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Abstract
We develop an asymmetric relativistic Fermi gas model for the study of the electroweak nuclear response in the quasielastic

region. The model takes into account the differences between neutron and proton densities in asymmetric (N > Z) nuclei, as
well as differences in the neutron and proton separation energies. We present numerical results for both neutral and charged
current processes, focusing on nuclei of interest for ongoing and future neutrino oscillation experiments. We point out some
important differences with respect to the commonly employed symmetric Fermi gas model.
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I. INTRODUCTION

The Relativistic Fermi Gas (RFG) is currently the main model used in the analyses of long baseline experiments,
aiming at high precision measurements of the neutrino oscillation parameters (see [1] for a recent review of the subject).
Since the detectors of these experiments are made of complex nuclei, a good control of the nuclear effects is essential
in order to achieve this goal. In particular, the next generation experiment DUNE [2] will be using Liquid Argon
Time-Projection Chamber technology; hence a reliable description of neutrino interactions with 40Ar is needed.

Although the RFG is clearly inadequate to describe the details of the nuclear dynamics at the required level of
precision, and several more refined calculations have been developed in recent years to provide a better modeling of
neutrino-nucleus scattering [1, 3–14], the model has some merits in providing the gross features of inclusive lepton-
nucleus cross sections, which are the subject of the present work. First, it is fully relativistic, and relativity plays
an essential role in the kinematical domain of present and future neutrino experiments, covering an energy range of
few to several GeV. Second, in spite of its simplicity, the RFG is capable of predicting the behavior of the inclusive
cross section as a function of the momentum transfer q and of the Fermi momentum kF , the so-called scaling of
first and second kind [15–17]. This feature is the basis of the SuSAv2 model [4, 18, 19], which has been proved to
give an excellent description of both electron and neutrino cross sections on symmetric (N = Z) nuclei, in particular
carbon and oxygen. The extension of the RFG model to asymmetric (N 6= Z) nuclei will provide the basis for the
developement of the SuSAv2 model for these nuclei.

With these motivations, in this work we develop the formalism of a fully relativistic Fermi gas model for asymmetric
nuclear matter and apply this to the study of quasielastic (QE) electron and neutrino scattering on a selected set of
nuclei. A similar approach was taken in [20–24], however using a non-relativistic model, to study various response
functions. Specifically, we focus on a typical N = Z nucleus 12C, on a slightly asymmetric nucleus 40Ar, both of which
are of practical interest for studies of neutrino oscillations [1], and on a very asymmetric case, 208Pb. Neutral current
electron and (anti)neutrino scattering results are given for these three nuclei, although other cases may be treated in a
similar manner. For charge-changing neutrino and antineutrino reactions, of course, the neighboring nuclei 12B/12N,
40Cl/40K, and 208Tl/208Bi, respectively, are also modeled using the same asymmetric Fermi gas approach. Here we
focus on QE processes, although the formalism can easily be extended to include the 1p1h inelastic spectrum, namely,
meson production, production of baryon resonances and DIS, following the developments in [25]. 2p2h excitations
will be treated in future work.

The paper is organized as follows: in Sect. II we introduce the formalism for the asymmetric relativistic Fermi
gas (ARFG) model, both for neutral current (Sect. II A) and charged-current (Sect. II B) reactions. In Sect. III we
present a selection of numerical results, again for neutral (Sect. III A) and charged-current (Sect. III B) reactions.
Finally, in Sect. IV we draw our conclusions.

II. FORMALISM: THE ARFG MODEL

We consider a nucleus (N,Z) having N neutrons and Z protons, where N and Z need not be equal, and assume
that the nuclear volume V for protons and neutrons is the same. Here we are assuming that the cases typically of
interest in such studies are in the valley of stability where the equal-volume assumption is a reasonable approximation
(in the case of lead, for instance, this is known to be the case); cases far from the valley of stability where, for instance
neutron skins may come into play, go beyond the present modeling and are not considered here. Thus we can define
two different Fermi spheres for protons and neutrons, with corresponding Fermi momenta

kpF (Z) =

(
3π2Z

V

)1/3

, knF (N) =

(
3π2N

V

)1/3

. (1)

Defining the ratio between the two Fermi momenta

ρ0 ≡
knF (N)

kpF (Z)
=

(
N

Z

)1/3

(2)

and the average Fermi momentum

k0
F (N,Z) ≡ 1

N + Z
[ZkpF (Z) +NknF (N)] , (3)

we can write

knF (N) = ρ0k
p
F (Z) =

ρ0(Z +N)

