This is the accepted manuscript made available via CHORUS. The article has been published as:

Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL Relativistic Heavy Ion Collider
L. Adamczyk et al. (STAR Collaboration)

Phys. Rev. C 98, 034918 - Published 28 September 2018
DOI: 10.1103/PhysRevC.98.034918

Harmonic decomposition of three-particle azimuthal correlations at RHIC

L. Adamczyk,,${ }^{1}$ J. K. Adkins, ${ }^{19}$ G. Agakishiev, ${ }^{17}$ M. M. Aggarwal, ${ }^{31}$ Z. Ahammed, ${ }^{50}$ N. N. Ajitanand, ${ }^{40}$ I. Alekseev,,15,26 D. M. Anderson, ${ }^{42}$ R. Aoyama, ${ }^{46}$ A. Aparin, ${ }^{17}$ D. Arkhipkin, ${ }^{3}$ E. C. Aschenauer, ${ }^{3}$ M. U. Ashraf, ${ }^{45}$ A. Attri, ${ }^{31}$ G. S. Averichev, ${ }^{17}$ X. Bai, ${ }^{7}$ V. Bairathi, ${ }^{27}$ A. Behera, ${ }^{40}$ R. Bellwied, ${ }^{44}$ A. Bhasin,,16 A. K. Bhati, ${ }^{31}$ P. Bhattarai, ${ }^{43}$ J. Bielcik, ${ }^{10}$ J. Bielcikova, ${ }^{11}$ L. C. Bland, ${ }^{3}$ I. G. Bordyuzhin, ${ }^{15}$ J. Bouchet, ${ }^{18}$ J. D. Brandenburg, ${ }^{36}$ A. V. Brandin, ${ }^{26}$ D. Brown, ${ }^{23}$ I. Bunzarov, ${ }^{17}$ J. Butterworth, ${ }^{36}$ H. Caines, ${ }^{54}$ M. Calderón de la Barca Sánchez, ${ }^{5}$
J. M. Campbell,,${ }^{29}$ D. Cebra, ${ }^{5}$ I. Chakaberia, ${ }^{3}$ P. Chaloupka, ${ }^{10}$ Z. Chang, ${ }^{42}$ N. Chankova-Bunzarova, ${ }^{17}$ A. Chatterjee,,${ }^{50}$ S. Chattopadhyay, ${ }^{50}$ X. Chen, ${ }^{37}$ J. H. Chen, ${ }^{39}$ X. Chen, ${ }^{21}$ J. Cheng, ${ }^{45}$ M. Cherney, ${ }^{9}$ W. Christie, ${ }^{3}$ G. Contin, ${ }^{22}$ H. J. Crawford, ${ }^{4}$ S. Das, ${ }^{7}$ L. C. De Silva, ${ }^{9}$ R. R. Debbe, ${ }^{3}$ T. G. Dedovich, ${ }^{17}$ J. Deng, ${ }^{38}$ A. A. Derevschikov, ${ }^{33}$ L. Didenko, ${ }^{3}$ C. Dilks, ${ }^{32}$ X. Dong, ${ }^{22}$ J. L. Drachenberg, ${ }^{20}$ J. E. Draper, ${ }^{5}$ L. E. Dunkelberger, ${ }^{6}$ J. C. Dunlop, ${ }^{3}$ L. G. Efimov, ${ }^{17}$ N. Elsey, ${ }^{52}$ J. Engelage, ${ }^{4}$ G. Eppley, ${ }^{36}$ R. Esha, ${ }^{6}$ S. Esumi, ${ }^{46}$ O. Evdokimov, ${ }^{8}$ J. Ewigleben, ${ }^{23}$ O. Eyser, ${ }^{3}$ R. Fatemi, ${ }^{19}$ S. Fazio, ${ }^{3}$ P. Federic, ${ }^{11}$ P. Federicova, ${ }^{10}$ J. Fedorisin, ${ }^{17}$ Z. Feng, ${ }^{7}$ P. Filip,,${ }^{17}$ E. Finch,,47 Y. Fisyak, ${ }^{3}$ C. E. Flores, ${ }^{5}$ L. Fulek, ${ }^{1}$ C. A. Gagliardi, ${ }^{42}$ D. Garand, ${ }^{34}$ F. Geurts, ${ }^{36}$ A. Gibson, ${ }^{49}$ M. Girard, ${ }^{51}$ D. Grosnick, ${ }^{49}$ D. S. Gunarathne, ${ }^{41}$ Y. Guo,,${ }^{18}$ A. Gupta,,${ }^{16}$ S. Gupta, ${ }^{16}$ W. Guryn, ${ }^{3}$ A. I. Hamad, ${ }^{18}$ A. Hamed, ${ }^{42}$ A. Harlenderova, ${ }^{10}$ J. W. Harris, ${ }^{54}$ L. He, ${ }^{34}$ S. Heppelmann, ${ }^{32}$ S. Heppelmann, ${ }^{5}$ A. Hirsch, ${ }^{34}$ G. W. Hoffmann, ${ }^{43}$ S. Horvat, ${ }^{54}$ T. Huang, ${ }^{28}$ B. Huang, ${ }^{8}$ X. Huang, ${ }^{45}$ H. Z. Huang, ${ }^{6}$ T. J. Humanic, ${ }^{29}$ P. Huo, ${ }^{40}$ G. Igo, ${ }^{6}$ W. W. Jacobs, ${ }^{14}$ A. Jentsch, ${ }^{43}$ J. Jia,, ${ }^{3,40}$ K. Jiang, ${ }^{37}$ S. Jowzaee, ${ }^{52}$ E. G. Judd, ${ }^{4}$ S. Kabana, ${ }^{18}$ D. Kalinkin, ${ }^{14}$ K. Kang, ${ }^{45}$ K. Kauder, ${ }^{52}$ H. W. Ke, ${ }^{3}$ D. Keane, ${ }^{18}$ A. Kechechyan, ${ }^{17}$ Z. Khan, ${ }^{8}$ D. P. Kikoła, ${ }^{51}$ I. Kisel, ${ }^{12}$ A. Kisiel, ${ }^{51}$ L. Kochenda, ${ }^{26}$ M. Kocmanek, ${ }^{11}$ T. Kollegger, ${ }^{12}$ L. K. Kosarzewski, ${ }^{51}$ A. F. Kraishan, ${ }^{41}$ P. Kravtsov, ${ }^{26}$ K. Krueger, ${ }^{2}$ N. Kulathunga, ${ }^{44}$ L. Kumar, ${ }^{31}$ J. Kvapil, ${ }^{10}$ J. H. Kwasizur, ${ }^{14}$ R. Lacey, ${ }^{40}$ J. M. Landgraf, ${ }^{3}$ K. D. Landry, ${ }^{6}$ J. Lauret, ${ }^{3}$ A. Lebedev, ${ }^{3}$ R. Lednicky, ${ }^{17}$ J. H. Lee, ${ }^{3}$ X. Li, ${ }^{37}$ C. Li, ${ }^{37}$ W. Li, ${ }^{39}$ Y. Li, ${ }^{45}$ J. Lidrych,,${ }^{10}$ T. Lin, ${ }^{14}$ M. A. Lisa, ${ }^{29}$ H. Liu, ${ }^{14}$ P. Liu, ${ }^{40}$ Y. Liu, ${ }^{42}$ F. Liu, ${ }^{7}$ T. Ljubicic, ${ }^{3}$ W. J. Llope,,${ }^{52}$ M. Lomnitz, ${ }^{22}$ R. S. Longacre, ${ }^{3}$ S. Luo, ${ }^{8}$ X. Luo, ${ }^{7}$ G. L. Ma, ${ }^{39}$ L. Ma, ${ }^{39}$ Y. G. Ma, ${ }^{39}$ R. Ma, ${ }^{3}$ N. Magdy, ${ }^{40}$ R. Majka, ${ }^{54}$ D. Mallick,,${ }^{27}$ S. Margetis, ${ }^{18}$ C. Markert, ${ }^{43}$ H. S. Matis, ${ }^{22}$ K. Meehan, ${ }^{5}$ J. C. Mei, ${ }^{38}$ Z. W. Miller, ${ }^{8}$ N. G. Minaev, ${ }^{33}$ S. Mioduszewski, ${ }^{42}$ D. Mishra, ${ }^{27}$ S. Mizuno, ${ }^{22}$ B. Mohanty, ${ }^{27}$ M. M. Mondal, ${ }^{13}$ D. A. Morozov, ${ }^{33}$ M. K. Mustafa, ${ }^{22}$ Md. Nasim, ${ }^{6}$ T. K. Nayak, ${ }^{50}$ J. M. Nelson, ${ }^{4}$ M. Nie, ${ }^{39}$ G. Nigmatkulov, ${ }^{26}$ T. Niida, ${ }^{52}$ L. V. Nogach, ${ }^{33}$ T. Nonaka, ${ }^{46}$ S. B. Nurushev, ${ }^{33}$ G. Odyniec, ${ }^{22}$ A. Ogawa, ${ }^{3}$ K. Oh, ${ }^{35}$ V. A. Okorokov, ${ }^{26}$ D. Olvitt Jr., ${ }^{41}$ B. S. Page, ${ }^{3}$ R. Pak, ${ }^{3}$ Y. Pandit, ${ }^{8}$ Y. Panebratsev, ${ }^{17}$ B. Pawlik, ${ }^{30}$ H. Pei, ${ }^{7}$ C. Perkins, ${ }^{4}$ P. Pile, ${ }^{3}$ J. Pluta,,51 K. Poniatowska, ${ }^{51}$ J. Porter, ${ }^{22}$ M. Posik, ${ }^{41}$ A. M. Poskanzer, ${ }^{22}$ N. K. Pruthi, ${ }^{31}$ M. Przybycien, ${ }^{1}$ J. Putschke, ${ }^{52}$ H. Qiu, ${ }^{34}$ A. Quintero, ${ }^{41}$ S. Ramachandran, ${ }^{19}$ R. L. Ray, ${ }^{43}$ R. Reed, ${ }^{23}$ M. J. Rehbein, ${ }^{9}$ H. G. Ritter, ${ }^{22}$ J. B. Roberts, ${ }^{36}$ O. V. Rogachevskiy, ${ }^{17}$ J. L. Romero, ${ }^{5}$ J. D. Roth, ${ }^{9}$ L. Ruan, ${ }^{3}$ J. Rusnak,,${ }^{11}$ O. Rusnakova, ${ }^{10}$ N. R. Sahoo, ${ }^{42}$ P. K. Sahu, ${ }^{13}$ S. Salur, ${ }^{22}$ J. Sandweiss, ${ }^{54}$ M. Saur, ${ }^{11}$ J. Schambach, ${ }^{43}$ A. M. Schmah,,${ }^{22}$ W. B. Schmidke, ${ }^{3}$ N. Schmitz, ${ }^{24}$ B. R. Schweid, ${ }^{40}$ J. Seger, ${ }^{9}$ M. Sergeeva, ${ }^{6}$ P. Seyboth, ${ }^{24}$ N. Shah, ${ }^{39}$ E. Shahaliev, ${ }^{17}$ P. V. Shanmuganathan, ${ }^{23}$ M. Shao, ${ }^{37}$ A. Sharma, ${ }^{16}$ M. K. Sharma, ${ }^{16}$ W. Q. Shen, ${ }^{39}$ Z. Shi, ${ }^{22}$ S. S. Shi, ${ }^{7}$ Q. Y. Shou, ${ }^{39}$ E. P. Sichtermann, ${ }^{22}$ R. Sikora, ${ }^{1}$ M. Simko, ${ }^{11}$ S. Singha, ${ }^{18}$ M. J. Skoby, ${ }^{14}$ N. Smirnov, ${ }^{54}$ D. Smirnov, ${ }^{3}$ W. Solyst, ${ }^{14}$ L. Song,,${ }^{44}$ P. Sorensen, ${ }^{3}$ H. M. Spinka, ${ }^{2}$ B. Srivastava, ${ }^{34}$ T. D. S. Stanislaus, ${ }^{49}$ M. Strikhanov, ${ }^{26}$ B. Stringfellow, ${ }^{34}$ T. Sugiura, ${ }^{46}$ M. Sumbera, ${ }^{11}$ B. Summa, ${ }^{32}$ Y. Sun, ${ }^{37}$ X. M. Sun, ${ }^{7}$ X. Sun, ${ }^{7}$ B. Surrow, ${ }^{41}$ D. N. Svirida, ${ }^{15}$ A. H. Tang, ${ }^{3}$ Z. Tang, ${ }^{37}$ A. Taranenko, ${ }^{26}$ T. Tarnowsky, ${ }^{25}$ A. Tawfik, ${ }^{53}$ J. Thäder, ${ }^{22}$ J. H. Thomas, ${ }^{22}$ A. R. Timmins, ${ }^{44}$ D. Tlusty, ${ }^{36}$ T. Todoroki, ${ }^{3}$ M. Tokarev,,${ }^{17}$ S. Trentalange, ${ }^{6}$ R. E. Tribble, ${ }^{42}$ P. Tribedy, ${ }^{3}$ S. K. Tripathy, ${ }^{13}$ B. A. Trzeciak, ${ }^{10}$ O. D. Tsai, ${ }^{6}$ T. Ullrich, ${ }^{3}$ D. G. Underwood, ${ }^{2}$ I. Upsal, ${ }^{29}$ G. Van Buren, ${ }^{3}$ G. van Nieuwenhuizen, ${ }^{3}$ A. N. Vasiliev, ${ }^{33}$ F. Videbæk, ${ }^{3}$ S. Vokal, ${ }^{17}$ S. A. Voloshin, ${ }^{52}$ A. Vossen, ${ }^{14}$ G. Wang, ${ }^{6}$ Y. Wang, ${ }^{7}$ F. Wang, ${ }^{34}$ Y. Wang, ${ }^{45}$ J. C. Webb, ${ }^{3}$ G. Webb, ${ }^{3}$ L. Wen, ${ }^{6}$ G. D. Westfall, ${ }^{25}$ H. Wieman, ${ }^{22}$ S. W. Wissink,,14 R. Witt, ${ }^{48}$ Y. Wu, ${ }^{18}$ Z. G. Xiao, ${ }^{45}$ W. Xie, ${ }^{34}$ G. Xie, ${ }^{37}$ J. Xu, ${ }^{7}$ N. Xu, ${ }^{22}$ Q. H. Xu, ${ }^{38}$ Y. F. Xu, ${ }^{39}$ Z. Xu, ${ }^{3}$ Y. Yang, ${ }^{28}$ Q. Yang, ${ }^{37}$ C. Yang, ${ }^{38}$ S. Yang, ${ }^{3} \mathrm{Z}$. Ye, ${ }^{8} \mathrm{Z}$. Ye, ${ }^{8}$ L. Yi, ${ }^{54}$ K. Yip, ${ }^{3}$ I. -K. Yoo, ${ }^{35}$ N. Yu, ${ }^{7}$ H. Zbroszczyk, ${ }^{51}$ W. Zha, ${ }^{37}$ Z. Zhang, ${ }^{39}$ X. P. Zhang, ${ }^{45}$ J. B. Zhang, ${ }^{7}$ S. Zhang, ${ }^{37}$ J. Zhang, ${ }^{21}$ Y. Zhang, ${ }^{37}$ J. Zhang, ${ }^{22}$ S. Zhang, ${ }^{39}$ J. Zhao, ${ }^{34}$ C. Zhong, ${ }^{39}$ L. Zhou, ${ }^{37}$ C. Zhou, ${ }^{39}$ X. Zhu, ${ }^{45}$ Z. Zhu, ${ }^{38}$ and M. Zyzak ${ }^{12}$
(STAR Collaboration)
${ }^{1}$ AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439
${ }^{3}$ Brookhaven National Laboratory, Upton, New York 11973
${ }^{4}$ University of California, Berkeley, California 94720
${ }^{5}$ University of California, Davis, California 95616
${ }^{6}$ University of California, Los Angeles, California 90095

