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A new sine observable, RΨ2(∆S), has been proposed to measure the Chiral Magnetic Effect (CME)
in heavy-ion collisions; ∆S = 〈sinϕ+〉 − 〈sinϕ−〉, where ϕ± are azimuthal angles of positively and
negatively charged particles relative to the reaction plane and averages are event-wise, and RΨ2(∆S)
is a normalized event probability distribution. Preliminary STAR data reveal concave RΨ2(∆S)
distributions in 200 GeV Au+Au collisions. Studies with A Multi-Phase Transport (AMPT) and
Anomalous Viscous Fluid Dynamics (AVFD) models show concave RΨ2(∆S) distributions for CME
signals and convex ones for typical resonance backgrounds. A recent hydrodynamic study, however,
indicates concave shapes for backgrounds as well. To better understand these results, we report a
systematic study of the elliptic flow (v2) and transverse momentum (pT ) dependences of resonance
backgrounds with toy-model simulations and Central Limit Theorem (CLT) calculations. It is found
that the concavity or convexity of RΨ2(∆S) depends sensitively on the resonance v2 (which yields
different numbers of decay π+π− pairs in the in-plane and out-of-plane directions) and pT (which
affects the opening angle of the decay π+π− pair). Qualitatively, low pT resonances decay into large
opening-angle pairs and result in more “back-to-back” pairs out-of-plane, mimicking a CME signal,
or a concave RΨ2(∆S). Supplemental studies of RΨ3(∆S) in terms of the triangular flow (v3), where
only backgrounds exist but any CME would average to zero, are also presented.

PACS numbers: 25.75.-q, 25.75.-Gz, 25.75.-Ld

1. INTRODUCTION

Non-trivial topological gluon fields can form in quan-
tum chromodynamics (QCD) from vacuum fluctua-
tions [1]. Interactions with those gluon fields can change
the chirality of quarks in local domains where the ap-
proximate chiral symmetry is restored [1–4]. Quarks of
the same chirality in a local domain immersed in a strong
magnetic field will move in opposite directions along the
magnetic field if they bear opposite charges. This charge
separation phenomenon is called the Chiral Magnetic Ef-
fect (CME) [4, 5].

Heavy-ion collisons provide a suitable environment for
the CME to occur: the relativistic spectator protons can
create an intense, transient magnetic field [6–9] roughly
perpendicular to the reaction plane (spanned by the im-
pact parameter and beam directions); high energy den-
sity can be created in the collision zone and the approxi-
mate chiral symmetry may be restored [10–14]; and topo-
logical gluon fields can emerge from the QCD vacuum [1].
Because the observation of the CME will simultaneously
support the above pictures, the detection of such charge
separations in heavy-ion collisions is of critical impor-
tance.

The common variable that has been used to search
for the CME-induced charge separation is the so-called
∆γ variable [15]. Positive charge-dependent signals have
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been observed in heavy-ion collisions, qualitatively con-
sistent with the CME [16–20]. However, the ∆γ vari-
able is strongly contaminated by elliptic flow induced
correlation backgrounds [21–25]. In fact, ∆γ measure-
ments in small systems of p+Pb collisions at the LHC [26]
and d+Au collisions at RHIC [27, 28], where only back-
grounds are expected, reveal large signals comparable to
those measured in heavy-ion collisions. With suppres-
sion of backgrounds by event-by-event and event-shape-
engineering techniques, experimental data [29–31] show
significantly reduced, consistent-with-zero signals for the
CME.

Another variable that has been proposed to detect
charge separation is the RΨ2

(∆S) variable [32, 33]. We
call it the sine observable. It is defined as follows. In
each event, let

ϕ = φ−Ψ2, (1)

〈Sp〉 =
1

Np

Np∑
1

sin(ϕ+), 〈Sn〉 =
1

Nn

Nn∑
1

sin(ϕ−), (2)

∆Ssep = 〈Sp〉 − 〈Sn〉 , (3)

where φ is the particle azimuthal angle in the laboratory
frame and ϕ is therefore the azimuthal angle relative to
the second-order harmonic plane Ψ2 (as a proxy for the
unmeasured reaction plane). Subscripts (+,−) indicate
the charge sign, and Np, Nn are the number of parti-
cles with positive and negative charge, respectively. A
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parallel set of variables is constructed by randomizing
the charges of all particles in the event, respecting the
relative multiplicities of positive and negative particles.
Then, according to the randomized charges,

〈Sp′〉 =
1

N ′p

N ′p∑
1

sin(ϕ′+), 〈Sn′〉 =
1

N ′n

N ′n∑
1

sin(ϕ′−), (4)

∆Smix = 〈Sp′〉 − 〈Sn′〉 , (5)

where the primes denote quantities for this so-called shuf-
fled event. The ratio is formed from the event probability
distributions of real events in ∆Ssep and shuffled events
in ∆Smix,

CΨ2(∆S) =
N(∆Ssep)

N(∆Smix)
. (6)

For events with CME signals, charge separation along
the magnetic field gives | sinϕ±| ≈ 1 and a maximal
difference sinϕ+ − sinϕ− ≈ ±2. The distribution of
N(∆Ssep) would therefore become wider than its refer-
ence distribution. Here, the shuffled event N(∆Smix)
serves as the reference distribution. The ratio of CΨ2

is
therefore concave for CME [32, 33].