Z + ρ0N
k0
F (N,Z) . (4)
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In the study of charged-current (CC) quasielastic neutrino (or antineutrino) scattering, where a neutron is converted
into a proton (or vice versa), one also has to consider the neighboring nuclei, (N+1,Z-1) and (N-1, Z+1). The
corresponding Fermi momenta for protons and neutrons can be written as

kpF (Z ± 1) = kpF (Z)

(
1± 1

Z

)1/3

(5)

knF (N ± 1) = knF (N)

(
1± 1

N

)1/3

. (6)

In the RFG model a nucleon having 3-momentum k has on-shell energy

Ep(n)(k) =
√
k2 +m2

p(n) . (7)

A well-known shortcoming of the RFG consists in the fact that the model has states starting with 3-momentum
equal to zero (energy equal to the proton or neutron mass) and going up to the Fermi levels. This corresponds to an
unrealistic negative separation energy [26]. In fact, the Fermi levels in a bound nucleus are negative and have positive
separation energies Sn(N), Sp(Z), Sn(N + 1), Sp(Z − 1), Sn(N − 1) and Sp(Z + 1), respectively, for the six cases of
interest. In order to correct for this flaw, we shift the energies of the protons and neutrons in the triplet of nuclei
using the following prescriptions

Hn(N ; k) = En(k)−Dn(N) Hp(Z; k) = Ep(k)−Dp(Z)
Hn(N + 1; k) = En(k)−Dn(N + 1) Hp(Z − 1; k) = Ep(k)−Dp(Z − 1)
Hn(N − 1; k) = En(k)−Dn(N − 1) Hp(Z + 1; k) = Ep(k)−Dp(Z + 1) ,

(8)

where the offsets are given by

Dn(N) = EnF (N) + Sn(N) Dp(Z) = EpF (Z) + Sp(Z)
Dn(N + 1) = EnF (N + 1) + Sn(N + 1) Dp(Z − 1) = EpF (Z − 1) + Sp(Z − 1)
Dn(N − 1) = EnF (N − 1) + Sn(N − 1) Dp(Z + 1) = EpF (Z + 1) + Sp(Z + 1) ,

(9)

and where the usual RFG Fermi energies are given by

EnF (N) ≡ En(knF (N)) EpF (Z) ≡ Ep(kpF (Z))
EnF (N + 1) ≡ En(knF (N + 1)) EpF (Z − 1) ≡ Ep(kpF (Z − 1))
EnF (N − 1) ≡ En(knF (N − 1)) EpF (Z + 1) ≡ Ep(kpF (Z + 1)) .

(10)

Clearly when at the true Fermi surfaces the energies in Eq. (8) become minus the separation energies. For instance,
when k = knF (N) one has

Hn(N ; knF (N)) = En(knF (N))− [EnF (N) + Sn(N)] = −Sn(N). (11)

In this work the values of the parameter k0
F (N,Z), in terms of which all the different Fermi momenta can be

calculated, are taken from the superscaling analysis [27] of electron scattering data, while Sp,n are the measured
proton and neutron separation energies, taken from the ENSDF database [28]. The numerical values for the cases
considered in this work are listed in Table I. Note that, although not explicitly indicated in our notation for sake of
simplicity, all separation energies depend on both Z and N .

Within this model, denoted as Asymmetric Relativistic Fermi Gas (ARFG), we can now calculate the quasielastic
double differential cross section with respect to the outgoing lepton momentum k′ and scattering angle Ω correspond-
ing to inclusive electron scattering, (e, e′), neutral current (NC) neutrino and antineutrino scattering, (ν, ν′) and
(ν̄, ν̄′), and to charged-current (CC) neutrino and antineutrino scattering, (ν, µ−) and (ν̄, µ+). In the Rosenbluth
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X(A,Z,N) Sn (MeV) Sp (MeV) k0F (MeV/c) knF (MeV/c) kpF (MeV/c)