${ }^{7}$ Central China Normal University, Wuhan, Hubei 430079
${ }^{8}$ University of Illinois at Chicago, Chicago, Illinois 60607
${ }^{9}$ Creighton University, Omaha, Nebraska 68178
${ }^{10}$ Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic
${ }^{11}$ Nuclear Physics Institute AS CR, 25068 Prague, Czech Republic
${ }^{12}$ Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
${ }^{13}$ Institute of Physics, Bhubaneswar 751005, India
${ }^{14}$ Indiana University, Bloomington, Indiana 47408
${ }^{15}$ Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia
${ }^{16}$ University of Jammu, Jammu 180001, India
${ }^{17}$ Joint Institute for Nuclear Research, Dubna, 141 980, Russia
${ }^{18}$ Kent State University, Kent, Ohio 44242
${ }^{19}$ University of Kentucky, Lexington, Kentucky, 40506-0055
${ }^{20}$ Lamar University, Physics Department, Beaumont, Texas 77710
${ }^{21}$ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
${ }^{22}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720
${ }^{23}$ Lehigh University, Bethlehem, PA, 18015
${ }^{24}$ Max-Planck-Institut fur Physik, Munich 80805, Germany
${ }^{25}$ Michigan State University, East Lansing, Michigan 48824
${ }^{26}$ National Research Nuclear University MEPhI, Moscow 115409, Russia
${ }^{27}$ National Institute of Science Education and Research, Bhubaneswar 751005, India
${ }^{28}$ National Cheng Kung University, Tainan 70101
${ }^{29}$ Ohio State University, Columbus, Ohio 43210
${ }^{30}$ Institute of Nuclear Physics PAN, Cracow 31-342, Poland
${ }^{31}$ Panjab University, Chandigarh 160014, India
${ }^{32}$ Pennsylvania State University, University Park, Pennsylvania 16802
${ }^{33}$ Institute of High Energy Physics, Protvino 142281, Russia
${ }^{34}$ Purdue University, West Lafayette, Indiana 47907
${ }^{35}$ Pusan National University, Pusan 46241, Korea
${ }^{36}$ Rice University, Houston, Texas 77251
${ }^{37}$ University of Science and Technology of China, Hefei, Anhui 230026
${ }^{38}$ Shandong University, Jinan, Shandong 250100
${ }^{39}$ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
${ }^{40}$ State University Of New York, Stony Brook, NY 11794
${ }^{41}$ Temple University, Philadelphia, Pennsylvania 19122
${ }^{42}$ Texas Aछ̇M University, College Station, Texas 77843
${ }^{43}$ University of Texas, Austin, Texas 78712
${ }^{44}$ University of Houston, Houston, Texas 77204
${ }^{45}$ Tsinghua University, Beijing 100084
${ }^{46}$ University of Tsukuba, Tsukuba, Ibaraki, Japan,
${ }^{47}$ Southern Connecticut State University, New Haven, CT, 06515
${ }^{48}$ United States Naval Academy, Annapolis, Maryland, 21402
${ }^{49}$ Valparaiso University, Valparaiso, Indiana 46383
${ }^{50}$ Variable Energy Cyclotron Centre, Kolkata 700064, India
${ }^{51}$ Warsaw University of Technology, Warsaw 00-661, Poland
${ }^{52}$ Wayne State University, Detroit, Michigan 48201
${ }^{53}$ World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 11571, Egypt ${ }^{54}$ Yale University, New Haven, Connecticut 06520

(Dated: August 15, 2018)
We present measurements of three-particle correlations for various harmonics in $\mathrm{Au}+\mathrm{Au}$ collisions at energies ranging from $\sqrt{s_{\mathrm{NN}}}=7.7$ to 200 GeV using the STAR detector. The quantity $\left\langle\cos \left(m \phi_{1}+\right.\right.$ $\left.\left.n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle$, with ϕ being the azimuthal angles of the particles is evaluated as a function of $\sqrt{s_{\mathrm{NN}}}$, collision centrality, transverse momentum, p_{T}, pseudo-rapidity difference, $\Delta \eta$, and harmonics (m and n). These data provide detailed information on global event properties like the three dimensional structure of the initial overlap region, the expansion dynamics of the matter produced in the collisions, and the transport properties of the medium. A strong dependence on $\Delta \eta$ is observed for most harmonic combinations which is consistent with breaking of longitudinal boost invariance. An interesting energy dependence is observed when one of the harmonics m, n, or $m+n$ is equal to two, for which the correlators are dominated by the two particle correlations relative to the secondharmonic event-plane. These measurements can be used to constrain models of heavy-ion collisions over a wide range of temperature and baryon chemical potential.

