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Abstract

We calculate the cross section of the electron scattering from a bound nucleon within light-front

approximation. The advantage of this approximation is the possibility of systematic account for the

off-shell effects which become essential in high energy electro-nuclear processes aimed at probing

the nuclear structure at small distances. We derive a new dynamical parameter which allows to

control the extent of the ”off-shellness” of electron - bound-nucleon electromagnetic current for

different regions of momentum transfer and initial light-cone momenta of the bound nucleon. The

derived cross section is compared with the results of other approaches in treating the off-shell

effects in electron-nucleon scattering.

PACS numbers: 24.10.Jv, 25.30.-c
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I. INTRODUCTION

High energy electro-nuclear processes ranging from inclusive A(e, e′)X to the double

A(e, e′Nf )X and triple A(e, e′Nf , Nr)X coincidence reactions, in which e′ is the scattered

electron, Nf and Nr are struck and recoil nucleons are the main processes used to probe

the short-range structure of nuclei. During the last two decades a multitude of dedicated

experiments have been performed that significantly advanced our understanding of the dy-

namics of short-range nucleon correlations in nuclei (for recent reviews on this subject see

Refs.[1–6]). All of these experiments were performed at quasi-elastic kinematics in which

electrons are scattered off the deeply bound nucleon producing a struck nucleon (Nf ) in the

final state. Here, deeply-bound nucleon is defined as an off-shell nucleon with momentum

pi & 300 MeV/c and removal energy, Em ∼
√
m2
N + p2

i − mN . The observed experimen-

tal signatures were in agreement with the expectations that deeply bound nucleons emerge

from short-range nucleon-nucleon correlations (SRCs). These signatures included the on-

set of scaling for the inclusive A(e, e′)X cross section ratios of nucleus, A to the deuteron

or 3He[7–10], strong angular correlation between momenta of struck, Nf and recoil, Nr

nucleons[11, 12] as well as significant dominance of the pn correlations[13–16] in the domain

of 2N SRCs.

The next stage of SRC studies requires the exploration of quantitative properties of the

nuclear structure describing nucleons in the SRC. This research can be both experimental -

performing extraction of nuclear spectral and decay functions in the region of high momen-

tum and removal energy of the struck nucleon or theoretical- by modeling these structure

functions (see e.g. [17]) and predicting electroproduction cross sections in large missing mo-

mentum and removal energy kinematics. One of the outstanding problems in such research

is the understanding of the reaction mechanism and final state interaction (FSI) effects

associated with the electron scattering from a deeply bound nucleon in the nucleus.

During the last two decades significant efforts have been made in the calculation of FSI

effects in high Q2 electro-nuclear processes (see e.g. Refs.[18–27]). One of the approaches,

referred to as generalized eikonal approximation[18, 25], selfconsiestently treated the rela-

tivistic effects associated with the large momentum of bound nucleon involved in the reaction,

as such these approach provided a theoretical framework for calculating FSI effects relevant

to studies of the nuclear structure at short distances.

2



However not much theoretical attention is given currently to the studies of the reaction

mechanism of elastic scattering from the high momentum bound nucleon in the nucleus. The

problem of the proper description of electromagnetic scattering from deeply bound nucleon

in the nucleus was realized in 1980’s with the advent of the intermediate energy A(e, e′Nf ) ex-

periments at SACLAY[28, 29] and NIKHEF[30]. The first approaches in describing electron-

deeply bound nucleon scattering were based on different methods of interpreting the spinor

of the bound (off-shell) nucleon. In one of the earlier models[31] the on-shell nucleon spinors

were used with the mass estimated as m∗ 2
N = E2− p2. Currently the most popular model is

that of de Forest[32] in which different expressions for the eNbound cross sections are obtained

based on the different assumptions for effective γ∗Nbound vertices with on-shell spinors used

for the bound nucleon. No preference is given to any of the considered eight expressions

of the eNbound cross section and as such these approximations allowed to check uncertainty

due to the binding effects rather than calculating their actual values. Such an approach

was characteristic to the intermediate energy (few hundred MeV of incoming beam energy)

scattering processes in which no small parameters existed in treating the strong binding

effects in nucleon electromagnetic current.

The situation has recently changed with the emergence of high energy and momentum

transfer eA experiments (see e.g. [1, 3, 5]) in which deeply bound nucleons in the nucleus

are probed with high Q2 virtual photons producing final nucleons with momenta above

few GeV/c region. The high energy nature of the scattering process allows for important

simplifications in describing the scattering process similar to those in hadronic physics. One

of the main characteristics of high energy scattering is that the process evolves along the

light-front (see e.g. [33–37]) which makes the light-cone the most natural reference frame to

describe the reaction. The important advantage of such description is the suppression of the

negative energy contribution in the propagator of bound nucleon as well as the possibility of

identifying the “good” component of electromagnetic current for which the off-shell effects

are minimal. There have been several extensive studies of nuclear dynamics on light-front

(see e.g. Refs.[36, 38–40]) with the main emphasis given to the description of the nuclear

structure in relativistic kinematics.

In the current work we focus on light-front treatment of the electron-bound nucleon

interaction. Based on the effective light-front perturbation theory, we calculate the cross

section of electron-bound nucleon scattering by explicit separation of the propagating (prop)
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and instantaneous (inst) contributions. Within light-front approach we introduced a new,

parameter, η which allows to quantify the off-shellness of the γ∗Nbound scattering, universally

for any kinematical situation. The derived expressions are compared with the off-shell cross

sections which are currently being used in the description of electro-nuclear reactions. We

also present numerical analysis of our calculations where we identify kinematics in which

off-shell effects can be suppressed or isolated for dedicated investigation of bound nucleon

properties. The numerical analysis allows us to conclude that by restricting the new off-shell

parameter η < 0.1 one can confine the off-shell effects below 5% for any realistic values of

bound nucleon momenta at different Q2 of electroproduction reaction.

In Sec.II we set up the calculations isolating the electromagnetic hadronic tensor for

exclusive d(e, e′N)N scattering within plane wave impulse approximation (PWIA). We dis-

cuss here the main problems associated with probing deeply bound nucleons, namely the

increased role of the vacuum-fluctuations and identification of the nuclear wave function

for a bound nucleon. Sec.III presents the calculation of the PWIA diagram within effective

light-front perturbation theory and identification of the propagating and instantaneous com-

ponents of the bound nucleon electromagnetic current. We also introduce the boost invariant

off-shell parameter that naturally quantifies the off-shell effects in the light-front approach.

In Sec.IV we present the results in the form of the electron-bound-nucleon cross section σeN

which is compared with the predictions of other approaches in Sec.V. Sec.VI presents the

summary of the results and outlook on possible extension beyond PWIA approximation. In

Appendix A we give the diagrammatic rules of effective light-front perturbation theory. The

details of derivation of the bound nucleon structure functions are presented in Appendix B.