C(12,6,6) 18.72 15.96 228 228 228

B(12,5,7) 3.37 14.10 240.02 214.56

N(12,7,5) 15.04 0.60 214.56 240.02

Ar(40,18,22) 9.87 12.53 241 248.23 232.17

Cl(40,17,23) 5.83 11.68 251.93 227.78

K(40,19,21) 7.80 7.58 244.41 236.39

Pb(208,82,126) 7.37 8.00 248 261.77 226.85

Tl(208,81,127) 3.79 7.55 262.46 225.92

Bi(208,83,125) 6.89 3.71 261.07 227.76

TABLE I: Neutron and proton separation energies (Sn, Sp) and Fermi momenta (kF ) used in this work.

decomposition these can be expressed as(
d2σ

dΩdk′

)(e,e′)

= σM
[
vLR

L,em
p→p + vLR

L,em
n→n + vTR

T,em
p→p + vTR

T,em
n→n

]
(12)(

d2σ

dΩdk′

)(ν,ν′)

= σ
(NC)
0

[
vLR

L,w
n→n + vTR

T,w
n→n + vT ′R

T ′,w
n→n

]
(13)(

d2σ

dΩdk′

)(ν̄,ν̄′)

= σ
(NC)
0

[
vLR

L,w
p→p + vTR

T,w
p→p − vT ′RT

′,w
p→p

]
(14)(

d2σ

dΩdk′

)(ν,µ−)

= σ
(CC)
0

[
VCCR

CC,w
n→p + VCLR

CL,w
n→p + VLLR

LL,w
n→p + VTR

T,w
n→p + VT ′R

T ′,w
n→p

]
(15)(

d2σ

dΩdk′

)(ν̄,µ+)

= σ
(CC)
0

[
VCCR

CC,w
p→n + VCLR

CL,w
p→n + VLLR

LL,w
n→n + VTR

T,w
p→n − VT ′RT

′,w
p→n

]
, (16)

where vK and VK are leptonic kinematic factors (see [29, 30] for their explicit expressions), σM is the Mott cross

section and σ
(NC)
0 , σ

(CC)
0 the corresponding elementary weak cross sections for NC and CC reactions, respectively. The

response functions RK ≡ RK(q, ω), where the labels em and w stand for “electromagnetic” and “weak”, respectively,
embody the nuclear structure and dynamics and are functions of the momentum q and energy ω transferred to the
nucleus. They are related to the specific components of the corresponding hadronic tensor Wµν :

RL ≡ RCC = W 00 (17)

RCL = −1

2

(
W 03 +W 30

)
(18)

RLL = W 33 (19)

RT = W 11 +W 22 (20)

RT ′ = − i
2

(
W 12 −W 21

)
. (21)

The general expression for the nuclear tensor in the ARFG model is

Wµν
i→f (q, ω) =

3m2N
4π(kiF )3

∫
dh

θ(kiF − |h|) θ(|h + q| − kfF )

Hi(h)Hf (h + q)
fµνi→f (h,h + q) δ[Hf (h + q)−Hi(h)− ω] , (22)

where the superscripts i and f refer to the initial and final nucleons, respectively, m and N are the appropriate mass
and number of nucleons in the target nucleus, Hi,f are the nucleon energies defined in Eqs. (8) and fµνi→f is the
corresponding single-nucleon tensor.

In the following subsections we shall derive the explicit expression of Wµν for the reactions listed in Eqs. (12-16),
distinguishing between the two cases of neutral and charged-current reactions.
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A. Electron Scattering and NC (Anti)Neutrino Scattering

In the case of neutral current processes, Eqs. (12-14), mediated by the exchange of a photon or a Z0 boson, the
energy-conserving delta-function appearing in Eq. (22) involves the difference between the on-shell particle (p) and
hole (h) energies, where the hole is assumed to have 3-momentum h, while the particle has 3-momentum h + q,

En→n(N) = Hn(N ;h + q)−Hn(N ;h) = En(h + q)− En(h) (23)

Ep→p(Z) = Hp(Z;h + q)−Hp(Z;h) = Ep(h + q)− Ep(h) , (24)

since the Dn(N) and Dp(N) offsets cancel in the particle-hole energy differences; namely, the nucleon separation
energies introduced in the ARFG model have no impact on the results for neutral current processes. The only
difference with respect to the usual RFG arises from the different values of kF for protons and neutrons. The
corresponding nuclear tensors are then

Wµν
p→p(q, ω) =

3m2
pZ

4π [kpF (Z)]
3

∫
dh

θ(kpF (Z)− |h|) θ(|h + q| − kpF (Z))