I. INTRODUCTION

Heavy nuclei are collided at facilities like the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) in order to study the emergent properties of matter with quarks and gluons as the dominant degrees-of-freedom: a quark-gluon plasma (QGP) [1-4]. The QGP is a form of matter that existed in the early universe when its ambient temperature was more than 155 MeV or 200 thousand times hotter than the center of the sun $[5,6]$. As temperatures drop, quarks and gluons no longer possess the energy necessary to overcome the confining forces of QCD and they become confined into color neutral hadrons and the QGP transitions into a gas of hadrons [7]. This transition occurred in the early universe at about one microsecond after the big bang. Heavy-ion collisions provide the only known method to recreate and study that phase transition in a laboratory setting.
To provide the clearest possible picture of this phase transition, a beam energy scan was carried out at RHIC with collision energies ranging from $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$ down to 7.7 GeV . Lowering the beam energy naturally reduces the initial temperature (T) of the matter created in the collisions, as well as increases the baryon chemical potential μ_{B}, providing information on how the transport properties and equilibrium of the matter vary on the T and μ_{B} plane of the QCD phase diagram [8]. These heavy-ion collisions create systems that are both very small and short-lived. The characteristic size of the collision region is the size of a nucleus or approximately 10^{-14} meter. After a collision, the system expands in the longitudinal and transverse directions so that the energy density drops quickly. Any quark gluon plasma that exists will only survive for approximately 5×10^{-23} seconds. Given the smallness of the system and its very brief lifetime, it is challenging to determine the nature of the matter left behind after the initial collisions. Physicists rely on indirect observations based on particles streaming from the collision region which are observed long after any QGP has ceased to exist. Correlations between these produced particles have provided insight into the early phases of the expansion as well as the characteristics of the matter undergoing the expansion [9]. The dependence of the correlations on the azimuthal angle between particles $\Delta \phi=\phi_{1}-\phi_{2}$ has proven to be particularly informative. Data have revealed that even when particle pairs are separated by large angles in the longitudinal direction (large $\Delta \eta$), they remain strongly correlated in the azimuthal direction. One example of these correlations is a prominent ridge-like structure that can be seen in the two-particle correlations; and this ridge is associated with an enhanced correlation near $\Delta \phi \sim 0$ and π and a longrange structure in $\Delta \eta$ [10]. The origin of this ridge has been traced to the initial geometry of the collision region where flux tubes are localized in the transverse direction but stretch over a long distance in the longitudinal direction [11-14]. The degree to which these structures from
the initial geometry are translated into correlations between particles emitted from the collision region reveals information about the medium's viscosity. For example, larger viscosity will result in weaker correlations [15]. To study these effects, it is convenient to examine the coefficients of a Fourier transform of the $\Delta \phi$ dependence of the two-particle correlation functions [16]. These coefficients have been variously labeled as a_{n} or $v_{n}^{2}\{2\}$ where n is the harmonic and the quantity in curly brackets indicates a two-particle correlation. Although the latter is perhaps more cumbersome, we have maintained its usage owing to its connection to the original terminology used for two-particle cumulants which has been in use for more than a decade [17]. The coefficients $v_{n}^{2}\{2\}=\langle\cos n(\Delta \phi)\rangle$ have previously been studied as a function of $\sqrt{s_{\mathrm{NN}}}$, centrality, harmonic n, p_{T}, and $\Delta \eta$ [18]. In this paper, we extend this analysis from two-particle correlations to three-particle mixed harmonic correlations of the form $\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle[19]$ where m and n are positive integers.

Extending the analysis of azimuthal correlations from two to three particles provides several benefits. First, the three particle correlations provide greater sensitivity to the three-dimensional structure of the initial state by revealing information about the two-particle $\Delta \eta-\Delta \phi$ correlations with respect to the reaction plane. Many models of heavy-ion collisions make the simplifying assumption that the initial geometry of the collision overlap does not vary with rapidity and that a boost invariant central rapidity plateau is expected [20]. It is likely however that this assumption is broken by the asymmetric nature of the initial state in the longitudinal direction and that precise comparisons between models and data will require a better understanding of the initial state fluctuations in all three dimensions [21]. In addition, new measurements can constrain the model parameters [2225]. While signals seen in two-particle correlations may be driven by multiple effects, three-particle correlations can break those ambiguities. This is important as models become more sophisticated by including bulk viscosity, shear viscosity, and their temperature dependence [26]. Also, three-particle correlations reveal information about how two-particle correlations change as a function of their angle with respect to the reaction plane. When one of the harmonics m, n, or $m+n$ is equal to two, that harmonic will be dominated by the preference of particles to be emitted in the direction of the reaction plane. This feature has been exploited to study charge separation relative to the reaction plane through measurements of the charge dependence of $\left\langle\cos \left(\phi_{1}+\phi_{2}-2 \phi_{3}\right)\right\rangle[27,28]$. The motivation for those measurements was to search for evidence of the chiral magnetic effect (CME) in heavyion collisions [29-31]. By extending the measurements to other harmonics we can ascertain more information about the nature of the correlations interpreted as evidence for CME. Finally, three-particle correlations reveal information about how various harmonics are correlated with each other. For example, Teaney and Yan [22] orig-
inally proposed the measurement of $\left\langle\cos \left(\phi_{1}+2 \phi_{2}-3 \phi_{3}\right)\right\rangle$ because initial state models predict a strong correlation between the first, second and third harmonics of the spatial density distribution. That correlation can be traced to collision geometries where a nucleon from one nucleus fluctuates toward the edge of that nucleus and impinges on the oncoming nucleus. This leads to something similar to a $p+A$ collision and a high density near the edge of the main collision region. That configuration increases the predicted v_{3} by a factor of 2-3 in noncentral collisions so that v_{3} deviates from the $1 / \sqrt{N_{\text {part }}}$ dependence one would expect from random fluctuations in the positions of the nucleons participating in the collision $[15,16,18]$. In analogy to a $p+A$ collision, this configuration should also be asymmetric in the forward and backward rapidity directions; again pointing to the importance of understanding the three dimensional structure of the initial state [32-35].
In this paper we present measurements of $\left\langle\cos \left(m \phi_{1}+\right.\right.$ $\left.\left.n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle$ as a function of energy, centrality, $\Delta \eta, p_{T}$, and harmonics m and n. Our data confirm the correlations between the first, second and third harmonics predicted by Teaney and Yan, but the $\Delta \eta$ dependence points to the importance of including the threedimensional structure of the initial state in the model calculations.

Beyond the correlation of first and the third harmonics discussed above, the study of three particle correlations is also important in understanding the hydrodynamic evolution of the system. If azimuthal correlations are dominated by hydrodynamic flow, one can expect the three-particle correlator for higher order harmonics to be dominated by correlations of flow harmonics v_{n} and the corresponding event planes Ψ_{n}. More specifically, one can expect the approximate relations to hold $\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle \sim\left\langle v_{m} v_{n} v_{m+n} \cos \left(m \Psi_{m}+\right.\right.$ $\left.\left.n \Psi_{n}-(m+n) \Psi_{m+n}\right)\right\rangle$, for higher order $m, n \geq 1$ harmonics. For harmonics $m, n=1$, factorization breaking will lead to violation of these approximations [36]. For example, in case of ($m, n=1, m+n=2$), one expects $\left\langle\cos \left(\phi_{1}+\phi_{2}-2 \phi_{3}\right)\right\rangle \sim\left\langle v_{2} \cos \left(\phi_{1}+\phi_{2}-2 \Psi_{2}\right)\right\rangle$, i.e. only the harmonic $m+n=2$ associated with the third particle can be replaced by v_{2} and Ψ_{2} [31]. One can not express $\left\langle\cos \left(\phi_{1}+\phi_{2}-2 \phi_{3}\right)\right\rangle$ as $\left\langle v_{1}^{2} v_{2} \cos \left(2 \Psi_{1}-2 \Psi_{2}\right)\right\rangle$ due to factorization breaking $[36,37]$. As we discuss in the following sections, these correlators provide novel ways to study the initial state geometry [38] and non-linear hydrodynamic response of the medium [23, 24]. One important point must be noted, the event planes Ψ_{n} are distinct from the reaction plane $\Psi_{R P}$ determined by the plane of the impact parameter and the collision direction. However, due to the almond shape of the overlap region of two nuclei in heavy ion collisions, v_{2} becomes the dominant flow coefficient and Ψ_{2} may be used as a good proxy for $\Psi_{R P}$. Therefore, if either of m, n, or $m+n$ is equal to two, the three particle correlations should be dominated by two particle correlations with respect to $\Psi_{R P}$, i.e., $\left\langle\cos \left(2 \phi_{1}+m \phi_{2}-(m+2) \phi_{3}\right)\right\rangle \approx$
${ }_{288}\left\langle v_{2} \cos \left(2 \Psi_{\mathrm{RP}}+m \phi_{2}-(m+2) \phi_{3}\right)\right\rangle$. We explore these 289 correlations in detail.

In the next section of the paper, we describe the ex291 periment and the analysis of the data (Sec. II).We then 292 present the results in Sec. III including the $\Delta \eta$ depen293 dence (Sec. III A), the centrality dependence (Sec. III B), 294 the p_{T} dependence (Sec. III C), and the beam energy de295 pendence (Sec. III D). Our conclusions are presented in ${ }_{296}$ Sec. IV. Finally, we discuss measurements of $v_{n}^{2}\{2\}$ for ${ }_{297} n=1,2,4$, and 5 in an appendix.

II. EXPERIMENT AND ANALYSIS

Our measurements make use of data collected from $\mathrm{Au}+\mathrm{Au}$ collisions with the STAR detector at RHIC in the years 2004, 2010, 2011, 2012, and 2014. The charged particles used in this analysis are detected through their ionization energy loss in the STAR Time Projection Chamber [39]. The transverse momentum p_{T}, η, and charge are determined from the trajectory of the track in STAR's solenoidal magnetic field. With the 0.5 Tesla field used during data taking, particles can be reliably tracked for $p_{T}>0.2 \mathrm{GeV} / c$. The efficiency for finding particles drops quickly as p_{T} decreases below this value [40]. Weights have been used to correct the three-particle correlation functions for the p_{T}-dependent efficiency and for imperfections in the detector acceptance. The quantity analyzed and reported is

$$
\begin{align*}
& C_{m, n, m+n}=\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle= \\
& \left\langle\left(\frac{\sum_{i, j, k} w_{i} w_{j} w_{k} \cos \left(m \phi_{i}+n \phi_{j}-(m+n) \phi_{k}\right)}{\sum_{i, j, k} w_{i} w_{j} w_{k}}\right)\right\rangle \tag{1}
\end{align*}
$$

299 where $\left\rangle\right.$ represents an average over events and $\sum_{i, j, k}$ is 300 a sum over unique particle triplets within an event. Each ${ }_{301}$ event is weighted by the number of unique triplets in that ${ }_{302}$ event. The weights $w_{i, j, k}$ are determined from the inverse ${ }_{30}$ of the ϕ distributions after they have been averaged over 304 many events (which for a perfect detector should be flat) ${ }_{305}$ and by the p_{T} dependent efficiency. The $w_{i, j, k}$ depend ${ }_{306}$ on the particles' p_{T}, η, and charge and the collisions' ${ }_{307}$ centrality and z-vertex location. The correction proce${ }_{308}$ dure is verified by checking that the ϕ distributions are 309 flat after the correction so that $\langle\cos n(\phi)\rangle$ and $\langle\sin n(\phi)\rangle$ 310 are near zero. With these corrections, the data represent the $C_{m, n, m+n}$ that would be seen by a detector with perfect acceptance for particles with $p_{T}>0.2 \mathrm{GeV} / c$ and ${ }_{313}|\eta|<1$. In practice, calculating all possible combinations 314 of three particles individually would be computationally 315 too costly to be practical, particularly for the larger data ${ }_{316}$ sets at 200 GeV . In that case we use algebra based on ${ }_{317} \mathrm{Q}$-vectors to reduce the computational challenge [41]. In ${ }_{318}$ this approach, one can avoid the three nested loops as ${ }_{319}$ required for sums over the three particles i, j, k in Eq.1. ${ }_{320}$ One can, instead, perform a single loop over the list of
${ }_{321}$ particles, calculate Q_{m}, Q_{n}, Q_{m+n} and use the algebra 322 of Ref. [41] to calculate phase space $\left(\eta, p_{T}\right)$ integrated ${ }_{323} C_{m, n, m+n}$ as

$$
\begin{gather*}
C_{m, n, m+n}=\frac{1}{N(N-1)(N-2)} \times \tag{2}\\
\left(Q_{m} Q_{n} Q_{m+n}^{*}-Q_{m} Q_{m}^{*}-Q_{n} Q_{n}^{*}-Q_{m+n} Q_{m+n}^{*}+2\right)
\end{gather*}
$$ 42]. 370 pret theoretically.

where $Q_{n}=\sum_{j} e^{i n \phi_{j}}$ and N is the total number of particles. This is possible because for phase space integrated quantities, the three particles i, j, k are treated as indistinguishable and the information about all triplets can be contained in the complex numbers Q_{m}, Q_{n}, Q_{m+n} [41]. Differential measurements like the $\Delta \eta$ dependence of the correlations, however, need more computations. This is because for such calculations only one particle (k) is integrated over all phase space, which can be represented by a single Q-vector Q_{n}. The information of the two other particles (i, j) is to be determined at specific values of $\Delta \eta=\eta_{i}-\eta_{j}$ which is possible only by performing two additional nested loops. For standard mathematical formulas to express different correlators in terms of Q-vectors, we refer the reader to Ref. [41].