II. SETTING-UP TO THE CALCULATION

The simplest case of electroproduction process involving electron scattering from a bound

nucleon is the reaction:

e+ d→ e′ +Nf +Nr, (1)

in which one of the nucleons is knocked-out (Nf ) by the virtual photon and the other is

treated as a recoil (Nr). Deuteron represents as testing ground for development of many

relativistic approaches in description of electro-nuclear processes (see e.g. [38, 41–43] ) which

in principle can be generalized for medium to heavy nuclei.
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For our purpose of defining the cross section of electron-bound nucleon scattering we

consider the single photon exchange case of the above reaction within covariant plane wave

impulse approximation (PWIA) corresponding to the diagram of Fig.1.

FIG. 1: Exclusive electro-disinegration of the deuteron in plane wave impulse approximation:

Here, within PWIA the off-shellness of the bound nucleon is completely defined by the

four-momentum of the deuteron, pd and spectator nucleon pr: pi = pD−pr. The one photon-

exchange approximation allows to factorize electron and hadronic parts of the interaction in

the invariant Feynman amplitude presented as follows:

M = 〈λf | jνe | λi〉
e2gνµ
q2
〈sf , sr | Aµ0 | sd〉, (2)

where q2 is the virtual photon’s momentum squared. Here the leptonic current jνe is defined

as:

〈λf | jνe | λi〉 = ū(kf , λf )γ
νu(ki, λi), (3)

where 〈sf , sr | Aµ0 | sd〉 represents the invariant amplitude of γ∗d→ NN scattering,

Using Eq.(2) for the differential cross section of reaction (1) one obtains:

dσ

d3kf/εfd3pf/Ef
=

1

4
√

(pd · ki)2

e4

q4
LµνHµν

δ((q + pd − pf )2 −m2
N)

4(2π)5
. (4)

where, terms proportional to electron’s mass squared (m2
e) are neglected. Here the leptonic

tensor is defined as:

Lµν =
1

2

∑
λ1λ2

(ū(kf , λf )γ
νu(ki, λi))

† ū(kf , λf )γ
µu(ki, λi) (5)

whereas the nuclear electromagnetic tensor is expressed through the scattering amplitude

Aµ0 as follows:

Hµν =
1

3

∑
sdsrsf

〈sd | Aµ†0 | sf , sr〉〈sf , sr | Aν0 | sd〉. (6)
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If one introduces Γµγ∗ and ΓD invariant vertices (Fig.1) then within PWIA the amplitude

Aµ0 can be presented in the form:

〈sf , sr | Aµ0 | sd〉 = −ū(pf , sf )Γ
µ
γ∗
p/i +mN

p2
i −m2

N

· ū(pr, sr)ΓD · χsd , (7)

where χsd is the spin wave function of the deuteron.

As it follows from the above equation Aµ0 contains neither the electron-bound nucleon

scattering nor the nuclear wave function in the explicit form. The eNbound scattering and

the nuclear wave function appears only when one considers the amplitude of Fig.1 in a time

ordered perturbation theory in which case the invariant Feynman diagram splits into two

time orderings as presented in Fig.2.

−

−

−

+=

t

(a)
(b) (c)

FIG. 2: Representation of the covariant scattering amplitude (a) as a sum two time-ordered dia-

grams. (a) Virtual photon scattering from the bound nucleon; (b) Production of the N̄N pair by

the virtual photon with subsequent absorption of the antinucleon by the deuteron.

Here, Fig.2(b) represents a scenario in which the virtual photon interacts with the preex-

isting bound nucleon in the deuteron with ΓDNN representing the vertex of D → NN transi-

tion and ΓNγ∗N the γ∗N → N electromagnetic interaction. This contribution corresponds to

the noncovariant PWIA in which case the eA cross section is expressed through the product

of eN cross section and non-covariant nuclear spectral function. Fig.2(c) however represents

a very different scenario, in this case the virtual photon produces an intermediate N̄N state

at the Γγ∗N̄N vertex with subsequent absorption of the antinucleon, N̄ in the deuteron at

the ΓN̄DN vertex. The latter is not related to the γ∗N scattering and the nucleon wave

function in the deuteron. Fig.2(c) is commonly refereed as a ”Z-graph” and is a purely rela-

tivistic effect. As a result in the non-relativistic limit one deals with the diagram of Fig.2(b)

only, which allows to express the covariant scattering amplitude through the nonrelativistic

nuclear wave function and γ∗Nbound scattering amplitude. However the situation becomes

complicated when one is interested in the bound nucleon momentum pi ∼MN , which can be
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probed at momentum transfer q � MN . In this case the ”Z-graph” contribution (Fig.2(c))

becomes comparable with the one in Fig.2(b) preventing the straightforward introduction

of the nuclear wave function. Thus conventional noncovariant PWIA is inapplicable for the

description of electron scattering from deeply-bound (relativistic) nucleons in the nucleus.

This situation is reminiscent to the QCD processes in probing partonic structure of

hadrons in which case due to the relativistic nature of partons, vacuum diagrams can not be

neglected in the time ordered perturbation theory defined in the lab frame of the hadron[33].

The solution in this case is to consider the scattering process in the infinite momentum frame

(or on the light-front), which allows to suppress the ”Z-graphs” and consider only the dia-

grams similar to Fig.2 (b) for which one can introduce the wave function of the constituents.

Our approach in probing deeply bound nucleon is similar to that of the partonic model, in

which we consider the reaction (1) on the light-front allowing us to exclude the contribution

of the vacuum diagrams (Fig.2(c)) and introduce a light-front nuclear wave function.

III. DERIVATION WITHIN EFFECTIVE LIGHT-FRONT PERTURBATION

THEORY

A. Scattering amplitude in PWIA

We consider now the reaction (1) on the light-front, where the light-cone time is defined

as τ ≡ t+ z. To calculate the PWIA amplitude of the reaction (1) we apply effective light-

front perturbation theory (LFPT) in the τ -time ordered representation of the scattering

amplitude Aµ0 . In such approach the scattering amplitude (7) is expressed as a sum of the

noncovariant diagrams presented in Fig.3. Here in addition to the two τ orderings analogous

to the time ordering of Fig.2 one has an additional contribution of Fig.3(c) corresponding

to the instantaneous interaction due to the spinor nature of the bound nucleon.

To proceed with the calculations we choose a reference frame with z axis antiparallel to

the transferred momentum, ẑ || − q, such that the deuteron is aligned along ẑ.