Ep(h)Ep(h + q)
fµνp→p(h,h + q) δ[Ep(h + q)− Ep(h)− ω] (25)

for protons and

Wµν
n→n(q, ω) =

3m2
nN

4π [knF (N)]
3

∫
dh

θ(knF (N)− |h|) θ(|h + q| − knF (N))

En(h)En(h + q)
fµνn→n(h,h + q) δ[En(h + q)− En(h)− ω] (26)

for neutrons, where

fµνj→j = −w1,j(τj)

(
gµν − QµQν

Q2

)
+ w2,j(τj)V

µ
j V

ν
j −

i

mn
w3,n(τn)εµνρσQρVσ,j (27)

(with j = p, n) are the single-nucleon tensors, with

τj ≡
|Q2|
4m2

j

and V µj =
1

mj

(
Pµ − P ·Q

Q2
Qµ
)

=
1

mj

(
Pµ +

1

2
Qµ
)
, (28)

having used the on-shell condition P ·Q
Q2 = − 1

2 .

For (e, e′) the electromagnetic structure functions are

w1,j(τ) = τG2
M,j(τ) (29)

w2,j(τ) =
G2
E,j(τ) + τG2

M,j(τ)

1 + τ
(30)

and w3 = 0, while for (ν, ν′) and (ν̄, ν̄′) they are

w1,j(τ) = τG̃2
M,j(τ) + (1 + τ)G̃2

A,j(τ) (31)

w2,j(τ) =
G̃2
E,j(τ) + τG̃2

M,j(τ)

1 + τ
+ G̃2

A,j(τ) (32)

w3,j(τ) = G̃M,j(τ)G̃A,j(τ) , (33)

with τ = τn,p as is appropriate. By performing the angular integration in Eqs. (25) and (26) one gets

Wµν
p→p(q, ω) =

3m2
pZ

2 [kpF (Z)]
3
q

∫ Ep
F (Z)

Ep
0 (Z)

dE
[
fµνp→p

]
x=xp

0(E)
(34)

Wµν
n→n(q, ω) =

3m2
nN

2 [knF (N)]
3
q

∫ En
F (N)

En
0 (N)

dE [fµνn→n]x=xn
0 (E) , (35)

where

Ep0 (Z) = max

{
EpF (Z)− ω, q

2

√
1 +

1

τp
− ω

2

}
(36)

En0 (N) = max

{
EnF (N)− ω, q

2

√
1 +

1

τn
− ω

2

}
(37)
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and

xn,p0 (E) =
ωE − |Q

2|
2

q
√
E2 −m2

n,p

. (38)

Finally, the analytic integration over E yields:

Wµν
p→p(q, ω) =

3m2
pZ

2 [kF (Z)]
3
q

(EpF (Z)− Ep0 (Z))Uµνp (39)

Wµν
n→n(q, ω) =

3m2
nN

2 [kF (N)]
3
q

(EnF (N)− En0 (N))Uµνn . (40)

In particular, the relevant components for the calculation of the L, T and T’ responses turn out to be

U00
j =

κ2

τj
[−w1,j(τj) + (1 + τj)w2,j(τj) + w2,j(τj)∆j ] (41)

U11
j + U22

j = 2w1,j(τj) + w2,j(τj)∆j (42)

U12
j = 2i

√
τj(1 + τj)w3,j(τj)(1 + ∆′j) (43)

with

∆j =
τp
κ2

1

m2
j

[
1

3

(
Ej2F (Z) + Ej0(Z)EjF (Z) + Ej20 (Z)

)
+
ω

2

(
EjF (Z) + Ej0(Z)

)
+
ω2

4

]
− 1− τj (44)

∆′j =
1

κ

√
τj

1 + τj

1

mj

[
ω

2
+

1

2

(
EjF (Z) + Ej0(Z)

)]
− 1 . (45)

The corresponding numerical results will be shown in Sect. III.