Studying the $\Delta \eta$ dependence of the correlations also allows us to correct for the effect of track-merging on the correlations. Track-merging leads to a large anticorrelation between particle pairs that are close to each other in the detector. The effect becomes large in central collisions where the detector occupancy is largest. After weight corrections have been applied to correct for single particle acceptance effects, the effect of track-merging is the largest remaining correction.

We divide the data into standard centrality classes (0$5 \%, 5-10 \%, 10-20 \%, \ldots 70-80 \%$) based on the number of charged hadrons within $|\eta|<0.5$ observed for a given event. In some figures, we will report the centrality in terms of the number of participating nucleons ($N_{\text {part }}$) estimated from a Monte Carlo Glauber calculations [40,

The three-particle correlations presented in this paper are related to the low-resolution limit of the eventplane measurements that have been explored at the LHC [43]. Corresponding results can be found by dividing $C_{m, n, m+n}$ by $\left\langle v_{m} v_{n} v_{m+n}\right\rangle$. Typically, however, v_{n} is measured from a two-particle correlation function such as the two-particle cumulants $v_{n}=\sqrt{v_{n}^{2}\{2\}}$ or a similar measurement and the $v_{n}^{2}\{2\}$ are not positive-definite quantities. As such, $\sqrt{v_{n}^{2}\{2\}}$ can, and often does, become imaginary. This is particularly true for the first harmonic and also at lower collision energies. For this reason we report the pure three-particle correlations which, in any case, do not suffer from the ambiguities related to the low- and high-resolution limits associated with reaction plane analyses [19, 44] and are therefore easier to inter-

III. RESULTS

In this section, we present the $\Delta \eta$ dependence of the

FIG. 1. (color online) The $\Delta \eta$ dependence of $C_{1,1,2}$ scaled by $N_{\text {part }}^{2}$ for 9 centrality intervals with the three most central classes shown in the top panels and the three most peripheral in the bottom. The $N_{\text {part }}$ values used for the corresponding centralities are $350.6,298.6,234.3,167.6,117.1,78.3,49.3$, 28.2 and 15.7. In the panels on the left, $\Delta \eta$ is taken between particles 1 and 2 while on the right it is between particles 1 and 3 (which is identical to 2 and 3 since $m=n=1$ for $C_{1,1,2}$). Data are from $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions and for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c,|\eta|<1$.

Figure 2 shows $C_{1,2,3}$ scaled by $N_{\text {part }}^{2}$ as a function of ${ }_{441}\left|\eta_{1}-\eta_{2}\right|$ (left panels) and $\left|\eta_{1}-\eta_{3}\right|$ (right panels). In this 442 case, $C_{1,2,3}$ exhibits a stronger dependence on $\left|\eta_{1}-\eta_{3}\right|$ ${ }_{443}$ than on $\left|\eta_{1}-\eta_{2}\right|$. The dependence (both magnitude and

FIG. 2. (color online). The $\Delta \eta$ dependence of $C_{1,2,3}$ scaled by $N_{\text {part }}^{2}$ for 9 centrality intervals with the three most central classes shown in the top panels and the three most peripheral in the bottom. In the panels on the left, $\Delta \eta$ is taken between particles 1 and 2 while on the right it is between particles 1 and 3. Data are from $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions and for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c,|\eta|<1$.
${ }_{444}$ variation) of $C_{1,2,3}$ with $\left|\eta_{2}-\eta_{3}\right|$ is very similar to the de${ }_{445}$ pendence with $\left|\eta_{1}-\eta_{2}\right|$ and is omitted from the figures to ${ }_{446}$ improve legibility. Again, the $e^{i 2 \phi_{2}}$ component of $C_{1,2,3}$ is ${ }_{447}$ dominated by the reaction plane which is largely invari${ }_{448}$ ant within the η range covered by these measurements 449 so that $C_{1,2,3}$ depends very little on the $\eta_{2},\left|\eta_{1}-\eta_{2}\right|$, ${ }_{450}$ or $\left|\eta_{2}-\eta_{3}\right|$. However, $C_{1,2,3}$ depends very strongly on ${ }_{451}\left|\eta_{1}-\eta_{3}\right|$. This dependence may arise from the longitu452 dinal asymmetry inherent in the fluctuations that lead 453 to predictions for large values of $C_{1,2,3}[24]$. Aforemen${ }_{454}$ tioned, in models for the initial geometry, the correlations ${ }_{455}$ are induced between the first, second, and third harmon456 ics of the eccentricity by cases where a nucleon fluctuates ${ }_{457}$ towards the edge of the nucleus [46]. If that occurs in the ${ }_{458}$ reaction plane direction and towards the other nucleus in ${ }_{459}$ the collision, then that nucleon can collide with many nu460 cleons from the other nucleus. This geometry will cause 61 the first and third harmonics to become correlated with 462 the second harmonic. Since the collision of one nucleon 463 from one nucleus with many nucleons in the other nucleus 464 is asymmetric along the rapidity axis, we argue that we

465 can expect a strong dependence on $\left|\eta_{1}-\eta_{3}\right|$. Models 466 467 b bavior One may also 468 469 $\left|\eta_{1}-\eta_{3}\right|$ could arise from sources like jets or resonances 470 particularly if they interact with the medium so that they ${ }_{471}$ become correlated with the reaction plane. Making use 472 of the full suite of measurements provided here will help ${ }_{473}$ discriminate between these two scenarios.

FIG. 3. (color online) The $\Delta \eta$ dependence of $C_{2,2,4}$ scaled by $N_{\text {part }}^{2}$ for 9 centrality intervals with the three most central classes shown in the top panels and the three most peripheral in the bottom. In the panels on the left, $\Delta \eta$ is taken between particles 1 and 2 while on the right it is between particles 1 and 3 (which is identical to 2 and 3 since $m=n=2$ for $\left.C_{2,2,4}\right)$. Data are from $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions and for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c,|\eta|<1$.

$$
474
$$

474
In Fig. 3, we present the $\left|\eta_{1}-\eta_{2}\right|$ and $\left|\eta_{1}-\eta_{3}\right|$ de${ }_{475}$ pendence of $C_{2,2,4}$. This correlation is more strongly in476 fluenced by the reaction plane correlations and exhibits ${ }_{477}$ much larger values than either $C_{1,1,2}$ or $C_{1,2,3}$. The ${ }_{478}$ dependence on $\left|\eta_{1}-\eta_{2}\right|$ and $\left|\eta_{1}-\eta_{3}\right|$ are also weaker 479 with $C_{2,2,4}$ in central and mid-central collisions show480 ing little variation over the $\left|\eta_{1}-\eta_{2}\right|$ range, consistent 481 with a mostly η-independent reaction plane within the ${ }_{482}$ measured range. A larger variation is observed with ${ }_{483}\left|\eta_{1}-\eta_{3}\right|$ which in mid-central collisions amounts to an 484 approximately 20% variation. We also note that in mid485 central collisions, the change in value of $C_{2,2,4}$ over the
${ }_{486}$ range $0<\left|\eta_{1}-\eta_{3}\right|<2$ is similar in magnitude to the ${ }_{487}$ change of $C_{1,1,2}$ over $0<\left|\eta_{1}-\eta_{2}\right|<2$ and $C_{1,2,3}$ over ${ }_{488} 0<\left|\eta_{1}-\eta_{3}\right|<2$.

FIG. 4. (color online) The $\Delta \eta$ dependence of $C_{2,3,5}$ scaled by $N_{\text {part }}^{2}$ for 9 centrality intervals with the three most central classes shown in the top panels and the three most peripheral in the bottom. In the panels on the left, $\Delta \eta$ is taken between particles 1 and 2 while on the right it is between particles 2 and 3. Data are from $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions and for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c,|\eta|<1$.

dominantly come from the near-side jet (at $\Delta \phi \approx 0$) and particles at larger $\Delta \eta$ to come from the away-side jet (at $\Delta \phi \approx \pi$ radians). In that case, at small $\Delta \eta, C_{m, n, m+n}$ for all harmonics will have a positive contribution from the jets. The same is not true however for large $\Delta \eta$ where we would expect the correlations to be dominated by the away-side jet separated by π radians. For this case at large $\Delta \eta, C_{1,1,2}$ and $C_{1,2,3}$ would receive negative contributions from the away side jet while $C_{2,2,4}$ and $C_{2,3,5}$ would both receive positive contributions. The trends observed across the variety of $C_{m, n, m+n}$ measurements are inconsistent with this simple picture with $C_{2,2,4}$ decreasing by nearly the same amount as $C_{1,2,3}$ as $\Delta \eta$ is increased. A more complicated picture of the effect of jets would therefore be required to account for the observed data but it appears difficult to construct a nonflow scenario that can account for the long-range variation of $C_{m, n, m+n}$. Breaking of boost-invariance in the initial density distributions may provide an explanation for the observed variations but we do not know of any specific model that has been shown to describe our data.