The calculations are performed in the Light-Cone (LC) reference frame in which case

where the four-momenta are defined as (p+, p−, px, py), where p± = E ± pz with p+ repre-

senting the light-cone longitudinal momentum. We employ the γ-matrix algebra using the
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FIG. 3: Representation of the covariant scattering amplitude as a sum of two light-cone (τ)-time

-ordered diagrams as well as instantaneous interaction. (a) Virtual photon scattering from the

bound nucleon; (b) Production of the N̄N pair by the virtual photon with subsequent absorption

of the antinucleon by the deuteron., (c) Instantaneous interaction of virtual photon with the bound

nucleon.

following light-cone definitions:

γµ = (γ+, γ−, γ1, γ2), where γ± = γ0 ± γ3. (8)

The scalar products and other properties of four-vectors as well as γ matrices on the light-

front are given in Appendix A.

We also define the light-cone momentum fractions, which are Lorentz invariant quantities

with respect to boosts along the z direction:

αr =
2p+

r

p+
d

, αq =
2q+

p+
d

, αf =
2p+

f

p+
d

, αN = αf − αq = 2− αr. (9)

Here αr, αq and αf correspond to the fraction of LC ”+” component of the deuteron momen-

tum carried by the recoil nucleon, virtual photon and final knock-out nucleon respectively.

The light-cone momentum fraction of the bound nucleon αN is defined through the energy-

momentum conservation.

We proceed with the calculation of the scattering amplitude corresponding to the dia-

grams of Fig.3 by applying the Light-Front perturbation rules ([34, 35]) in an effective theory

in which one identifies effective vertices for nuclear transition and electron-bound nucleon

scattering (see Appendix A). At each vertices the transverse, p⊥ and plus, p+ components

of momenta are conserved. Because of the latter and the chosen reference frame in which

q+ = q0 − |q| < 0 the diagram of the Fig.3(b) will not contribute since the production of

N̄N pair which requires q+ > 0 is kinematically forbidden.

The remaining diagrams represent the amplitudes in which the virtual photon knocks-

out a bound nucleon which propagates from the d → NN transition vertex to the γ∗N
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interaction point, Aµprop (Fig.3(a)), and the instantaneous amplitude, Aµinst (Fig.3(c)) in

which d → NN transition and γ∗N interaction take place at the same light cone time -τ .

In both diagrams the nucleus exposes its constituents and the scattering takes place off the

bound nucleon, which allow us to introduce the light-front nuclear wave function and the

amplitude of γ∗Nbound scattering.

We now apply the light-front diagrammatic rules[35] (summarized in Appendix A) which

yields for the propagating part of the scattering amplitude (Fig.3(a)):

〈sf , sr | Aµprop | sd〉 = −ū(pf , sf )Γ
µ
γ∗N

1

p+
i

(p/i +mN)on
(p−d − p−r − p

−
i,on)

ū(pr, sr)ΓDNNχ
sd , (10)

where p−d , p−r and p−i,on are defined from the on-energy shell condition: p− =
m2
j+p

2
⊥,j

p+j
with

j = d, r, (i, on). The ”on” subscript in (p/i +mN)on indicates that all the components of the

bound nucleon light-cone momenta are taken on-energy shell.

For the instantaneous diagram of Fig.3(c) applying the rules of Appendix A one obtains:

〈sf , sr | Aµinst | sd〉 = −ū(pf , sf )Γ
µ
γ∗N

1

p+
i

(
1

2
γ+

)
ū(pr, sr)ΓDNNχ

sd . (11)

Note that in both expressions (10) and (11) one has the same nuclear, ΓDNN and electro-

magnetic, Γγ∗N vertices.

For further elaborations, we introduce the off-energy shell ”-” component of the bound

nucleon p−i = p−d − p−r , and using the definition: p−j =
m2
j+pj,⊥2

p+j
for the on-energy-shell ”-”

component for j = d, r as well as Eq.(9) one obtains:

1

p−d − p−r − p
−
i,on

=
1

p−i − p−i,on
=

p+
d

M2
d − 4

(m2
N+p2⊥)

α(2−α)

. (12)

Using the above relation as well as the sum rule relation for on-shell spinors:

(p/i +mN)on =
∑
si

(u(pi, si)ū(pi, si))on , (13)

for the sum of the two amplitudes in Eqs.(10) and (11) one obtains:

Aµ = Aµprop + Aµinst = −ū(pf , sf )Γ
µ
γ∗N

∑
si
u(pi, si)ū(pi, si)

α
2

(
M2

d − 4
m2
N+pT

2

α(2−α)

) ū(pr, sr)ΓDNNχ
sd (14)

−ū(pf , sf )Γ
µ
γ∗N

1
2
γ+
(
p−i − p−i,on

)
α
2

(
M2

d − 4
m2
N+pT

2

α(2−α)

) ū(pr, sr)ΓDNNχ
sd . (15)
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Within PWIA we can factorize the above expression in the form of a product of elec-

tromagnetic current and the light-front nuclear wave function. For this we introduce the

light-front wave functions in the form[17, 36]:

ψsisrsdLF (α,pT) = − ū(pi, si)ū(pr, sr)ΓDNNχ
sd

1
2

(
M2

d − 4
m2
N+pT

2

α(2−α)

) 1√
2 (2π)3

. (16)

From the above definition one also obtains:

1

α
2

(
M2

d − 4
m2
N+pT

2

α(2−α)

) ū(pr, sr)ΓDNN χsd = −
∑
si

u(pi, si)

2mN

ψsisrsdLF (α,pT)

α

√
2 (2π)3 (17)

Using now the above Eqs.(16) and (17) in Aµprop and Aµinst respectively, the Eq.(15) can be

presented in the form:

Aµ = Aµprop + Aµinst =
∑
si

JµN (pfsf , pisi)
ψsisrsdLF (α,pT)

α

√
2 (2π)3, (18)

where we introduced the electromagnetic current of the bound nucleon as follows:

JµN(pfsf , pisi) = ū(pfsf )Γ
µ
γ∗Nu(pisi) + ū(pfsf )Γ

µ
γ∗N

γ+
(
p−i − p−i on

)
4mN

u(pisi). (19)

Here, the Dirac spinor of the initial nucleon u(pi, si) is defined for the on-shell momentum,

pi,on = (p−i,on, p
+
i , p

⊥
i ). As one observes from Eq.(18) the price one pays for eliminating

the vacuum diagram (Fig.3(b)) on the light-front is the need to calculate electron-bound

nucleon scattering and the nuclear wave function in the light-front reference frame. The

former includes also the contribution from the instantaneous term (Eq.(19). Calculation

of the nuclear wave function on the light-front is out of scope of the present paper. Our

main focus in the following sections will be the calculation of the electromagnetic current of

Eq.(19).

B. Propagating and Instantaneous Components of Electromagnetic Current

To identify the propagating and instantaneous parts of the electromagnetic current in

Eq.(19) we consider first the electromagnetic vertex Γµγ∗N . Since the final state of the inter-

acting nucleon is on mass shell, and only the positive light-front energy projections enter in

the amplitude, we are led to the half off-shell vertex function in the general form (see e.g.

