0.69 0.70 0.70

AV-18

48Ca 2.54 2.56 2.56 2.57 2.48 2.46 2.03
76Ge 5.67 5.57 5.59 5.52 5.14 5.24 4.99
82Se 1.55 1.53 1.53 1.52 1.48 1.50 1.33
130Te 0.70 0.70 0.70 0.69 0.69 0.70 0.70

TABLE XIV. The BSM effective scale (in GeV) for differ-
ent dimension-D operators at the present 136Xe half-life limit
(Λ0

D) and for T1/2 ≈ 1.1× 1028 years (ΛD).

OD ǭD Λ0
D(y = 1) Λ0

D(y = ye) ΛD(y = ye)

O5 2.8× 10−7 2.12× 1014 1904 19044

O7 2.0× 10−7 3.76 × 104 542 1169

O9 9.3× 10−8 2.72 × 103 2718 4307

O11 9.3× 10−8 1.24 × 103 33 46

to the decay may be possible, based on the measured half-
lives for different isotopes alone. The ratio of half-lives
has been proposed before as a possible method for dis-
entangling the heavy right-handed neutrino contribution
from that of the light left-handed one. For this purpose,
we performed an in-depth analysis of the ratio of half-
lives for all 5 isotopes that are actively considered by
experimentalists. We took into account the 12 contribu-
tions to the 0νββ described by the left-right symmetric
model, the R-parity violating SUSY model, and an ef-
fective field theory. The study is presented under the
assumption that only one contribution dominates. One
main conclusion is that the nuclear matrix elements need
to be calculated with better accuracy for most of the ra-
tios to be relevant.

For a long time there were many debates in the liter-
ature regarding the uncertainties in the NME that orig-
inate from the treatment of the short-range correlations
(SRC). Several methods and parametrization were devel-
oped for their inclusion in 0νββ calculations. Depend-
ing on the choice of the SRC method and parameters,
the changes to the NME ranged from about 20% for
the light left-handed neutrino exchange, to a dramatic
50% change in the case of the heavy right-handed neu-
trino exchange. In our investigation we found out that
the SRC choice usually affects the half-life ratio only by
around 1%, with the exception of the ”S+P/S±P” and
”TR/TR” cases. Based on this observation, we conclude
that the SRC do not significantly affect our analysis of the
half-life ratios calculated with ISM NME, as long as the
choice is consistent for all isotopes considered. This con-
clusion does not diminish the importance and the need
for obtaining an effective transition operator that prop-
erly takes into account the SRC effects in a consistent
manner, rather just rules-out most of the uncertainty re-
lated to SRC for this particular type of analysis.

What was shown to have a great impact on our study
was the choice of effective shell model Hamiltonians. It
not only changes the extracted LNV couplings, but also
places a large uncertainty over several half-life ratios.
The isotopes considered here are calculated in three dif-
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FIG. 4. Same as Fig. 3, but for the Strasbourg-Madrid choice of Hamiltonians.
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FIG. 5. Same as Fig. 3, but for 76Ge instead of 136Xe, with the CMU choice of Hamiltonians.

ferent model spaces, using a total of six effective Hamil-
tonians. It is not always possible to have half-life ratios
for isotopes calculated in the same model space and us-
ing the same Hamiltonian. In the two cases where this
is possible, the pairs 76Ge−82Se and 130Te−136Xe, the
ratios spread and the consistency of the calculations is
quite high. Unfortunately, the ratio between 130Te and
136Xe does not bring any information to this analysis, as
it is constant, thus overlapping for all couplings. How-
ever, when choosing isotopes from different model spaces,
the half-life ratios for a pair of isotopes can spread sig-
nificantly. One extreme case is that of 136Xe/82Se for

the ǫV+A
V+A contribution where the ratio spreads from 1.3,

when using GCN 28:50 for 82Se and GCN 50:82 for 136Xe,
to 3.6 in the case of JUN45 for 82Se and SVD for 136Xe.

Nevertheless, with our present analysis one could, in
principle, distinguish several of the contributions to the
0νββ process that stand out beyond the uncertainties
that arise from using the shell model Hamiltonians dis-
cussed. Ideally, more information could be extracted if
the experimental half-lives of 48Ca, 76Ge, and 82Se be-
come available. The half-life ratio 76Ge/48Ca could indi-

cate or rule-out the ǫTR
TR contribution and the ǫS+P

S±P con-
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FIG. 6. Same as Fig. 5, but for the Strasbourg-Madrid effective Hamiltonians.

tribution. Another possible contribution, that of ǫV+A
V+A

(also corresponding to the ηλ−mechanism), could be in-
vestigated by the ratio of 76Ge/82Se. If the tracking of
the outgoing electrons will also become available, this
complementary information could help decide the role of
ǫV+A
V−A (also corresponding to the ηη−mechanism) [15].

Based on the figures presented, we conclude that once
better and more consistent NME calculations become
available, and with the complementary information from
electron angular and energy distributions, it could be
possible to distinguish all the couplings in the dimension-
6 Lagrangian if the half-lives of several isotopes are mea-
sured. The half-life ratio corresponding to the couplings
in the dimension-9 Lagrangian would still remain insepa-
rable from the ratio corresponding to heavy right-handed
neutrino exchange (ǫRR

3 in the EFT). Those need to be in-
vestigated via other methods, such as same charge dilep-
ton production at LHC, etc.