In Figs. 5 and 6 we show $C_{m, n, m+n}$ correlations scaled by $N_{\text {part }}^{2}$ with $(m, n)=(1,1),(1,2),(1,3),(2,2),(2,3)$, $(2,4),(3,3)$, and $(3,4)$ for $\sqrt{s_{\mathrm{NN}}}=200,62.4,39,27,19.6$, $14.5,11.5$, and $7.7 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions as a function of $N_{\text {part }}$. Data are for charged particles with $|\eta|<1$ and $p_{T}>0.2 \mathrm{GeV} / c$. The correlation $C_{2,2,4}$, by far the largest of the measured correlations, has been scaled by a factor of $1 / 5$. Otherwise, the scales on each of the three panels are kept the same for each energy to make it easier to compare the magnitudes of the different harmonic combinations.
At $200 \mathrm{GeV}, C_{1,1,2}$ is negative for all centralities except for the most peripheral where it is slightly positive but consistent with zero. $C_{1,2,3}$ is consistent with zero in peripheral collisions, positive in mid-central collisions but then becomes negative in central collisions. If the second and third harmonic event planes are uncorrelated, then $C_{1,2,3}$ should be zero. The $C_{1,2,3}$ correlation is non-zero deviating from that expectation. The magnitude is however much smaller than originally anticipated based on a linear hydrodynamic response to initial state geometry fluctuations [22]. Non-linear coupling between harmonics, where the fifth harmonic for example is dominated by a combination of the second and third harmonic, has been shown to be very important [23, 47]. In the case of $C_{1,2,3}$, the non-linear contribution has an opposite sign to the linear contribution and similar magnitude canceling out most of the expected strength of $C_{1,2,3}$. This suggests that $C_{1,2,3}$ is very sensitive to the nonlinear nature of the hydrodynamic model. $C_{1,3,4}$ is close to zero for all centralities indicating little or no correlation between the first, third, and fourth harmonics. The other $C_{m, n, m+n}$ correlations are positive for all centralities. When con-
sidering the comparison of these data to hydrodynamic models, it is important to also consider the strong $\Delta \eta$ dependence of the correlations as shown in the previous section.

The correlations involving a second harmonic are largest with $C_{2,2,4}$ being approximately 5 times larger in magnitude than the next largest correlator $C_{2,3,5}$. The correlations decrease quickly as harmonics are increased beyond $\mathrm{n}=2$. The higher harmonic correlations $C_{3,3,6}$ and $C_{3,4,7}$ are both small but non-zero. The correlations $C_{1,1,2}, C_{1,2,3}, C_{2,2,4}, C_{2,3,5}$, and $C_{3,3,6}$ scaled by $N_{\text {part }}^{2}$ all exhibit extrema in mid central collisions where the initial overlap geometry is predominantly elliptical. We note that the centrality at which $N_{\text {part }}^{2} C_{2,2,4}$ reaches a maximum is different than the centrality at which $N_{\text {part }}^{2} C_{2,3,5}$ reaches a maximum.

As the collision energy is reduced, the centrality dependence and ordering of the different correlators remain mostly the same although their magnitude becomes smaller. The $C_{1,2,3}$ correlation however is an exception. It is mostly positive at 200 GeV but at 62.4 GeV it is consistent with zero or slightly negative. At lower energies $C_{1,2,3}$ becomes more and more negative. We speculate that this behavior may be related to the increasing importance of momentum conservation as the number of particles produced in the collision decreases although no theoretical guidance exists for the energy dependence of these correlations at energies below 200 GeV . In the future, these data will provide useful constraints for models being developed to describe low energy collisions associated with the energy scan program at RHIC.

Figure 6 shows the same correlations as Fig. 5 except for lower energy data sets: $\sqrt{s_{\mathrm{NN}}}=19.6,14.5,11.5$, and 7.7 GeV. Trends similar to those seen in Fig. 5 are for the most part also exhibited in this figure. A second phase of the RHIC beam energy scan planned for 2019 and 2020 will significantly increase the number of events available for analysis at these lower energies while expanding the η acceptance from $|\eta|<1$ to $|\eta|<1.5$ [48] so that this intriguing observation can be further investigated. The increased acceptance will increase the number of threeparticle combinations by approximately a factor of three nd will make it possible to measure the $\Delta \eta$ dependence of the $C_{m, n, m+n}$ correlations to $|\Delta \eta| \approx 3$.

C. p_{T} Dependence

If the three-particle correlations presented here are dominated by correlations between event planes, then one might expect that the p_{T} dependence of the threeparticle correlations will simply track the p_{T} dependence

FIG. 5. (color online) The centrality dependence of the $C_{m, n, m+n}$ correlations scaled by $N_{\text {part }}^{2}$ for charged hadrons with $p_{T}>0.2$ GeV / c and $|\eta|<1$ from 200, $62.4,39$, and $27 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions for $(m, n)=(1,1),(1,2),(1,3)$ (left) $(2,2),(2,3),(2,4)$ (center) and (3,3), $(3,4)$ (right). Systematic errors are shown as bands. All panels in the same row share the same scale but $C_{2,2,4}$ has been divided by a factor of 5 to fit on the panel. The labels in the top panels apply to all the panels in same column.
of the relevant v_{n} [22]:

$$
\begin{align*}
&\left\langle\cos \left(m \phi_{1}\left(p_{T}\right)+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle \approx \\
& \frac{v_{m}\left(p_{T}\right)}{\varepsilon_{m}} \frac{v_{n}}{\varepsilon_{n}} \frac{v_{m+n}}{\varepsilon_{m+n}} \times \\
&\left\langle\varepsilon_{m} \varepsilon_{n} \varepsilon_{m+n} \cos \left(m \Psi_{m}+n \Psi_{n}-(m+n) \Psi_{m+n}\right)\right\rangle \tag{3}
\end{align*}
$$

$$
607 \text { where } \varepsilon_{m} \text { is the } m^{\text {th }} \text { harmonic eccentricity and } \Psi_{m} \text { is the }
$$ ${ }_{608} \mathrm{~m}^{\text {th }}$ harmonic participant plane angle. For the purpose

609 of simplicity in this publication, we have scaled the cor${ }_{610}$ relations by $N_{\text {part }}^{2} / p_{T}$ to account for the general increase 611 of $v_{n}\left(p_{T}\right)$ with p_{T} [49]. That simple scaling is only valid ${ }_{612}$ at lower p_{T} and for $n \neq 1$. It does, however, aid in vi${ }_{613}$ sualizing trends in the data which would otherwise be 614 visually dominated by the larger p_{T} range. Our primary ${ }_{615}$ reason for introducing Eq. 3 is to provide a context for 616 understanding the p_{T} dependence of $C_{m, n, m+n}$. The rela${ }_{617}$ tionship between $C_{m, n, m+n}$ and harmonic planes in Eq. 3

FIG. 6. (color online) The same quantities as Fig. 5 but for the lower energy $\mathrm{Au}+\mathrm{Au}$ collisions 19.6, 14.5, 11.5, and 7.7 GeV .
${ }_{618}$ is not guaranteed to hold and is particularly likely to be ${ }_{619}$ broken for correlations involving the first harmonic where ${ }_{620}$ momentum conservation effects will likely play an impor${ }_{621}$ tant role [36] or where a strong charge sign dependence 622 has been observed [27, 28].
${ }_{623}$ In Fig. 7, we show $N_{\text {part }}^{2} C_{1,1,2} / p_{T}$ as a function of the ${ }_{624} p_{T}$ of particle one. The top panel shows the more central ${ }_{625}$ collisions while the bottom panel shows more peripheral ${ }_{626}$ collisions. In this and in the following figures related to ${ }_{627}$ the p_{T} dependence, we sometimes exclude centrality bins ${ }_{628}$ and slightly shift the positions of the points along the p_{T}
${ }_{629}$ axis to make the figures more readable. For more central ${ }_{630}$ collisions, $C_{1,1,2} / p_{T, 1}$ is negative and slowly decreases in ${ }_{631}$ magnitude as $p_{T, 1}$ increases. This indicates that $C_{1,1,2}$ ${ }_{632}$ is generally increasing with the p_{T} of particle one but ${ }_{633}$ that for central collisions at high $p_{T}, C_{1,1,2}$ starts to sat${ }_{634}$ urate. For the more peripheral $30-40 \%$ and $40-50 \%$ col${ }_{635}$ lision however, $C_{1,1,2}$ appears to be linear in p_{T} without 636 an indication of saturation even up to $p_{T} \approx 10 \mathrm{GeV} / c$. ${ }_{637}$ For the much more peripheral $60-70 \%$ and $70-80 \%$ cen${ }_{638}$ trality intervals, $C_{1,1,2}$ starts out at or above zero then ${ }_{639}$ becomes more and more negative as p_{T} is increased. The

FIG. 7. (color online) Three-particle azimuthal correlations $C_{1,1,2}$ scaled by $N_{\mathrm{part}}^{2} / p_{T, 1}$ as a function of the first particles p_{T} for $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c$ and $|\eta|<1$. The top and bottom panels show the same quantity but for a different set of centrality intervals. Systematic errors are shown as solid lines enclosing the respective data points.

640

$$
641
$$

particles aligned with the reaction plane will lead 644 to a negative value for $C_{1,1,2}$. Although the data exhibit 645 a smooth transition from the trends in more central col${ }_{646}$ lisions to the trends in more peripheral collisions, the ${ }_{647}$ trends are quite distinct and indicative of very different ${ }_{648}$ correlations in those different regions. In peripheral col${ }_{649}$ lisions, the correlations get stronger as p_{T} is increased. ${ }_{650}$ In central collisions, the opposite is observed.

For the case of $C_{1,2,3}$ in Fig. 8, we show the p_{T} depen${ }_{652}$ dence of both particle one (left panels) and particle two ${ }_{653}$ (right panels). The dependence of $C_{1,2,3} / p_{T, 2}$ on $p_{T, 2}$ 654 is quite weak indicating that where $C_{1,2,3}$ is non-zero, ${ }_{655}$ it increases roughly linearly with $p_{T, 2}$. The dependence ${ }_{656}$ of $C_{1,2,3} / p_{T, 1}$ on $p_{T, 1}$, however, exhibits several notable
${ }_{657}$ trends. First we note that for the $20-30 \%$ centrality in658 te 659 d 660 to 661 to 662 t evant sizes of those effects. If this is the case, then this 664 confirms that $C_{1,2,3}$ is a powerful measurement to help 665 tune those models. At intermediate $p_{T, 1}(2-5 \mathrm{GeV} / c)$, ${ }_{666} C_{1,2,3}$ is positive for central collisions but negative for pe${ }_{667}$ ripheral collisions. At $p_{T}>7 \mathrm{GeV} / c, C_{1,2,3}$ is strongly 668 negative, perhaps again, indicative of the contribution 669 of back-to-back jets to the correlations. Strong nega670 tive correlations are absent in central collisions where ${ }_{671} C_{1,2,3}$ appears to remain positive, although with large 672 error bars. This is consistent with a scenario where di${ }_{673}$ jets have been quenched in central collisions. As with ${ }_{674} C_{1,1,2}$, the p_{T} trends for $C_{1,2,3}$ are very different in the ${ }_{675}$ most peripheral and most central collisions.