B. CC (Anti)Neutrino Scattering

In the case of (anti)neutrino-induced CC reactions, where neutrons (protons) are converted into protons (neutrons)
through the absorption of a W+ (W−) boson, the energy differences appearing in the delta-function of Eq. (22) are

En→p(N,Z; ph) = Hp(Z + 1; p)−Hn(N ;h)

= [Ep(p)− En(h)] + ∆Dn→p(N,Z), (46)

with

∆Dn→p(N,Z) ≡ Dn(N)−Dp(Z + 1)

= [EnF (N)− EpF (Z + 1)] + [Sn(N)− Sp(Z + 1)] (47)

for CC neutrino reactions, and

Ep→n(N,Z; k′k) = Hn(N + 1; k′)−Hp(Z; k)

= [En(k′)− Ep(k)] + ∆Dp→n(N,Z) , (48)

with

∆Dp→n(N,Z) ≡ Dp(Z)−Dn(N + 1)

= [EpF (Z)− EnF (N + 1)] + [εps(Z)− εns (N + 1)] (49)

for CC antineutrino reactions. The numerical values for these energy offsets are given in Table II.
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X(A,Z,N) Dn→p (MeV) Dp→n (MeV)

C(12,6,6) 15.21 9.68

Ar(40,18,22) 5.25 1.77

Pb(208,82,126) 12.24 -4.77

TABLE II: Energy offsets used in this work for CC neutrino (Dn→p) and antineutrino (Dp→n) scattering.

The corresponding nuclear tensors are then

Wµν
n→p(q, ω) =

3m2
nN

4π [knF (N)]
3

∫
dh

θ(knF (N)− |h|) θ(|h + q| − kpF (Z + 1))

En(h)Ep(h + q)

× fµνn→p(h,h + q) δ[Ep(h + q)− En(h) + ∆Dn→p(N,Z)− ω] (50)

Wµν
p→n(q, ω) =

3m2
pZ

4π [kpF (Z)]
3

∫
dh

θ(kpF (Z)− |h|) θ(|h + q| − knF (N − 1))

Ep(h)En(h + q)

× fµνp→n(h,h + q) δ[En(h + q)− Ep(h) + ∆Dp→n(N,Z)− ω]

(51)

for neutrino and antineutrino scattering, respectively, where the elementary isovector tensor fµνn→p = fµνp→n ≡ fµν(1) is

fµν(1) = −w(1)
1 (τ)

(
gµν − QµQν

Q2

)
+ w

(1)
2 (τ)V µV ν + u

(1)
1 (τ)

QµQν

Q2
− i

m
w

(1)
3 (τ)εµνρσQρVσ (52)

and the structure functions wi are the appropriate isovector ones:

w
(1)
1 (τ) = τ

[
G

(1)
M (τ)

]2
+ (1 + τ)

[
G

(1)
A (τ)

]2
(53)

w
(1)
2 (τ) =

[
G

(1)
E (τ)

]2
+ τ

[
G

(1)
M,i(τ)

]2
1 + τ

+
[
G

(1)
A (τ)

]2
(54)

u
(1)
1 (τ) = −

[
G
′(1)
A (τ)

]2
(55)

w
(1)
3 (τ) = G

(1)
M (τ)G

(1)
A (τ) , (56)

where

G
′(1)
A (τ) = G

(1)
A (τ)− τG(1)

P (τ) . (57)

In the case of CCν reactions we set mn
∼= mp

∼= m ≡ (mn + mp)/2 and define a single dimensionless 4-momentum
transfer τ ≡ |Q2|/4m2.

Similarly to what we did for the NC case, we perform the angular integral, obtaining

Wµν
n→p(q, ω) =

3m2
nN

2 [knF (N)]
3
q

∫ En
F (N)

En→p
0 (N)

dE
[
fµνn→p

]
x=xn→p

0 (E)
(58)

Wµν
p→n(q, ω) =

3m2
pZ

2 [kpF (Z)]
3
q

∫ Ep
F (Z)

Ep→n
0 (Z)

dE
[
fµνp→n

]
x=xp→n

0 (E)
, (59)

where now

xn→p0 (E) =
ω̃n→pE − |Q̃

2
n→p|
2

q
√
E2 −m2

n

and xp→n0 (E) =
ω̃p→nE − |Q̃

2
p→n|
2

q
√
E2 −m2

p

, (60)

having defined

ω̃n→p ≡ ω −∆Dn→p(N,Z) and Q̃2
n→p ≡ ω̃2

n→p − q2 (61)

ω̃p→n ≡ ω −∆Dp→n(N,Z) and Q̃2
p→n ≡ ω̃2

p→n − q2 . (62)
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The lower limits of integration in Eqs. (58,59) are

En→p0 (N) = max {EpF (Z + 1)− ω̃n→p,Γn→p} (63)

Ep→n0 (Z) = max {EnF (N + 1)− ω̃p→n,Γp→n} (64)

with

Γn→p =
q

2

√
1 +

1

τ̃n→p
− ω̃n→p

2
and Γp→n =

q

2

√
1 +

1

τ̃p→n
− ω̃p→n

2
, (65)

together with τ̃n→p ≡ |
Q̃2

n→p|
4m2 and τ̃p→n ≡ |

Q̃2
p→n|

4m2 .
Although in principle also in this case, as in the NC one, it is possible to obtain fully analytic results, for practical

purposes it is easier to perform the energy integral numerically. The corresponding results will be shown in the next
section.