VIII. APPENDIX

In this Appendix, we present the detailed expressions
for the M2

i coefficients that are needed to analyze the
outcome of Eq. (5).

The NME that enter the equations (8, 10, 12, 14,
and 16) are written as a product of two-body transi-
tion densities (TBTD) and two-body matrix elements
(TBME), where the summation is over all the nu-
cleon states. Their numerical values when calculated
within the shell model approach are presented in Ta-
ble XV for the light left-handed Majorana neutrino ex-
change, in Table XVI for the long-range part in Fig. 2,
and in Table XVII for the short-range component of

TABLE XV. NME values for the exchange of light left-handed
Majorana neutrinos corresponding to the diagram in Fig. 2b.

48Ca 76Ge 82Se 130Te 136Xe

MGT 0.805 3.200 3.000 1.658 1.501

MF −0.233 −0.674 −0.632 −0.438 −0.400

MT 0.073 0.011 0.012 −0.006 −0.007

Fig. 2. The general expressions for the NME are (see
Refs. [15, 31, 62]):

Mα =
∑

jpjp′jnjn′Jπ

TBTD (jpjp′ , jnjn′ ; Jπ)

×
〈

jpjp′ ; Jπ
∥

∥

∥
τ−1τ−2Oγ,φ,θ,P,R

12

∥

∥

∥
jnjn′ ; Jπ

〉

. (20)

We group the operators that share similar structure into
five families.

Gamow-Teller operator : Oγ
12 = ~σ1 · ~σ2Hγ(r),

Fermi operator : Oφ
12 = Hφ(r),

Tensor operator : Oθ
12 = [3(~σ1 · r̂)(~σ2 · r̂)− ~σ1 · ~σ2]Hθ(r),

P operator : OP
12 = (~σ1 − ~σ2)HP (r),

R operator : OR
12 = ~σ1 · ~σ2HR(r).

Here, γ = GT , GTω, GTq, GTN , GT ′, GTπν,
GT 1π, GT 2π, φ = F, Fω, Fq, FN , and θ =
T, T q, T ′, T πν, T 1π, T 2π. Equations (21) present the
radial part of the NME and their expressions are adapted
for consistency from Refs. [62],[23], and [82].

HGT =
2R

π

∫

h2
GT (q

2)

q(q + Ē)
j0(qr)q

2 dq , (21a)
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TABLE XVI. NME for the long-range part shown in Figs. 2c
and 2e.

48Ca 76Ge 82Se 130Te 136Xe

MGTq 0.709 3.228 3.034 1.587 1.440

MGTω 0.930 3.501 3.287 1.855 1.682

MGT ′ 0.841 2.699 2.567 2.120 1.935

MGTπν 86.2 331.6 313.3 184.2 167.7

MFq −0.121 −0.383 −0.362 −0.249 −0.230

MFω −0.232 −0.659 −0.618 −0.427 −0.391

MTq −0.173 −0.059 −0.058 −0.013 −0.012

MT ′ 0.337 0.015 0.025 −0.077 −0.085

MTπν 21.29 7.28 6.89 1.22 1.12

MP 0.390 −2.435 −2.303 −1.707 −1.597

MR 1.001 3.243 3.088 2.530 2.312

TABLE XVII. The short-range NME involved in Figs. 2d, 2f,
and 2g.

48Ca 76Ge 82Se 130Te 136Xe

MGTN 55.9 156.5 144.9 103.0 92.6

MGT1π −1.354 −3.559 −3.282 −2.421 −2.171

MGT2π −0.676 −1.983 −1.854 −1.257 −1.137

MFN −22.9 −62.6 −58.1 −41.0 −36.9

MT1π −0.590 −0.010 −0.027 0.106 0.115

MT2π −0.227 −0.011 −0.015 0.038 0.041

HGTω =
2R

π

∫

h2
A(q

2)

(q + Ē)2
j0(qr)q

2 dq , (21b)

HGTq =
2R

π
r

∫

h2
A(q

2)

q + Ē
j1(qr)q

2 dq , (21c)

HGTN =
2R

πmemp

∫

h2
A(q

2)j0(qr)q
2 dq , (21d)

HGT ′ =
2R2

πmp

∫

q2h2
A(q

2)

q(q + Ē)
j0(qr)q

2 dq , (21e)

HGTπν =
2R

π

∫

h2
GTπν(q

2)

q(q + Ē)
j0(qr)q

2 dq , (21f)

HGT1π = −2R

π

∫

h2
A(q

2)
q2/m4

π

1 + q2/m2
π

j0(qr)q
2 dq , (21g)

HGT2π = −4R

π

∫

h2
A(q

2)
q2/m4

π

(1 + q2/m2
π)

2
j0(qr)q

2 dq ,

(21h)

HF =
2R

π

∫

h2
V (q

2)

q(q + Ē)
j0(qr)q

2 dq , (21i)