676 ${ }_{677}$ correlations. In Fig. 9, we show $N_{\text {part }}^{2} C_{2,2,4} / p_{T, 1}$ as a ${ }_{678}$ function of $p_{T, 1}$. At low $p_{T, 1}$, the centrality dependence 679 of the correlations is as expected from Fig. 5 (top pan$680 \mathrm{els})$ where we saw that the integrated value of $N_{\text {part }}^{2} C_{2,2,4}$ 681 is largest for mid-central collisions. This is a natural 682 consequence of the fact that the initial second harmonic 683 eccentricity decreases as collisions become more central 684 while the efficiency of converting that eccentricity into 685 momentum-space correlations increases (with multiplic${ }_{686}$ ity). The competition of these two trends leads to a maxi${ }_{687}$ mum for second harmonic correlations in mid-central col688 689 P 690 691 692 693 694 695
696 697 698 699 700 i 701 705 top panels show more central collisions and the bottom 706 panels more peripheral. For $p_{T}<5, C_{2,3,5} / p_{T}$ is mostly 707 flat as a function of the p_{T} of either particle one or par708 ticle two. Above that, the correlations seem to become 709 smaller but with large statistical errors. One can discern 710 a slight difference between the trends in the left and right 711 panels: $C_{2,3,5} / p_{T, 1}$ seems to decrease slightly as a func712 tion of $p_{T, 1}$, while $C_{2,3,5} / p_{T, 2}$ as a function of $p_{T, 2}$ seems 713 to increase slightly. This is likely related to the different ${ }_{714} p_{T}$ dependences of v_{2} and v_{3} where v_{2} has been found to

FIG. 8. (color online) Three-particle azimuthal correlations $C_{1,2,3}$ scaled by $N_{\text {part }}^{2} / p_{T}$ as a function of the p_{T} using the p_{T} of particle one (left panels) or of particle two (right panels) for $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. Data are for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c$ and $|\eta|<1$. The top and bottom panels show the same quantity but for a different set of centrality intervals. Systematic errors are shown as solid lines enclosing the respective data points.

728
While Figs. 5 and 6 show the centrality dependence 729 of eight different $C_{m, n, m+n}$ correlations for eight beam ${ }_{730}$ energies, in this section we will investigate the energy ${ }_{73}$ dependence in greater detail by showing the centrality ${ }_{732}$ dependence of individual $C_{m, n, m+n}$ correlations for a va${ }_{733}$ riety of energies. We will then show correlations at spe${ }^{734}$ cific centrality intervals as a function of $\sqrt{s_{\mathrm{NN}}}$ scaled by

715

$$
10
$$

720 th

D. Energy Dependence

saturate at lower p_{T} while v_{3} is still growing. In centra collisions, it is even found that v_{3} becomes larger than v^{2} at intermediate p_{T} [16].
We have tried to point out interesting features in the p_{T} dependence of the correlations. In particular, we note hat the p_{T} trends are very different when comparing entral collisions to peripheral collisions. We expect that when these data are compared to model calculations, hey will provide even greater insights into the interplay between the effects of hard scattering, shear viscosity,
${ }_{735} v_{2}$. Finally we will discuss implications of the energy dependence of the correlations. ${ }_{738} N_{\text {part }}^{2} C_{1,1,2}$ (left) and $N_{\text {part }}^{2} C_{1,2,3}$ (right) for 200, 62.4, ${ }_{739} 27,14.5$, and 7.7 or 11.5 GeV collisions. Some energies ${ }_{740}$ are omitted for clarity. For $N_{\text {part }}^{2} C_{1,1,2}$, the general cen${ }_{741}$ trality trend appears to remain the same at all energies ${ }_{72}$ except 7.7 GeV , even though the magnitude slightly de${ }_{743}$ creases. For mid-central collisions, $C_{1,1,2}$ is negative for 744 all the energies shown. The 7.7 GeV data may deviate 745 from the trend observed for the other energeis as will be ${ }_{746}$ discussed later. For $N_{\text {part }}^{2} C_{1,2,3}$, the energy dependence ${ }^{747}$ is quite different. The only positive values for $C_{1,2,3}$ are ${ }_{748}$ for 200 GeV collisions. At $62.4 \mathrm{GeV}, N_{\text {part }}^{2} C_{1,2,3}$ has a ${ }_{749}$ slightly negative value that is within errors, independent ${ }_{750}$ of centrality. As the energy decreases, $C_{1,2,3}$ becomes ${ }_{751}$ more negative so that the centrality dependence of $C_{1,2,3}$ ${ }_{752}$ at 14.5 GeV is nearly the mirror reflection of the 200 GeV ${ }_{753}$ data. As will be discussed below, the change in sign of ${ }_{54} C_{1,2,3}$ has interesting implications for how two-particle ${ }^{55}$ correlations relative to the reaction plane change as a ${ }_{56}$ function of beam energy.

Figure 12 shows the centrality dependence of

FIG. 9. (color online) Three-particle azimuthal correlations $C_{2,2,4}$ scaled by $N_{\text {part }}^{2} / p_{T, 1}$ as a function of $p_{T, 1}$ for 200 $\mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. Data are for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c$ and $|\eta|<1$. The top and bottom panels show the same quantity but for a different set of centrality intervals. Systematic errors are shown as solid lines enclosing the respective data points.
${ }_{758} N_{\text {part }}^{2} C_{2,2,4}$ and $N_{\text {part }}^{2} C_{2,3,5}$ for a selection of collision en${ }_{759}$ ergies. Both $C_{2,2,4}$ and $C_{2,3,5}$ remain positive for the cen760 tralities and energies shown with no apparent changes in 761 the centrality trends. We note that although $C_{2,2,4}$ drops 762 significantly from 200 down to 19.6 GeV , we observe lit763 tle change with energy below 19.6 GeV . A similar lack of 764 energy dependence between 7.7 and 19.6 GeV was also ${ }_{765}$ observed in recent measurements of $v_{3}^{2}\{2\}$ [18]. This is 766 notable since one would naively expect either of these ${ }_{767}$ correlation measurements to continuously increase as the ${ }_{768}$ density of the collision region increases.
769 To better view the energy trends, in Fig. 13, we show ${ }_{770} N_{\text {part }} C_{m, n, m+n} / v_{2}$ as a function of $\sqrt{s_{\mathrm{NN}}}$ for three cen771 trality intervals: $10-20 \%, 20-30 \%$, and $30-40 \%$. The v_{2} 772 values are based on a two-particle cumulant analysis as 773 discussed in Appendix A. The scaling will be further 774 discussed in the next paragraph. For all centrality inter775 vals shown, $C_{1,1,2} / v_{2}$ is negative at the highest energy 776 but the magnitude of the correlation decreases as the 777 energy decreases and becomes consistent with zero, al-

$$
\begin{align*}
& \left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle, \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle, \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle, \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle, \tag{4}
\end{align*}
$$

797

FIG. 10. (color online) Three-particle azimuthal correlations $C_{2,3,5}$ scaled by $N_{\text {part }}^{2} / p_{T}$ as a function of p_{T} where the p_{T} is taken for either particle one (left panels) or particle two (right panels) for $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. Data are for charged hadrons with $p_{T}>0.2 \mathrm{GeV} / c$ and $|\eta|<1$. The top and bottom panels show the same quantity but for a different set of centrality intervals. Systematic errors are shown as solid lines enclosing the respective data points.

FIG. 11. (color online) The centrality dependence of $C_{1,1,2}$ (left) and $C_{1,2,3}$ (right) scaled by $N_{\text {part }}^{2}$ for a selection of energies.

FIG. 12. (color online) The centrality dependence of $C_{2,2,4}$ (left) and $C_{2,3,5}$ (right) scaled by $N_{\text {part }}^{2}$ for a selection of energies.

FIG. 13. (color online) The $\sqrt{s_{\mathrm{NN}}}$ dependence of $N_{\mathrm{part}} C_{m, n, m+n} / v_{2}$ for $(m, n)=(1,1)$ (top left), (1,2) (top right), (2, 2) (bottom left) and $(2,3)$ (bottom right) for three selected centrality intervals. In the bottom right panel, the lowest energy points for the $20-30 \%$ and $30-40 \%$ centrality intervals, having large uncertainties, are omitted for clarity. Statistical uncertainties are shown as vertical error bars while the systematic errors are shown as shaded regions or bands.

$$
831
$$833838838 tion.

TABLE I. Values for $C_{m, n, m+n} / v_{2}$ for specific cases of ϕ_{1}^{\prime} and ϕ_{2}^{\prime} where $\phi^{\prime}=\phi-\Psi_{\mathrm{RP}}$ (see Eq. 4). The first column $\left(\phi_{1}^{\prime}=\phi_{2}^{\prime}=0\right)$ corresponds to a particle pair with $\Delta \phi=0$ emitted in the direction of the reaction plane (in-plane). The second column corresponds to back-to-back ($\Delta \phi=\pi$) particles emitted in-plane. The third and fourth columns correspond to pairs of particles emitted perpendicular to the reaction plane (out-of-plane) with either $\Delta \phi=0$ or $\Delta \phi=\pi$ respectively. The right-most column is a scenario consistent with the correlations observed in mid-central collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$.

	$\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}\right)[\mathrm{rad}]$				
	$(0,0)$	$(0, \pi)$	$\pm\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},-\frac{\pi}{2}\right)$	$\pm\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
$C_{1,1,2} / v_{2}$	+1	-1	-1	+1	-1
$C_{1,2,3} / v_{2}$	+1	-1	-1	+1	$+\frac{1}{2}$
$C_{2,2,4} / v_{2}$	+1	+1	-1	-1	+1
$C_{2,3,5} / v_{2}$	+1	-1	-1	+1	$+\frac{1}{2}$

844

845

846

854855 85 approach is that we have only used the sign of the cor-
${ }^{56}$ relators, as listed in Table I, to determine the preference 855 approach is that we have only used the sign of the cor-
856 relators, as listed in Table I, to determine the preference 857

The discussion in the above paragraph illustrates how measurements of $C_{m, n, m+n}$ reveal information about two-particle correlations with respect to the reaction plane and we pointed out two specific conclusions based on the $p_{T^{-}}$and $\Delta \eta$-integrated measurements. The value of $C_{1,2,3}$ changes sign as a function of centrality, $\Delta \eta$ and p_{T} suggesting that further specific configurations may arise when triggering on a particular p_{T} or investigating particles separated by an η-gap. We have not examined the charge dependence of $C_{m, n, m+n}$ but future work placing a like-sign or unlike-sign requirement on ϕ_{1}^{\prime} and ϕ_{2}^{\prime} may be useful for interpreting charge separation measurements and determining whether they should be taken as evidence for the chiral magnetic effect. One caveat of this of pair emission. Depending on the statistical and systematic uncertainties discussed in this paper, it will be interesting to develop a more robust method by utilizing both the sign and the magnitude of the correlators.