III. RESULTS

In this section we present and compare the nuclear response functions evaluated in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas models.

As anticipated, in the case of neutral current reactions, (e, e′), (ν, ν′) and (ν̄, ν̄′), the ARFG results differ from
the SRFG ones only due to the different neutron and proton Fermi momenta. On the contrary, for charged-current
reactions, (ν, µ−) and (ν̄, µ+), the energy offsets related to the different separation energies in the initial and final
nuclei also play a role.

A. Neutral current reactions

n, S
n, A
p, S
p, A

SRFG
ARFG

ω(MeV)

R
L
(M

eV
−
1
)

(a) 40Ar, q=300 MeV/c
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FIG. 1: (Color online) Electromagnetic response functions of 40Ar in the symmetric (SRFG) and asymmetric (ARFG) relativistic
Fermi gas for momentum transfer q = 300 (left column) and 800 (right column) MeV/c. The separate contributions of protons
and neutrons are also displayed.
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FIG. 2: (Color online) Electromagnetic response functions of 208Pb in the symmetric (SRFG) and asymmetric (ARFG) rela-
tivistic Fermi gas. The separate contributions of protons and neutrons are also displayed.

In Figs. 1 and 2 we show the electromagnetic (e, e′) longitudinal and transverse response functions for 40Ar and
208Pb as functions of the energy transfer ω and two values of the momentum transfers q. We also show the separate
contributions of protons and neutrons. We observe that, as expected from the different values of the Fermi momentum,
the proton ARFG responses are higher than the SRFG ones and limited to a narrower region of ω, whereas the opposite
occurs for neutrons. These two effects tend to cancel in the total transverse nuclear response RT , which is affected
only mildly by the N/Z asymmetry. On the other hand, in the longitudinal channel, RL, where the proton response
dominates, asymmetry effects can be non-negligible. Specifically, at q = 800 MeV/c the ratios of the ARFG/SRFG
responses at the quasielastic peak for argon are of the order of 1.03 (1.01) for L(T ) and are of the order of 1.07 (1.03)
for L(T ) for lead. Roughly, the ratios are similar as functions of the momentum transfer.

In Figs. 3 and 4 we show the weak neutral current longitudinal (L) and transverse (both T and T ′) response
functions for 40Ar and 208Pb, obtained in the usual way [29, 30] by replacing the EM couplings by WNC couplings
and adding the T ′ V A-interference response; recall that the last enters with the opposite sign for neutrinos and
antineutrinos in the total cross section. Also, note that in this study we have ignored the effects from strangeness
content in the nucleons.

The effects are similar to what was found above for electron scattering, but not exactly the same for the cases
which can be directly compared (viz., L and T ), implying that for asymmetric nuclei there are effects to be taken into
account in using input from electron scattering to obtain parts of the WNC cross section, as is often done in scaling
analyses. The purpose of the present study is to get some idea about how significant such effects can be. Specifically,
again at q = 800 MeV/c the ratios of the ARFG/SRFG responses at the quasielastic peak for argon are of the order
of 0.98 (1.01) for L(T ) and are of the order of 0.96 (1.02) for L(T ) for lead, while the ratios for the T ′ response are
of the order of 1.00 and 1.01 for argon and lead, respectively. Furthermore, in (ν, ν′) the ARFG responses are lower
and more extended than the SRFG ones, while the opposite occurs for (ν̄, ν̄′).

B. Charged-current reactions

Let us now consider CC neutrino and antineutrino reactions. In this case the inclusive cross section is the combi-
nation of 5, instead of 3, response functions, as a consequence of the non-conservation of the axial current and of the
non-vanishing mass of the outgoing charged lepton.