[44–46]:

Γµγ∗N = γµF1 + iσµνqνF2
κ

2mN

+ qµF3, (20)
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where the form-factors F1,2,3 = F1,2,3(m2
N , p

2
i , q

2) are functions of Lorentz invariants con-

structed from the momenta of initial and final nucleons and momentum transfer q. In gen-

eral one expects F1,2(m2
N , p

2
i , q

2) not to be identical with the corresponding on-shell nucleon

form-factors (F1,2(m2
N ,m

2
N , q

2)). This difference is due to the modification of the inter-

nal structure of nucleons in the nuclear medium. Such modification, in principle, should

originate from the dynamics similar to the one responsible for the medium modification of

partonic distributions of bound nucleon - commonly referred as EMC effect ([47]). This

however is out of the scope of our discussion since we are interested only in the effects re-

lated to the off-shellness of the interacting nucleon’s electromagnetic current. Thus, in the

numerical estimates we will use unmodified nucleon form-factors measured for free nucleons.

Concerning to F3, it does not contribute to the cross section of the process due to the gauge

invariance of the leptonic current: qµj
µ
e = 0. However for consistency one can estimate the

F3 form-factor based on the fact that due to the conservation of the momentum sum rule in

light-front approach the electromagnetic current of the bound-nucleon is conserved:

qµJ
µ
N = 0. (21)

Using Eq.(19) together with (20) one obtains: F3 = F1
q/
Q2 . Inserting the later into Eq.(20)

one can separate the propagating and instantaneous parts of the electromagnetic vertex in

the form

Γ
(prop)µ
γ∗N = γµF1 + iσµνqνF2

κ

2mN

, (22)

and

Γ
(inst)µ
γ∗N =

(
γµF1 + iσµνqνF2

κ

2mN

)
∆p/i
2mN

− F1
qµ

q2
q/
(
1 +

∆p/i
2mN

)
, (23)

where, ∆pµi = pµi − p
µ
i,on and 2∆p/i = γ+

(
p−i − p−i,on

)
since ∆p+

i = ∆p⊥i = 0. In the following

derivations we will use the relation:

∆p−i = −q− + (p−f − p
−
i,on) =

Q2

q+
− m2

N + pT
2

p+
f p

+
i

q+ =
1

p+
d

(
M2

d − 4
(m2

N + pT
2)

α(2− α)

)
, (24)

as well as:

2∆pi · pi = ∆p−i p
+
i = p2

i −m2
N , (25)

which allow to express the electromagnetic current in boost-invariant variables.

The separation of the electromagnetic vertex into propagating and instantaneous parts in

Eqs.(22) and (23 allows to separate the electromagnetic current in Eq.(19) into corresponding
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parts in the following form:

JµN(pfsf , pisi) = Jµprop(pfsf , pisi) + Jµinst(pfsf , pisi) (26)

where,

Jµprop(pfsf , pisi) = ū(pfsf )Γ
(prop)µ
γ∗N u(pisi)

Jµinst(pfsf , pisi) = ū(pfsf )Γ
(inst)µ
γ∗N u(pisi). (27)

It is worth mentioning that even though the propagating vertex in Eq.(22) has the same

form as the free on-shell nucleon vertex the corresponding electromagnetic current Jµprop does

not correspond to an on-shell scattering amplitude, since qµ 6= pµf − p
µ
i,on. Also, the current

conservation (Eq.(21)) is satisfied only for the sum of the propagating and instantaneous

currents in Eq.(26).

C. Off-Shell Parameter of eNbound Scattering

While the off-shell effects in the propagating vertex of Eq.(22) are kinematical, due to the

fact that qµ 6= pµf − p
µ
i,on, the off-shell effects in the instantaneous vertex are dynamical. The

latter interaction arises exclusively due to the binding of the nucleon. As it follows from

Eq.(23) the strength of the instantaneous vertex is proportional to the magnitude of the

factor ∆p−i defined in Eq.(24). One can express the ∆p−i factor through a boost invariant

quantities by defining the light-front reference frame such that the four-momenta of the

deuteron, pµd and momentum transfer qµ are:

pµd = (
Q2

mN

,
m2
dmN

Q2
,0T) (28)

qµ = (− Q2x

mN(1 +
√

1 +
4m2

Nx
2

Q2 )
,
mN

x
(1 +

√
1 +

4m2
Nx

2

Q2
),0T).

Using above definitions one introduces the off-shell parameter η such that,

∆p−i = −mNη, (29)

where,

η =
1

Q2

(
4

(m2
N + pT

2)

α(2− α)
−m2

d

)
. (30)

As it will be shown in the derivations bellow, the parameter η provides the universal measure

of the off-shell effect which combines both the resolution of the probe through the Q2 and

the binding effects of the nucleon through the light-cone variables, α and pT.
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IV. ELECTRON-NUCLEON SCATTERING CROSS SECTION

In many practical applications one needs to evaluate the electron-bound-nucleon cross

section σeN as it is defined in Ref.[32]. Such a cross section is calculated within PWIA in

which case using Eq.(18) the nuclear electromagnetic tensor of Eq.(6) can be expressed as

follows:

Hµν = Hµν
N (pf , pi) ρd (α,pT)

2− α
α2

2 (2π)3 , (31)

where spin averaged light cone density matrix of the deuteron ρd(α, pT ) and bound nucleon

electromagnetic tensor Hµν
N (pf , pi) are defined in the following forms:

ρ (α,pT) =
1

2sd + 1
· 1

2

∑
sd,si,sr

|ψsisrsdLF (α,pT)|2

2− α
(32)

and

Hµν
N =

1

2

1/2∑
sisf=−1/2

JνN (pfsf , pisi)
† JµN (pfsf , pisi) . (33)

Inserting now Eq.(31) into Eq.(4) the Lorentz invariant cross section of the reaction (1)

can be presented as follows:

dσ

d3kf/εfd3pf/Ef
=

1

2pd · ki
α2
EM

q4
LµνH

µν
N ρ (α,pT)

2− α
α2

δ
(
p2
r −m2

N

)
, (34)

where αEM = e2/(4π). Introducing the light-front nuclear spectral function in the form:

SLFd (α,pT) = ρd (α,pT)
2− α
α2

δ
(
p2
r −m2

N

)
, (35)

similar to Ref.([32]) one can present the differential cross section as a product of σeN and

the spectral function as follows:

dσ

dεfdΩkfd
3pf

= σeN SLFd (α,pT), (36)

were

σeN =
1

2mDεi

εf
Ef

α2
EM

q4
LµνH

µν
N . (37)

Here εi, εf are initial and scattered electron energies. The Ef represents the energy of the

knock-out nucleon.