IV. CONCLUSIONS

We presented measurements of the energy, centrality, ${ }_{863} p_{T}$, and $\Delta \eta$ dependence of three-particle azimuthal cor-
relations $C_{m, n, m+n}$ for a variety of combinations of m and n. We find a strong dependence of $C_{1,1,2}$ on $\left|\eta_{1}-\eta_{2}\right|$ and a strong dependence of $C_{1,2,3}$ on $\left|\eta_{1}-\eta_{3}\right|$. Meanwhile, $C_{2,2,4}$ and $C_{2,3,5}$ exhibit a smaller but still appreciable dependence on $\left|\eta_{1}-\eta_{3}\right|$. This may indicate either the presence of short-range non-flow correlations or a rapidity dependence to the initial energy density signaling a breaking of longitudinal invariance. Simple pictures of non-flow however, appear to be inconsistent with the overall trends observed in the data. The integrated correlations with $m=1$ are generally negative or consistent with zero except for $C_{1,2,3}$ which, at 200 GeV , is positive for mid-central collisions while it is negative for all centralities at all of the lower energies. Nonzero values for $C_{1,2,3}$ imply correlations between the second and third harmonic event plane that are predicted from models of the initial overlap geometry. The p_{T} dependence of the correlations exhibits trends suggesting significant differences between the correlations in peripheral collisions and more central collisions as well as differences for $p_{T}>5$ GeV / c and $p_{T}<5 \mathrm{GeV} / c$. The quantity $C_{1,2,3}$ as a function of $p_{T, 1}$ changes sign as many as three times. While $C_{1,1,2}$ is negative for higher energies, it becomes positive or consistent with zero at 7.7 GeV . By examining the energy dependence of $C_{1,1,2}, C_{1,2,3}, C_{2,2,4}$, and $C_{2,3,5}$ divided by v_{2} we are able to infer that in mid-central collisions at 200 GeV , there is a preference for particle pairs to be emitted with angles relative to the reaction plane of either $\phi_{1} \approx \pi / 3$ and $\phi_{2} \approx 2 \pi / 3$ or $\phi_{1} \approx-\pi / 3$ and $\phi_{2} \approx-2 \pi / 3$. At 62.4 GeV and below, this appears to change due to a possible preference for back-to-back pairs $\left(\phi_{1} \approx 0\right.$ and $\left.\phi_{2} \approx \pi\right)$ aligned with the reaction plane. It must be noted that such conclusion are based on only the signs of the correlators; a more robust approach utilizing the magnitude of the correlators is left for future studies. These data will be useful for constraining hydrodynamic models [52]. In order to facilitate such future data-model comparisons we also include the measurements of $v_{n}^{2}\{2\}, n=1,2,4,5$, over a wide range of energy, in the appendix of this paper. Measurements of the charge dependence of the correlations presented here, by revealing information about the preferred directions of correlated particles with respect to the reaction plane, should provide valuable insights into whether or not the charge separation observed in heavy-ion collisions is related to the chiral magnetic effect.

V. SUMMARY

The very first measurement of charge inclusive threeparticle azimuthal correlations from the RHIC beam energy scan program, presented in this paper, can provide several new insights into the initial state and transport in heavy ion collisions. These observables go beyond conventional flow harmonics and provide the most efficient way of studying the correlation between harmonic amplitudes and their phases over a wide range of multiplic-

ACKNOWLEDGMENTS

We thank the RHIC Operations Group and RCF at

Appendix A: Two-particle Cumulants $v_{n}^{2}\{2\}$

961
In this appendix we present the measurements of $v_{n}^{2}\{2\}$ 962 for $\mathrm{n}=1,2,4$ and 5 . The second harmonic $v_{2}^{2}\{2\}$ was used 963 to scale $C_{m, n, m+n}$ in Fig. 13. Under the assumption that

$$
\begin{align*}
&\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle \approx \tag{A1}\\
&\left\langle v_{m} v_{n} v_{m+n} \cos \left(m \Psi_{m}+n \Psi_{n}-(m+n) \Psi_{m+n}\right)\right\rangle
\end{align*}
$$

964 where Ψ_{m} is the event plane angle for harmonic m, 965 one can convert the $C_{m, n, m+n}$ correlations into reaction

966 plane correlations in the low-resolution limit by divid${ }_{967}$ ing by $\sqrt{v_{m}^{2}\{2\} v_{n}^{2}\{2\} v_{m+n}^{2}\{2\}}$. The relationship of the ${ }_{968} C_{m, n, m+n}$ to v_{m} and Ψ_{m} assumes that non-flow correla969 tions are minimal. The analysis of $v_{n}^{2}\{2\}$ was performed 970 in a similar manner to that of $v_{3}^{2}\{2\}$ presented in Ref. [18].
${ }_{971}$ The $\Delta \eta$ dependence of $\left\langle\cos 2\left(\phi_{1}-\phi_{2}\right)\right\rangle$ is analyzed for $972 p_{T}>0.2 \mathrm{GeV} / c$ and $|\eta|<1$. Short-range correlations are ${ }_{973}$ parameterized with a narrow Gaussian peak centered at ${ }_{974} \Delta \eta=0$ and the remaining longer-range correlations are 975 integrated (weighting by the number of pairs at each $\Delta \eta$) 976 to obtain the $\Delta \eta$-integrated $v_{n}^{2}\{2\}$ results. The quantity ${ }_{97}$ labeled v_{2} in Fig. 13 is $\sqrt{v_{2}^{2}\{2\}}$.

Figure 14 shows the results for $v_{1}^{2}\{2\}$ (left) and $v_{2}^{2}\{2\}$ (right) as a function of centrality for $200,62.4,39,27$, $19.6,14.5,11.5$, and $7.7 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. The data are scaled by $N_{\text {part }}$ and plotted verses $N_{\text {part }}$ for convenience. At $200 \mathrm{GeV}, v_{1}^{2}\{2\}$ is positive for central collisions but becomes negative for $N_{\text {part }}<150$. The negative values are expected from momentum conservation 985 and present a conceptual challenge for dividing $C_{m, n, m+n}$ 986 by $\sqrt{v_{1}^{2}\{2\}}$. The values of $v_{1}^{2}\{2\}$ become more negative 987 at lower energies. This is consistent again with momen988 tum conservation effects which are expected to become 989 stronger as multiplicity decreases. In the limit of a colli990 sion that produces only two particles, momentum conser${ }_{991}$ vation would require that $v_{1}^{2}\{2\}=-1$. The $v_{1}^{2}\{2\}$ results 992 follow a monotonic energy trend except for peripheral 993 collisions at 19.6 GeV which appear to be elevated with 994 respect to the trends.
995 The right panel of Fig. 14 shows the results for ${ }_{996} N_{\text {part }} v_{2}^{2}\{2\}$ which remain positive for all energies and col${ }_{997}$ lision centralities. While it is unusual to scale $v_{2}^{2}\{2\}$ by ${ }_{998} N_{\text {part }}$, we keep this format for consistency. The scaled re999 sults exhibit a strong peak for mid-central collisions due 1000 to the elliptic geometry of those collisions.

Figure 15 shows the data for $N_{\text {part }} v_{4}^{2}\{2\}$ (left) and ${ }_{1002} N_{\text {part }} v_{5}^{2}\{2\}$ (right) for a more limited energy range. Re1003 sults for $N_{\text {part }} v_{3}^{2}\{2\}$ are available in Ref. [18]. At the 1004 lower energies the relative uncertainties on these data 1005 become too large to be useful. This result presents an1006 other challenge to recasting $C_{m, n, m+n}$ in terms of re1007 action plane correlations because scaling by $\sqrt{v_{4}^{2}\{2\}}$ or ${ }_{1008} \sqrt{v_{5}^{2}\{2\}}$ leads to a large uncertainty on the resulting ra1009 tios.

FIG. 14. The $\sqrt{s_{\mathrm{NN}}}$ dependence and centrality dependence of $N_{\text {part }} v_{1}^{2}\{2\}$ (left) and $N_{\text {part }} v_{2}^{2}\{2\}$ (right) after short-range correlations, predominantly from quantum and Coulomb effects, have been subtracted. For more details see Ref. [18]. The centrality intervals correspond to $0-5 \%, 5-10 \%, 10-20 \%, 20-30 \%, 30-40 \%, 40-50 \%, 50-60 \%, 60-70 \%$ and $70-80 \%$. The $N_{\text {part }}$ values used for the corresponding centralities are $350.6,298.6,234.3,167.6,117.1,78.3,49.3,28.2$ and 15.7 independent of energy.