The numerical results for (νµ, µ
−) and (ν̄µ, µ

+) scattering corresponding to carbon, argon and lead targets are
shown in Figs. 5-10. Although not shown here, oxygen and iron, used as well in neutrino oscillation experiments,
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FIG. 3: (Color online) Weak neutral current response functions for ν-40Ar in the symmetric (SRFG) and asymmetric (ARFG)
relativistic Fermi gas. The separate contributions of protons and neutrons are also displayed.

have also been considered. The results are very similar to those obtained for carbon and argon, respectively.
The main observation here is that the differences between the SRFG and ARFG results are much larger than was

seen above for the NC processes. As noted in Sect. II A, for NC processes in the ARFG model the energy offsets
cancel and the differences between the SRFG and ARFG arise entirely from the different Fermi momenta entering for
protons and neutrons. In contrast, for charge-changing weak interactions this is not the case as the relative offsets
for protons and neutrons (which are usually different) do enter. Hence the results corresponding to symmetric target
nuclei, such as 12C and 16O, will also differ from the usual SRFG results, since the final nucleus will have Z 6= N . In
order to disentangle these two effects, we also show in each plot the results, labeled as “ARFG, no shift”, where the
separation energies Sp and Sn are set to zero.

We observe that:

• for 12C the effect of the energy offsets is large, as could be anticipated looking at Table II, while the difference
in kF plays a minor role; these effects are generally larger for neutrinos than for antineutrinos;

• for 40Ar, which is relevant for neutrino oscillation studies, the two effects are comparable and both contribute
to a slight shift of the responses to higher energy transfers, in particular for low q;

• for 208Pb the main differences between SRFG and ARFG are due to Fermi momentum effects, which shifts the
neutrino (antineutrino) responses to higher (lower) energy transfers.
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FIG. 4: (Color online) Weak neutral current response functions for ν-208Pb in the symmetric (SRFG) and asymmetric (ARFG)
relativistic Fermi gas. The separate contributions of protons and neutrons are also displayed.

(νµ, µ
−) CC CL LL T T ′

12C 1.24 1.31 1.37 1.02 1.03
40Ar 1.06 1.08 1.11 0.98 0.98
208Pb 1.15 1.21 1.27 0.96 0.97

(ν̄µ, µ
+) CC CL LL T T ′

12C 1.15 1.19 1.22 1.02 1.01
40Ar 1.05 1.05 1.05 1.04 1.04
208Pb 0.98 0.95 0.92 1.09 1.08

TABLE III: Ratios between the ARFG and SRFG weak response functions at the QEP for q=800 MeV/c for neutrino (left
table) and antineutrino (right table) CC scattering.

As was done in the NC case, to get an idea of the importance of the asymmetry effects we list in Table III the ratios
between the ARFG and SRFG responses for neutrino and antineutrino scattering at q=800 MeV/c. We observe that
the effects are minor for argon, while they are important for carbon and lead. Moreover, due to the different origin
of the effects illustrated above, in the case of carbon the asymmetric model yields higher responses at the quasielastic
peak for both neutrino and antineutrino scattering and in all five channels, while for lead the asymmetry effects
have the opposite sign for neutrinos and antineutrinos and they depend on the channel: they increase (decrease)
the neutrino (antineutrino) charge/longitudinal responses, whereas the opposite occurs for the transverse T ant T ′

responses.
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IV. CONCLUSIONS

In the present study we have developed an extension of the familiar relativistic Fermi gas model for inclusive semi-
leptonic electroweak processes. Specifically, we have developed the model for neutral current scattering of electrons
or (anti)neutrinos and for charge-changing (anti)neutrino reactions with nuclei. The new element in this work has
been to allow for effects arising from differences between protons and neutrons within the context of the relativistic
Fermi gas in order to evaluate how significant such effects may be in progressing from light N = Z (i.e., symmetric)
nuclei to asymmetric nuclei having N > Z. We denote the usual relativistic Fermi gas model, typically abbreviated
RFG, to be the symmetric relativistic Fermi gas (SRFG), while the new extension to asymmetric nuclei we denote as
the asymmetric relativistic Fermi gas (ARFG).

Two types of extensions have been studied: first, we consider only nuclei in the valley of stability where typically
the volume occupied by protons and neutrons in the ground states of such nuclei is the same, and hence where the
densities scale by the numbers of neutrons and protons. In the context of the Fermi gas this implies that the Fermi
momenta for n and p will be different, scaling by (N/Z)1/3. Second, we adjust the Fermi energies of the proton and
neutron gases of the parent nucleus, and its neighbors in the case of CC (anti)neutrino reactions, to agree with the
measured values. We note that this is a basic assumption in the present ARFG model and not the only way one might
proceed. For instance, one might develop a different model where the energy offsets involved are allowed to be chosen
by forcing agreement with experiment. The motivation in the present work is to explore the typical size of these
second effects to see if they are typically negligible or if they should be taken seriously in future more sophisticated
modeling.