It is worth mentioning that the expression in Eq.(36) is universal for any nuclei in which

case one needs to replace the deuteron spectral function by the light-front spectral function

of the nucleus being considered.
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A. Structure Functions of Bound Nucleon

In calculating σeN in Eq.(37) it is convenient to present it through the four independent

structure functions of the nucleon wNL , wNTL, wNT and wNTT in the form:

σeN =
1

2mDEf
σMott

(
vLw

N
L + vTLw

N
TL cosφ+ vTw

N
T + vTTw

N
TT cos(2φ)

)
, (38)

where σMott =
α2 cos( θ

2
)2

4ε2i sin( θ
2

)4
with θ being scattered electron angle. In the above equation:

vL =
Q4

q4

vT =
Q2

2q2
+ tan2 θ

2

vTT =
Q2

2q2

vTL =
Q2

q2

(
Q2

q2
+ tan2 θ

2

)1/2

, (39)

where Q2 = 4εiεf sin( θ
2
)2, and q is the three momentum of the virtual photon. The above

defined structure functions of the bound nucleon can be related to the light-front components

of the nucleonic electromagnet tensor as follows (see Appendix B):

wNL =
q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− +

(q+)2

Q2
H−−

)
wNTL =

|q|
q+

(
H

+‖
N +H

−‖
N

(q+)2

Q2

)
wNT = H

‖‖
N +H⊥⊥N

wNTT = H
‖‖
N −H

⊥⊥
N (40)

where ± correspond to t ± ẑ directions on the light-cone with ẑ defined in the negative

direction of of the transfered three momentum q. The transverse components are chosen as

follows: the perpendicular direction is defined by n⊥ =
pf×q
|pf×q|

, and the parallel unit vector

projection is n‖ = q×n⊥
|q×n⊥|

. The scattering and reaction planes of the reaction are defined in

Fig.4.

Using now the Eq.(33) and the expression of the bound nucleon electromagnetic current

from Eqs.(26), and (27) one can calculate nucleon structure functions explicitly. In what

follows we split the structure functions into two terms:

wNi = wNi,prop + wNi,inst for i = L,TL,T,TT (41)

14



FIG. 4: Definition of scattering and reaction planes of knock-out reaction.

where subscript ”prop” corresponds to the structure functions calculated using the propa-

gating part of the electromagnetic current, Jµprop only, while the terms with the subscript

”inst” correspond to the contribution from Jµinst and its interference with Jµprop.

Using the explicit forms of the currents from Eqs.(26),(27) we calculate the above struc-

ture functions expressing them through the off-shell parameter η (Eq.(30)) as follows[49]:

wNL prop = q2

[
F 2

1 τ
−1

(
1 +

p2
T

m2
N

+ τηi(ηi + ηq)

)
− F1F2κ (2 + ηq) + F 2

2 κ
2

(
p2
T

m2
N

+ τ(1 + ηq)

)]
,

wNL inst = q2
[
F 2

1 ηi

(
τηi(1 + ηq)− 2− ηq

)
+ F1F2κ

(
τηi (2− 2ηi − ηq) + ηq

)
+F 2

2 κ
2τ
(
τηi(ηi + ηq)− ηq

)]
,

wNTL prop = 2 |q| pT
(
F 2

1 + F 2
2 κ

2τ
) [

2 + 4
αN
αq

+ 2ηi + ηq

]
,

wNTL inst = 2|q|pT
(
F 2

1 + F 2
2 κ

2τ
)

(1− τηi) ηq,

wNT prop = 4m2
N

[
F 2

1

(
p2
T

m2
N

+ 2τ(1 + ηq)

)
+ 2F1F2κτ (2 + ηq) + F 2

2 κ
2τ

(
2 +

p2
T

m2
N

+ 2τηi(ηi + ηq)

)]
,

wNT inst = 2Q2
[
F 2

1

(
τηi(ηi + ηq)− ηq

)
+ F1F2κ

(
τηi (2ηi + ηq − 2)− ηq

)
+F 2

2 κ
2τηi

(
τηi(1 + ηq)− 2− ηq

)]
,

wNTT prop = 4p2
T

(
F 2

1 + F 2
2 κ

2τ
)
,

wNTT inst = 0, (42)

where, τ = Q2/(4m2
N), ηi = η αN/2, ηq = η αq/2. Alternatively, one can write,

ηi = −2∆pi · pi
Q2

=
(m2

N + pT
2)

Q2

αq
αf
− αN
αq
, (43)

ηq = −2∆pi · q
Q2

=
(m2

N + pT
2)

Q2

α2
q

αfαN
− 1. (44)

The structure functions in Eq.(42) are Lorentz invariant and expressed through the boost

invariant variables η, αi, αq and αf . Since many experiments in probing high momentum
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bound nucleons are performed in the fixed target experiments it is convenient to express the

above variables through the four momenta measured in the lab frame. Considering a Lab

reference frame in which ẑ||q, the αi, αq and αf parameters can be expressed as follows:

αi = 2− αr = αf − αq, αr =
2(Er − prcosθr)

md

, αq =
2(q0 − q)

md

, αf =
2(Ef − pfcosθf )

md

,

(45)

where, pµd = (md, 0), qµ = (q0,q), pµr = (Er,pr) and pµf = (Ef ,pf ) are four-momenta of the

target deuteron, virtual photon, recoil and struck nucleon measured in the Lab frame.

V. NUMERICAL ESTIMATES

We present numerical estimates for kinematics which will be explored in experiments

planned for 12 GeV upgraded Jefferson Lab. In all calculations below we take the initial

energy of the electron beam εi = 11 GeV.

To quantify the extent of the binding effects we consider the ratio:

R =
σeN
σoneN

, (46)

where σeN is the cross section of electron bound nucleon scattering defined in Eq.(37) for

given initial momenta pi or (αi and pT ), while σoneN corresponds to the same cross section for

the electron scattering off the free moving nucleon with the same initial momenta.

First, we consider the dependence of R on ”traditional” kinematical parameters which

define the electronuclear processes such as initial momentum of the bound nucleon (pi) its

relative angle with respect to the transferred 3-momentum (q) as well as the virtuality of the

transferred momentum (Q2). Additionally we compare the predictions of LF approximation

with that of the de Forest formalism[32] which is commonly used in the analysis of the

experimental data. In all these estimates we use the same parameterization for the electric

and magnetic form-factors of the nucleons. These parameterizations are the same for the

free nucleon. Thus we do not consider the effects related to the possible modification of the

charge and magnetic current distributions in the bound nucleon.

In Fig.5 and Fig.6 we compare the angular dependences of ratio R at different values of

missing momenta at fixed Q2 = 1 and 4 (GeV/c)2 for bound proton and neutron respectively.