FIG. 15. The $\sqrt{s_{\mathrm{NN}}}$ dependence and centrality dependence of $N_{\text {part }} v_{4}^{2}\{2\}$ (left) and $N_{\text {part }} v_{5}^{2}\{2\}$ (right) after short-range correlations, predominantly from Quantum and Coulomb effects, have been subtracted. For more details see Ref. [18].
[1] J. C. Collins and M. J. Perry, "Superdense Matter: Neu- 1071 trons Or Asymptotically Free Quarks?," Phys. Rev. Lett. 1072 34, 1353 (1975).
[2] S. A. Chin, "Transition to Hot Quark Matter in Relativis- 1074 tic Heavy Ion Collision," Phys. Lett. B 78, 552 (1978).
[3] J. I. Kapusta, "Quantum Chromodynamics at High Tem- 10 perature," Nucl. Phys. B 148, 461 (1979).
[4] R. Anishetty, P. Koehler and L. D. McLerran, "Cen- 1078 tral Collisions Between Heavy Nuclei at Extremely High- 1079 [13] Energies: The Fragmentation Region," Phys. Rev. D 22, 1080 2793 (1980).
[5] S. Borsanyi et al. [Wuppertal-Budapest Collaboration], 1082 "Is there still any T_{c} mystery in lattice QCD? Results 1083 with physical masses in the continuum limit III," JHEP 1009, 073 (2010).
T. Bhattacharya et al., "QCD Phase Transition with Chi- 1086 ral Quarks and Physical Quark Masses," Phys. Rev. Lett. 1087 113, 082001 (2014).
[7] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Sz- 1089 abo, "The Order of the quantum chromodynamics transi- 1090 tion predicted by the standard model of particle physics," 1091 Nature 443, 675 (2006).
[8] M. M. Aggarwal et al. [STAR Collaboration], "An Ex- 1093 perimental Exploration of the QCD Phase Diagram: 1094 The Search for the Critical Point and the Onset of De- 1095 confinement," arXiv:1007.2613 [nucl-ex]. 1096
[9] S. A. Voloshin, A. M. Poskanzer, R. Snellings, "Col- 1097 lective phenomena in non-central nuclear collisions," 1098 [arXiv:0809.2949 [nucl-ex]]; P. Sorensen, "Elliptic Flow: 1099 A Study of Space-Momentum Correlations In Rela- 1100 tivistic Nuclear Collisions," [arXiv:0905.0174 [nucl-ex]]; 1101 H. G. Ritter and R. Stock, "Collective Flow of QCD Mat- 1102 ter: a Historical Introduction," J. Phys. G 41, $124002{ }_{103}$ (2014).
[10] J. Adams et al. [STAR Collaboration], "Minijet defor- 1105 mation and charge-independent angular correlations on 1106 momentum subspace (eta, phi) in $\mathrm{Au}-\mathrm{Au}$ collisions at 1107 $\sqrt{s_{N N}}=130 \mathrm{GeV}$," Phys. Rev. C 73, 064907 (2006); 1108 J. Adams et al. [STAR Collaboration], "Delta phi Delta 1109 eta Correlations in Central $\mathrm{Au}+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}={ }_{1110}$ 200 GeV ," Phys. Rev. C 75, 034901 (2007); A. Adare et ${ }^{1111}$ al. [PHENIX Collaboration], "Dihadron azimuthal cor- 1112 relations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," ${ }_{1113}$ Phys. Rev. C 78 (2008) 014901; B. I. Abelev et al. [STAR 1114 Collaboration], "Long range rapidity correlations and jet 1115 production in high energy nuclear collisions," Phys. Rev. 1116 C 80, 064912 (2009); B. Alver et al. [PHOBOS Collab- 1117 oration], "High transverse momentum triggered correla- 1118 tions over a large pseudorapidity acceptance in $\mathrm{Au}+\mathrm{Au} 1119$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. Lett. 104, 1120 062301 (2010); S. Chatrchyan et al. [CMS Collaboration], 1121 "Long-range and short-range dihadron angular correla- 1122 tions in central PbPb collisions at a nucleon-nucleon cen- 1123 ter of mass energy of 2.76 TeV ," JHEP 1107, 076 (2011); 1124 K. Aamodt et al. [ALICE Collaboration], "Harmonic de- 1125 composition of two-particle angular correlations in $\mathrm{Pb}-1126$ Pb collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$," Phys. Lett. B 708, ${ }_{127}$ 249 (2012); G. Aad et al. [ATLAS Collaboration], "Mea- 1128 surement of the azimuthal anisotropy for charged particle 1129 production in $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ lead-lead collisions with ${ }_{1130}$ the ATLAS detector," Phys. Rev. C 86, 014907 (2012). 1131
[11] S. A. Voloshin, "Two particle rapidity, transverse momentum, and azimuthal correlations in relativistic nuclear collisions and transverse radial expansion," Nucl. Phys. A 749, 287 (2005).
[12] A. P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, "Super-horizon fluctuations and acoustic oscillations in relativistic heavy-ion collisions," Phys. Rev. C77, 064902 (2008).
[13] P. Sorensen, "Searching for Superhorizon Fluctuations in Heavy-Ion Collisions," [arXiv:0808.0503 [nucl-ex]]; P. Sorensen, "Implications of space-momentum correlations and geometric fluctuations in heavy-ion collisions," J. Phys. G 37, 094011 (2010).
[14] J. Takahashi et al., "Topology studies of hydrodynamics using two particle correlation analysis," Phys. Rev. Lett. 103, 242301 (2009).
[15] P. Sorensen, B. Bolliet, A. Mocsy, Y. Pandit and N. Pruthi, "The Rise and Fall of the Ridge in Heavy Ion Collisions," Phys. Lett. B 705, 71 (2011).
[16] K. Aamodt et al. [ALICE Collaboration], "Higher harmonic anisotropic flow measurements of charged particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$," Phys. Rev. Lett. 107, 032301 (2011), A. Adare et al. [PHENIX Collaboration], "Measurements of Higher-Order Flow Harmonics in $\mathrm{Au}+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. Lett. 107, 252301 (2011), L. Adamczyk et al. [STAR Collaboration], "Third Harmonic Flow of Charged Particles in $\mathrm{Au}+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. C 88, 014904 (2013).
[17] C. Adler et al. [STAR Collaboration], "Elliptic flow from two and four particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions $\sqrt{s_{N N}}=130 \mathrm{GeV}$," Phys. Rev. C 66, 034904 (2002).
[18] L. Adamczyk et al. [STAR Collaboration], "Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC," Phys. Rev. Lett. 116, 112302 (2016).
[19] R. S. Bhalerao, J. Y. Ollitrault and S. Pal, "Event-plane correlators," Phys. Rev. C 88, 024909 (2013).
[20] J. D. Bjorken, "Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region," Phys. Rev. D 27, 140 (1983).
[21] G. Denicol, A. Monnai and B. Schenke, "Moving forward to constrain the shear viscosity of QCD matter," Phys. Rev. Lett. 116, 212301 (2016).
[22] D. Teaney and L. Yan, "Triangularity and Dipole Asymmetry in Heavy Ion Collisions," Phys. Rev. C 83, 064904 (2011).
[23] Z. Qiu and U. Heinz, "Hydrodynamic event-plane correlations in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s}=2.76 \mathrm{ATeV}$," Phys. Lett. B 717, 261 (2012).
[24] D. Teaney and L. Yan, "Event-plane correlations and hydrodynamic simulations of heavy ion collisions," Phys. Rev. C 90, 024902 (2014).
[25] H. Niemi, K. J. Eskola and R. Paatelainen, "Event-by-event fluctuations in perturbative $\mathrm{QCD}+$ saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions," arXiv:1505.02677 [hep-ph].
[26] S. Ryu, J.-F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S. Jeon and C. Gale, "Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions," Phys.

1132
1133
1134
1135
1136
1137
1138
1139

Rev. Lett. 115, 132301 (2015).
27] B. I. Abelev et al. [STAR Collaboration], "Azimuthal 1182 Charged-Particle Correlations and Possible Local Strong 1183 Parity Violation," Phys. Rev. Lett. 103, 251601 (2009). 1184
[28] B. I. Abelev et al. [STAR Collaboration], "Observation of 1185 charge-dependent azimuthal correlations and possible lo- 1186 cal strong parity violation in heavy ion collisions," Phys. 1187 Rev. C 81, 054908 (2010).
[29] D. Kharzeev, R. D. Pisarski and M. H. G. Tytgat, "Possi- 1189 bility of spontaneous parity violation in hot QCD," Phys. 1190 Rev. Lett. 81, 512 (1998).
30] D. Kharzeev, "Parity violation in hot QCD: Why it can 1192 happen, and how to look for it," Phys. Lett. B 633, $260{ }_{1193}$ (2006).

31] S. A. Voloshin, "Parity violation in hot QCD: How to 1195 detect it," Phys. Rev. C 70, 057901 (2004).
[32] J. Jia and P. Huo, Phys. Rev. C 90, no. 3, 034915 (2014) 1197 doi:10.1103/PhysRevC.90.034915 [arXiv:1403.6077 1198 [nucl-th]].
33] P. Bozek, W. Broniowski and J. Moreira, Phys. Rev. 1200 C 83, 034911 (2011) doi:10.1103/PhysRevC.83.034911 1201 [arXiv:1011.3354 [nucl-th]].
34] L. G. Pang, H. Petersen, G. Y. Qin, V. Roy and ${ }_{1203}$ X. N. Wang, Eur. Phys. J. A 52, no. 4, 97 (2016) ${ }_{1204}$ doi:10.1140/epja/i2016-16097-x [arXiv:1511.04131 [nucl- 1205 th]].
[35] C. Shen and B. Schenke, Phys. Rev. C 97, 1207 no. 2, 024907 (2018) doi:10.1103/PhysRevC.97.024907 1208 [arXiv:1710.00881 [nucl-th]]. 1209
[36] N. Borghini, P. M. Dinh, J. Y. Ollitrault, 1210 A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 1211 66, 014901 (2002) doi:10.1103/PhysRevC.66.014901 1212 [nucl-th/0202013].

1213
37] A. Bzdak, V. Koch and J. Liao, Phys. Rev. C 1214 83, 014905 (2011) doi:10.1103/PhysRevC.83.014905 1215 [arXiv:1008.4919 [nucl-th]].
[38] J. Jia and S. Mohapatra, Eur. Phys. J. C 73, 2510 (2013) 1217 doi:10.1140/epjc/s10052-013-2510-y [arXiv:1203.5095 1218 [nucl-th]].

1219
[39] STAR Collaboration, C. Adler et al., Nucl. Instr. Meth. ${ }^{1220}$ A 499, 624 (2003).
[40] B. I. Abelev et al. [STAR Collaboration], "Systematic 1222 Measurements of Identified Particle Spectra in $p p, d^{+} \mathrm{Au}{ }_{1223}$ and Au+Au Collisions from STAR," Phys. Rev. C 79, 1224 034909 (2009).

1225
[41] A. Bilandzic, R. Snellings and S. Voloshin, "Flow analysis 1226 with cumulants: Direct calculations," Phys. Rev. C 83, ${ }_{1227}$ 044913 (2011); A. Bilandzic, C. H. Christensen, K. Gul- 1228 brandsen, A. Hansen and Y. Zhou, "Generic framework 1229
for anisotropic flow analyses with multiparticle azimuthal correlations," Phys. Rev. C 89, 064904 (2014).
[42] M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, "Glauber modeling in high energy nuclear collisions," Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
[43] G. Aad et al. [ATLAS Collaboration], "Measurement of event-plane correlations in $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ lead-lead collisions with the ATLAS detector," Phys. Rev. C 90, 024905 (2014).
[44] M. Luzum and J. Y. Ollitrault, "Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions," Phys. Rev. C 87, 044907 (2013).
[45] M. A. Lisa, S. Pratt, R. Soltz and U. Wiedemann, "Femtoscopy in relativistic heavy ion collisions," Ann. Rev. Nucl. Part. Sci. 55, 357 (2005).
[46] Q. Y. Shou, Y. G. Ma, P. Sorensen, A. H. Tang, F. Videbk and H. Wang, "Parameterization of Deformed Nuclei for Glauber Modeling in Relativistic Heavy Ion Collisions," Phys. Lett. B 749, 215 (2015).
[47] D. Teaney and L. Yan, "Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics," Phys. Rev. C 86, 044908 (2012).
[48] STAR Collaboration, "Proposal for STAR TPC Inner Sector Upgrade (iTPC)", STAR Note 0619: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619
[49] K. H. Ackermann et al. [STAR Collaboration], "Elliptic flow in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=130 \mathrm{GeV}$," Phys. Rev. Lett. 86, 402 (2001); J. Adams et al. [STAR Collaboration], "Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. Lett. 92, 052302 (2004); J. Adams et al. [STAR Collaboration], "Azimuthal anisotropy in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. C 72, 014904 (2005).
[50] D. Molnar, "Novel mechanism of high- p_{T} production from an opaque quark-gluon plasma," nucl-th/0503051.
[51] L. Adamczyk et al. [STAR Collaboration], "Beam-energy dependence of charge separation along the magnetic field in $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC," Phys. Rev. Lett. 113, 052302 (2014).
[52] L. Adamczyk et al. [STAR Collaboration], "Constraining the initial conditions and temperature dependent transport with three-particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions," [arXiv:1701.06497 [nucl-ex]];
53] L. Adamczyk et al. [STAR Collaboration], "Fluctuations of charge separation perpendicular to the event plane and local parity violation in $\sqrt{s_{N N}}=200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions at the BNL Relativistic Heavy Ion Collider," Phys. Rev. C 88, no. 6, 064911 (2013).