HFω =
2R

π

∫

h2
V (q

2)

(q + Ē)2
j0(qr)q

2 dq , (21j)

HFq =
2R

π
r

∫

h2
V (q

2)

q + Ē
j1(qr)q

2 dq , (21k)

HFN =
2R

πmemp

∫

h2
V (q

2)j0(qr)q
2 dq , (21l)

HT = −2R

π

∫

h2
T (q

2)

q(q + Ē)
j2(qr)q

2 dq , (21m)

HTq =
2R

3π

√

2

3
rC(2)(r̂)

∫

h2
A(q

2)

q + Ē
j1(qr)q

2 dq , (21n)

HT ′ = − 2R2

πmp

∫

q2h2
A(q

2)

q(q + Ē)
j2(qr)q

2 dq , (21o)

HTπν = −2R

π

∫

h2
Tπν(q

2)

q(q + Ē)
j2(qr)q

2 dq , (21p)

HT1π =
2R

π

∫

h2
A(q

2)
q2/m4

π

1 + q2/m2
π

j2(qr)q
2 dq , (21q)

HT2π =
4R

π

∫

h2
A(q

2)
q2/m4

π

(1 + q2/m2
π)

2
j2(qr)q

2 dq , (21r)

HR =
(µp − µn)

3

gV
gA

2R2

πmp

×
∫

q
hA(q

2)hV (q
2)

q + Ē
j0(qr)q

2 dq , (21s)

HP =
√
2
2R

π

gV
gA

C(1)(r̂)C(1)(r̂+)r+

×
∫

hA(q
2)hV (q

2)

q + Ē
j1(qr)q

2 dq , . (21t)

Here, the expressions of C
(L)
M and r of Eqs. (21n, 21t)

are:

C
(L)
M =

√

4π

2L+ 1
YLM ,

r = r1 − r2, r+ =
r1 + r2

2
, r = |r|,

r̂ =
r

r
, r+ = |r+|, r̂+ =

r+

r+
.

The finite-size effects are taken into account via the fol-
lowing dipole form-factors:

gA(q
2) =

(

λ2
A

λ2
A + q2

)2

, (22a)

gV (q
2) =

(

λ2
V

λ2
V + q2

)2

, (22b)

gM (q2) = (µp − µn) gV (q
2). (22c)

Here λA = 1086 MeV and λV = 850 MeV are the axial
and vector momentum cutoffs, respectively, and (µp −
µn) ≃ 3.7.
The form-factors entering Eqs. 21 are:

hV (q
2) =gV (q

2), (23a)

hA(q
2) =gA(q

2), (23b)

h2
GT (q

2) =g2A(q
2)

[

1− 2

3

q2

q2 +mπ
2
+

1

3

(

q2

q2 +m2
π

)2
]

+
2

3

g2M (q2)

g2A

q2

4m2
p

, (23c)
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h2
T (q

2) =g2A(q
2)

[

2

3

q2

q2 +mπ
2
− 1

3

(

q2

q2 +m2
π

)2
]

+
1

3

g2M (q2)

g2A

q2

4m2
p

, (23d)

h2
GTπν(q

2) =− g2A(q
2)

6

m4
π

me(mu +md)

q2

(q2 +m2
π)

2
, (23e)

h2
Tπν(q

2) =h2
GTπν(q

2). (23f)

me = 0.511 MeV is the electron mass, mπ = 139 MeV is
the pion mass, mp = 938 MeV is the proton mass, and
the quark masses sum is (mu+md) = 11.6 MeV [31, 96].
The NME presented in this section (Eq. (20)) are

calculated using shell model approaches. To take into
account the two-nucleon short-range correlation (SRC)
we multiply the relative wave functions by f(r) = 1 −
ce−ar2(1 − br2); in the CD-Bonn parametrization used
here a = 1.52 fm−2, b = 1.88 fm−2, and c = 0.46
fm−2 [97]. This method is described in greater detail
in Refs. [31, 36–41, 43–46]. The signs of all the NME
presented in the following tables are relative to the sign
ofMGT , which is taken to be positive. Table XV presents
the MGT , MF , and MT NME involved in the stan-
dard mass mechanism with left-handed currents of Eq.

(8). For these NME, an optimal closure energy
〈

Ē
〉

was used for each effective Hamiltonian [40]:
〈

Ē
〉

= 0.5

MeV for 48Ca [38] and the GXPF1A Hamiltonian [98],
〈

Ē
〉

= 3.4 MeV for 76Ge [60] and 82Se [40] calculated

with the JUN45 Hamiltonian [64], and
〈

Ē
〉

= 3.5 MeV

for 130Te [44] and 136Xe [39] calculated with the SVD
Hamiltonian [65].
The long-range NME Mα (with α = GTq, Fq, Tq,

GTω, Fω, P , R, GT ′, T ′) that appear in Eq. (10)
and MGTπν and MTπν of Eq. (12) are presented in Ta-
ble XVI.
Shown in Table XVII are the short-range NME MGTN

and MFN that appear in Eq. (14 and Mα (with α =
GT 1π, T 1π, GT 2π, T 2π) in Eq. 16).
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