As Fig.5 shows LF approximation predicts off-shell effects for Q2 = 1 (GeV/c)2 as large as

40−250% for bound proton momenta ≥ 400 MeV/c. Even larger effects are expected within
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FIG. 5: The θpiq dependence of ratios of the off-shell cross section of electron-bound proton scat-

tering to that of the one-shell cross section. The solid lines are LF approximation, dashed and

dash-dotted curves corresponds to CC2 and CC1 versions of de Forest approximation[32]. The

panels correspond to the bound nucleon momenta pi = 50, 200, 400 and 600 MeV/c for Q2 = 1 and

4 (GeV/c)2. The minus sign of θpq indicates on kinematics corresponding to φ = 1800 between

scattering and reaction planes. Calculations done for initial electron energy εi = 11 GeV.

the de Forest approach[32]. We observe also that the prediction within LF and de Forest

approximations significantly diverge close to the kinematical limit of the scattering process

as it can be seen in calculations for pi = 600 MeV/c.

Because of different magnitudes and signs of form-factors one predicts somewhat different

off-shell effects for scattering from a bound proton or neutron. However, qualitatively the

dependences of R for kinematical parameters of the reaction for both proton and neutron

are similar.

An important feature of LF calculations following from Fig.5 and Fig.6 is the diminishing
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FIG. 6: The same as in Fig.5 but for scattering from bound neutron.

of the off-shell effects with an increase of Q2. This reflects the dynamical nature of the LF

approximation in which case the harder the probe (larger Q2) lesser is the sensitivity to the

binding effects of the target nucleon. It is worth mentioning that no such behavior exists in

the de Forest approximation since in this case part of the off-shell effects are kinematical in

which the energy of bound nucleon is taken to be equal to the on-shell energy for the given

momentum of the nucleon, with the phase space of the initial nucleon being proportional to

1√
m2
N+p2i

.

To ascertain the extent of the Q2 suppression on the off-shell effects, in Fig.7 we present

the Q2 dependence of the ratio R for proton and neutron initial momenta of pi = 600 and

800 MeV/c. Here we choose θpiq = −700 for which large off-shell effects are observed in

Fig.5 and Fig.6. These calculations indicate that already at Q2 ≥ 4 GeV2 the off-shell

effects predicted in light-front approximation are not more than 10% for such a large bound

nucleon momenta.
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FIG. 7: The Q2 dependence of the off-shell effects for θpiq = −700 for proton and neutron targets.
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FIG. 8: Off shell effects expected for the experiment of Ref.[48] (left panel). The right-panel is the

similar effects for φ = 0 kinematics.

For practical purposes in Fig.8 we estimate the dependence of the off-shell effects

on the momentum of the bound nucleon for kinematics relevant to the planned JLAB

experiment[48] which is aimed at probing deuteron structure at very large internal momenta.

As the figure shows for both cases of the angles between scattering and reaction planes (φ)

the light-front approach predicts off-shell effects to be less than 8% for all kinematics with

the latter value happening at pi = 850 MeV/c.

At the end of the section we discuss whether the parameter η introduced in Eq.(30) can
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be used as a universal parameter for estimation of the of-shell effects for any kinematic

conditions of electro-production reaction. For this, in Fig. 9 we calculate the η dependence

of |R− 1| for very large magnitudes of bound nucleon momenta (pi = 600 and 800 MeV/c)

at different values of transverse momentum pT . Note that, the expected off-shell effects will

be much less for smaller values of pi.
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FIG. 9: The η parameter dependence of the off-shell effects |R− 1| for pi = 0.6 and 0.8 GeV/c at

different values of the transverse momentum pT .

As the figure shows for any possible scenarios of kinematics the off shell effects can be

confined below 5% as soon as η < 0.1. This represents a strong indication that the variable η

can be considered as an universal parameter for controlling the off-shell effects in the reaction

mechanism of electron-nuclear processes. The universality here is in the fact, that if our goal

is to probe a bound nucleon with very large momenta, we can calculate the corresponding α

and pT parameters and then find the required Q2 such that it makes η < 0.1, thus allowing

us to neglect by the off-shell effects in the electromagnetic current.

VI. SUMMARY AND OUTLOOK

Based on light-front approach we calculated electron-deuteron scattering within PWIA

which allowed us to isolate the electron-bound-nucleon scattering cross section, σeN . Within
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LF approximation the vacuum contribution naturally disappears while the off-shell nature of

the nucleon results in a appearance of an instantaneous term in the electromagnetic current

of electron-bound nucleon scattering. In deriving σeN we separated the propagating and

instantaneous contributions in the electromagnetic current which allowed explicitly to trace

the effects associated with the binding of the nucleon.

Furthermore in LF approach we were able to identify the parameter (defined as η) that

universally characterizes the extent of the off-shellness of electromagnetic current.

The derived σeN is used to estimate the expected off-shell effects in electro-nuclear pro-

cesses in kinematics relevant to the 12 GeV energy upgraded Jefferson Lab experiments. We

compared the LF predictions with that of the de Forest approximation widely used by ex-

perimentalists to estimate the off-shell effects in the reaction mechanism of electro-nuclear

processes. These comparisons indicate that practically in all kinematic cases the LF ap-

proach predicts less off-shell effects at Q2 ≥ 1 GeV2 than the de Forest approximation does.

Most importantly the LF approach predicts a significant drop of the off-shell effects with

an increase of Q2 which intuitively can be understood as a decrease in the sensitivity of the

hard processes on the off-shellness of the target nucleon.

We also checked our conjecture that the η-variable can be considered as a universal

parameter in controlling off-shell effects. We found that for wide range of kinematics the

off-shell effects can be suppressed on the level of 5% as as soon as η < 0.1. The latter gives

an effective method for controlling the uncertainties in the reaction mechanism for large

varieties of electro-nuclear processes probing deeply bound nucleons in the nucleus.

Finally, it is worth mentioning that even though we considered the eA scattering within

PWIA the obtained expressions for electromagnetic current are applicable also for scattering

amplitudes in which the final state interaction between outgoing nucleons is considered

within eikonal approximation. In this case (see e.g. Refs.[18, 19]) the main part of the

re-scattering amplitude is evaluated at the pole value of the struck nucleon propagator in

the intermediate state. As a result the entered electromagnetic current is again half-off-shell

as the considered electromagnetic current in Eq.(26).
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Appendix A: Light Front Perturbation Theory Rules

We present here a summary of the rules for computation of amplitudes within Light Front

(LF) formalism.

The LF scalar product and notations are (Lepage-Brodsky convention[35, 37]):

x · p =
1

2

(
x+p− + x−p+

)
− xT · pT

xµ =
(
x+, x−, x, y

)
=
(
x+, x−,xT

)
, pµ =

(
p+, p−,pT

)
x± = t± z (A1)

FIG. 10: Example of the scattering amplitude on the light-front (τ = x+ flows from left to right).

Diagrammatic Rules for effective light-front perturbation theory can be formulated as

follows:

1. Draw all topologically distinct τ ≡ x+-ordered diagrams at the desired coupling power.

In addition to the usual advanced and retarded propagation between two events one

needs to include a third possibility in which the two events connected by an internal

fermion or photon interact at the same LF τ - time, commonly referred as instantaneous

term.