One conclusion is that the density effect (leading to different Fermi momenta for neutrons and protons) plays no
role at all for NC scattering from symmetric nuclei and a relatively minor role for CC (anti)neutrino reactions in such
systems where there is some effect since neighboring nuclei which have slightly different Fermi momenta are involved.
In contrast, for very asymmetric nuclei such as 208Pb the effects from having differing neutron and proton Fermi
momenta are somewhat larger, although still relatively minor, for NC scattering, but much more significant for CC
(anti)neutrino reactions.

A second observation is that in NC scattering (electrons or neutrinos) the energy offsets do not play a role; simply
put, only energy differences between particles and holes enter and, since the 1p1h states involve only excitations of
protons or neutrons individually, the offsets cancel. In contrast, for CC (anti)neutrino reactions neutrons change
into protons or vice versa and thus the offsets do play a role. For the last type of reaction one sees that the energy
offset effect is dominant in light symmetric nuclei such as 12C, roughly comparable to the density effect for 40Ar, and
sub-dominant to the density effect in very asymmetric nuclei such as 208Pb.

The ARFG model developed in this study can be extended straightforwardly to include inelastic processes following
previous work done along these lines for the SRFG. Finally, while much more involved than the 1p1h focus of the
present work, it is possible to extend the previous 2p2h SRFG studies of two-body MEC contributions [31, 32] to
incorporate asymmetric nuclei; such a study is in progress.

We believe that this study will give valuable indications on how to extend more sophisticated nuclear models to
asymmetric nuclei. Moreover, it will provide relatively simple recipes for the implementation of asymmetry effects in
Monte Carlo generators used to analyze neutrino oscillation experiments.
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FIG. 5: (Color online) Neutrino charged-current weak response functions per neutron of 12C in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.
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FIG. 6: (Color online) Antineutrino charged-current weak response functions per proton of 12C in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.
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FIG. 7: (Color online) Neutrino charged-current weak response functions per neutron of 40Ar in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.
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FIG. 8: (Color online) Antineutrino charged-current weak response functions per proton of 40Ar in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.

17



ARFG
ARFG, no shift

SRFG

ω(MeV)

R
C
C
(M

eV
−
1
) (a)

208Pb, q=300 MeV/c

140120100806040200

0.01

0.008

0.006

0.004

0.002

0

ω(MeV)

R
C
C
(M

eV
−
1
) (b)

208Pb, q=800 MeV/c

500450400350300250200150100

0.0005

0.0004

0.0003

0.0002

0.0001

0

ω(MeV)

R
C
L
(M

eV
−
1
)

(c)

140120100806040200

0

−0.0005

−0.001

−0.0015

−0.002

ω(MeV)

R
C
L
(M

eV
−
1
)

(d)

500450400350300250200150100

0

−5 × 10−5

−0.0001

−0.00015

−0.0002

ω(MeV)

R
L
L
(M

eV
−
1
)

(e)

140120100806040200

0.001

0.0008

0.0006

0.0004

0.0002

0

ω(MeV)

R
L
L
(M

eV
−
1
)

(f)

500450400350300250200150100

0.0001

8× 10−5

6× 10−5

4× 10−5

2× 10−5

0

ω(MeV)

R
T
(M

eV
−
1
)

(g)

140120100806040200

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

ω(MeV)

R
T
(M

eV
−
1
)

(h)

500450400350300250200150100

0.006

0.005

0.004

0.003

0.002

0.001

0

ω(MeV)

R
T

′ (
M
eV

−
1
)

(i)

140120100806040200

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

ω(MeV)

R
T

′ (
M
eV

−
1
)

(j)

500450400350300250200150100

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

FIG. 9: (Color online) Neutrino charged-current weak response functions per neutron of 208Pb in the symmetric (SRFG) and
asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.
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FIG. 10: (Color online) Antineutrino charged-current weak response functions per proton of 208Pb in the symmetric (SRFG)
and asymmetric (ARFG) relativistic Fermi gas. The ARFG results with no energy shift (see text) are also shown. Each column
corresponds to a fixed value of the momentum transfer q.
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