2. Assign to each line a four-momentum pµ and spin s (or helicity, λ) corresponding to a

single on-mass-shell particle, i.e. p2 = m2.
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3. With spin 1/2 fermions associate on-mass-shell spinors u(p, s), with antifermions

v(p, s), with photons εµ(q, λ), etc, such that,

ū(p, s′)u(p, s) = −v̄(p, s′)v(p, s) = 2mδss′∑
s

u(p, s)ū(p, s) = p/+m∑
s

v(p, s)v̄(p, s) = p/−m

εµ(q, λ′)εµ(q, λ) = −δλ′λ , q · ε(q, λ) = 0∑
λ

εµ(q, λ)εν(q, λ) = −gµν +
qµην + qνηµ

q · η
(A2)

where η is a null vector (η2 = 0), given in LC gauge by, η = (0, 2, 0, 0)

4. Each intermediate state gets a factor (inverse of the difference of the sums over initial

and intermediate LF energies (p−):

1∑
ini p

− −
∑

int p
− + iε

(A3)

where, ’ini’ stands for the initial state of the diagram and ’int’ for intermediate states.

All particles are on-mass-shell, that is: p− =
m2+p2T
p+i

> 0.

5. Internal lines account for two kind of interactions:

• Propagating, in which case, for a vertex like in Fig.(10)(a) one has:

Γ ū(p′, s′)ε/(q, λ)u(p, s)δ2(
∑
in

pT −
∑
out

pT)δ(
∑
in

p+ −
∑
out

p+) (A4)

where, ’in’ and ’out’ mean flowing into and out of the vertex. The δ functions at

the vertex provide an explicit conservation of the plus and transverse components

of ’in’ and ’out’ momenta.

• Instantaneous. For each vertex like in Fig.(10)(b) (fermionic), include,

Γ2 ū(p′, s′)ε/(q′, λ′)
γ+

2(q+ − p′+)
ε/(q, λ)u(p, s)δ2(

∑
in

pT −
∑
out

pT)δ(
∑
in

p+ −
∑
out

p+).

(A5)

And, for each vertex like in Fig.(10) (c) (vector), include,

Γ2 ū(p′, s′)γ+u(p, s)
1

(p′+ − p+)2
ū(k′, σ′)γ+u(k, σ)δ2(

∑
in

pT−
∑
out

pT)δ(
∑
in

p+−
∑
out

p+).

(A6)
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Here Γ factors represent effective vertices which can be specified for the particular case

of the scattering. They can correspond to electron-bound nucleon scattering as well

as nuclear transition to the constituent nucleons. The conditions for for which such an

effective vertices can be introduced in the Feynman diagrams are discussed in Ref.[19].

6. Sum over polarizations and integrate over each internal line with the factor,∑
s

∫
dpTdp

+

2(2π)3p+
Θ(p+)

which ensures the plus component positivity (all particles move forward in LC time.)

7. Include symmetry factors. Also, a factor of -1 for each fermion loop, for fermion lines

beginning and ending at the initial state, and for each diagram in which fermion lines

are interchanged in either of the initial or final states, as well as the overall sign from

Wick’s theorem.

Appendix B: Nucleonic Tensor

Substituting Eq.(26) into Eq.(33), allows us to express the nucleonic tensor as a sum of

two terms:

Hµν
N = Hµν

N prop +Hµν
N inst, (B1)

where the the propagating contribution is given by,

Hµν
N prop =

1

2

∑
sisf

(J
sisf µ
prop )†(J

sisf
prop)

ν =
1

2
Tr
[
Γ

(on)µ

γ∗N (p/f +mN)Γ
(on)ν
γ∗N (p/i,on +mN)

]
, (B2)

and the instantaneous by,

Hµν
N inst =

1

2

∑
sisf

(
(J

sisf ν

off )†J
sisf µ
inst + (J

sisf ν
prop )†J

sisf µ
inst + (J

sisf ν
inst )†J

sisf µ
prop

)
(B3)

=
1

2
Tr
[
Γ

(off)ν

γ∗N (p/f +mN)Γ
(off)µ
γ∗N (p/i,on +mN)

+Γ
(on)ν

γ∗N (p/f +mN)Γ
(off)µ
γ∗N (p/i,on +mN) + Γ

(off)ν

γ∗N (p/f +mN)Γ
(on)µ
γ∗N (p/i,on +mN)

]
,

where, Γ
µ

γ∗N = γ0
(
Γµγ∗N

)†
γ0. Notice that the initial momentum of the nucleon, pi, occurring

from now-on corresponds to pi,on, which allows to drop the on-shell label ”on” without

confusion. With this, we can write propagating and instantaneous contributions of the
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tensor, Hµ,ν as functions of the nucleon form factors F1 and F2 as follows:

Hµν
N prop = 2F 2

1

[
gµν
(
m2
N − pi · pf

)
+
(
pµi p

ν
f + pνi p

µ
f

) ]
+ F1F2κ

[
2gµνq · (pf − pi) + (pµi q

ν + pνi q
µ)− (pµfq

ν + pνfq
µ)
]

+ F 2
2

κ2

2m2
N

[
gµν
[
q2
(
pi · pf +m2

N

)
− 2 q · pi q · pf

]
− q2

(
pµi p

ν
f + pνi p

µ
f

)
−qµqν

(
pi · pf +m2

N

)
+ q · pf (pµi q

ν + pνi q
µ) + q · pi

(
pµfq

ν + pνfq
µ
)
,
]

(B4)

and the instantaneous correction as follows:

Hµν
N inst = 2F 2

1

[
gµν
(

∆pi · (pi − pf )−
∆pi · pi
m2
N

∆pi · pf
)

+
(
∆pµi p

ν
f + ∆pνi p

µ
f

) (
1 +

∆pi · pi
m2
N

)
+

2

q2
qµqν

( 2

q2
q · pf q · (∆pi + pi)− (pi − pf ) · (∆pi + pi) +

∆pi · pi
m2
N

(∆pi · q
q2

pf · q + ∆pi · pf
))

− 2

q2
(pµi q

ν + pνi q
µ) q · pf −

2

q2
(pµfq

ν + pνfq
µ)
(
q · (∆pi + pi) +

∆pi · pi
m2
N

∆pi · q
)

− 2

q2
(∆pµi q

ν + ∆pνi q
µ) q · pf

(
1 +

∆pi · pi
m2
N

)]
+ F1F2κ

[
gµν
(∆pi · pi

m2
N

q · (2pf −∆pi)− 2∆pi · q
)

+ qµqν
(∆pi · pi
m2
Nq

2
q · (∆pi − 2pf )− 2

)
− (pµi q

ν + pνi q
µ) + (pµfq

ν + pνfq
µ)
]

+ F 2
2

κ2

2m2
N

[
gµν
[ (
q2 ∆pi · pf − 2 q ·∆pi q · pf

) (
1 +

∆pi · pi
m2
N

)
+ q2 ∆pi · pi

]
−
(
∆pµi p

ν
f + ∆pνi p

µ
f

)
q2
(

1 +
∆pi · pi
m2
N

)
− qµqν

[
∆pi · pf

(
1 +

∆pi · pi
m2
N

)
−∆pi · pi

]
+ (∆pµi q

ν + ∆pνi q
µ) q · pf

(
1 +

∆pi · pi
m2
N

)
+
(
pµfq

ν + pνfq
µ
)
q ·∆pi

(
1 +

∆pi · pi
m2
N

)]
. (B5)

With our choice of reference frame (Fig.(4)), one can expand the LµνH
µν product in the

following form:

LµνH
µν
N =

(
L00H

00 − 2L0zH
0z + LzzH

zz
)

+
(
−2L0‖H

0‖ + 2Lz‖H
z‖)

+
1

2

(
L‖‖ + L⊥⊥

) (
H‖‖ +H⊥⊥

)
+

1

2

(
L‖‖ − L⊥⊥

) (
H‖‖ −H⊥⊥

)
. (B6)

Furthermore, using the gauge-invariance of leptonic current, one expresses the above product

in the form:

LµνH
µν
N = L00

(
H00 − 2

q0

qz
H0z +

(
q0

qz

)2

Hzz

)
+ 2L0‖

(
−H0‖ +

q0

qz
Hz‖

)
+

1

2

(
L‖‖ + L⊥⊥

) (
H‖‖ +H⊥⊥

)
+

1

2

(
L‖‖ − L⊥⊥

) (
H‖‖ −H⊥⊥

)
= Q2(tan(θ/2))2 (ηLVN,L + ηTLVN,TL cos(φ) + ηTVN,T + ηTTVN,TT ) . (B7)
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Using the definitions of ηi for i = L, T, TL, TT , from Eq.(30) for hadronic structure functions,

(VN,i), one obtains:

wNL =
q4

Q4

(
H00 − 2

q0

qz
H0z + (

q0)2

q2
Hzz

)
=

q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− +

(q+)2

Q2
H−−

)
wNTL = 2

q2

Q2

(
q0

qz
H
z‖
N −H

0‖
N

)
=
|q|
q+

(
H

+‖
N +H

−‖
N

(q+)2

Q2

)
wNT = H

‖‖
N +H⊥⊥N (B8)

wNTT = H
‖‖
N −H

⊥⊥
N , (B9)

where we have used, −qz = |q|, as well as the relation between components of the nucleonic

tensor in light-cone and Minkowski coordinates:

H00 =
1

4
(H++ + 2H+− +H−−)

H0z =
1

4
(H++ −H−−)

Hzz =
1

4
(H++ − 2H+− +H−−)

H0‖ =
1

2
(H+‖ +H−‖)

Hz‖ =
1

2
(H+‖ −H−‖). (B10)

From Eqs.(B4, B8) we compute the explicit forms of the structure functions. In the
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reference frame of Fig.(4), they are given by:

wNL prop = F 2
1 q

2αNαf
α2
q

(m2
N + p2

T

Q2

α2
q

αNαf
+ 1
)
− F1F2q

2κ

(
m2
N + p2

T

Q2

α2
q

αNαf
+ 1

)
+F 2

2 q
2

(
κ

2mN

)2(
(m2

N + p2
T)

α2
q

αNαf
+ 4p2

T

)
wNL inst = F 2

1

αN
αq

q2

(
1−

(
m2
N + p2

T

Q2

α2
q

αNαf

)2

+
(m2

N + p2
T)

2m2

αq
αN

+

(
m2
N + p2

T

Q2

α2
q

αNαf
− 1

)2
)

−2F1F2κ
αN
αq

q2 (q ·∆pi)2

m2Q2

(
2
αf
αq

+ 2
m2

q ·∆pi
+ 1

)
+F 2

2

( κ

m2
N

)2

q2 q ·∆pi
(

1 +
q ·∆pi
m2

αNαf
α2
q

)
wNTL prop = |q|αN + αf

αq
pT

(
2F 2

1 + 2F 2
2

( κ

2mN

)2

Q2

)(
1 +

m2
N + p2

T

Q2

α2
q

αNαf

)
wNTL inst = 8|q|q ·∆pi

Q2
pT

(
1 +

pi ·∆pi
m2

)(
F 2

1 + F 2
2

( κ

2mN

)2
)

wNT prop = F 2
1

(
2(m2

N + p2
T)

α2
q

αNαf
+ 4(pT)2

)
+ 2κF1F2

(
(m2

N + p2
T)

α2
q

αNαf
+Q2

)
+F 2

2

(
κ

2mN

)2
(

2
αNαf
α2
q

(
(m2

N + p2
T)

α2
q

αNαf
+Q2

)2

− 4Q2p2
T

)

wNT inst = 8F 2
1

(
q ·∆pi + pf ·∆pi

pi ·∆pi
m2

)
+ 8F1F2κ

(
1 +

pi ·∆pi
m2

)(
q ·∆pi − pf · q

pi ·∆pi
m2 + pi ·∆pi

)
+8F 2

2

(
κ

2mN

)2(
1 +

pi ·∆pi
m2

)(
q · pf q ·∆pi +Q2 pf ·∆pi +Q2 m2 pi ·∆pi

m2 + pi ·∆pi

)
wNTT prop = 4p2

T

(
F 2

1 + F 2
2

κ2

4m2
N

Q2

)
wNTT off = 0. (B11)

The kinematic variables, and scalar products used in the calculation are as follows:

The light-cone momentum fractions are:

αN =
2p+

N

p+
d

=
2(EN + pN,z)

p+
d

, αq =
2q+

p+
d

=
2(q0 − |q|)

p+
d

, αf = αN + αq (B12)

and the off-shell factor is, ∆pµi = pµi − p
µ
i,on, with, pµi = pµd − pµr . Since ∆p+

i = ∆p⊥i = 0, we

have, 2∆p/i = γ+
(
p−i − p−i,on

)
with the minus component defined as follows:

∆p−i = p−i − p−i on = −q− + (p−f − p
−
i on) =

Q2

q+
− m2

N + p2
⊥

p+
f p

+
i

q+. (B13)
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The scalar products of initial (pµi,on), final (pµf ) and transferred (qµ) momenta with the off-

shell factor ∆pµi , can be written as:

2∆pi · pi = Q2αN
αq
− (m2

N + pT
2)
αq
αf

2∆pi · pf = Q2αf
αq
− (m2

N + pT
2)
αq
αi

2∆pi · q = Q2 − (m2
N + pT

2)
α2
q

αfαN
. (B14)
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