There can be background sources that change the
shape of CΨ2

(∆S). In order to eliminate reaction-plane
(RP) independent backgrounds, an analogous variable
C⊥Ψ2

is constructed in the way identical to CΨ2
except

changing each ϕ into ϕ − π/2. The RΨ2
variable is de-

fined to be the ratio of CΨ2
to C⊥Ψ2

,

RΨ2
(∆S) =

CΨ2(∆S)

C⊥Ψ2
(∆S)

. (7)

The RP-independent backgrounds would cancel in
RΨ2

(∆S). Since the CME signal does not affect C⊥Ψ2
sig-

nificantly because sin(ϕ± − π/2) ≈ 0, the CME in CΨ2

would survive in RΨ2
(∆S), making it concave. The RP-

dependent backgrounds, such as resonance decays with
finite v2, can still affect RΨ2(∆S). However, it was shown
to make RΨ2(∆S) convex [32, 33].

Preliminary STAR data reveal concave RΨ2(∆S) dis-
tributions in 200 GeV Au+Au collisions [34]. Previous
studies using A Multi-Phase Transport (AMPT) model
where resonance decay background is present but no
CME, suggest that RΨ2

(∆S) is convex [33]. Anomalous-
Viscous Fluid Dynamics (AVFD) model shows concave
RΨ2

(∆S) distributions for CME signals and convex ones
for typical resonance backgrounds [33]. A recent hydro-
dynamic study, however, indicates concave shapes for
backgrounds as well [35].

To better understand these results, we present a sys-
tematic study of resonance backgrounds as functions of
the resonance elliptic flow (v2) and transverse momentum
(pT ) with toy-model simulations and Central Limit The-
orem (CLT) calculations. It is found that the concavity

or convexity of RΨ2
(∆S) depends sensitively on the reso-

nance v2 (which yields different numbers of decay π+π−

pairs in the in-plane and out-of-plane directions) and pT
(which affects the opening angle of the decay π+π− pair).

Supplemental studies in terms of the triangular flow
(v3), where only backgrounds exist but any CME would
average to zero, are also presented.

2. TOY-MODEL SIMULATION OF
RESONANCE BACKGROUNDS

We use a toy model of ρ meson decays to study the
behavior of RΨ2

(∆S) as functions of the ρ kinematic
variables. The toy model has been used for CME back-
ground studies in Ref. [36]. It generates events to be
composed of primordial pions and ρ-decay pions. Their
input pT distributions and v2(pT ) are obtained from data
measurements [36–46]. For simplicity, we use the input
harmonic plane Ψ2 (as well as Ψ3 discussed in Sec. 3) in
our analysis.

In order to study the v2 dependence, we scale v2,ρ (v2

of ρ) up or down by a pT -independent factor to investi-
gate how RΨ2(∆S) responds. Figure 1 shows the results;
the curve of CΨ2 becomes more concave when v2,ρ is in-
creased, and C⊥Ψ2

behaves in the opposite way. Subse-
quently, RΨ2(∆S) becomes more concave. This behavior
can be qualitatively understood as follows. At the typical
resonance pT in the simulation, the decay daughters are
close to each other in azimuthal angle. The numerator of
CΨ2

has the term: sinϕ+− sinϕ− ≈ cos ϕ̄δϕ, where ϕ̄ =
(ϕ+ + ϕ−)/2, δϕ = ϕ+ − ϕ− are the average and differ-
ence of the π± azimuths, respectively. When v2,ρ is large,
ϕ̄ will be relatively close to 0 or π, and | cos ϕ̄| will be rel-
atively big. Hence, the ∆S in the numerator of CΨ2

has
a wider distribution, and accordingly CΨ2

becomes more
concave (see Fig. 1a). Similarly, the numerator of C⊥Ψ2

has the term: sin(ϕ+ − π/2)− sin(ϕ− − π/2) ≈ sin ϕ̄δϕ.
When v2,ρ is large, | sin ϕ̄| will be relatively small and
close to 0, so the ∆S in the numerator of C⊥Ψ2

has a nar-

rower distribution, and accordingly C⊥Ψ2
becomes more

convex (Fig. 1b). Because of the opposite behaviors of
CΨ2

and C⊥Ψ2
, we can easily get the dependence of their

ratio RΨ2
on v2,ρ: its concavity increases with increasing

v2,ρ (Fig. 1c).
Note that the curves in Fig. 1c with zero v2,ρ is coun-

terintuitively nonflat. This is due to the finite v2,π (pri-
mordial pion v2). The ρ decays alter the pion multiplici-
ties which affect CΨ2

and C⊥Ψ2
. The finite v2,π breaks the

symmetry between CΨ2
and C⊥Ψ2

, resulting in the slightly
nonflat RΨ2

(∆S). Figure 2 shows RΨ2
curves with zero

v2,ρ for various values of v2,π. Only weak dependences
on v2,π are observed for RΨ2

(∆S) (and also CΨ2
, C⊥Ψ2

).
When both v2,ρ and v2,π are set to zero, then RΨ2

is
indeed flat.

To scan pT,ρ (the pT of ρ), we fix v2,ρ to a specific
value 0.06, because otherwise the value of v2,ρ would be
affected by the changing pT,ρ. The v2,π and pT of the pri-
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FIG. 1. (color online) Observable distributions for various values of v2,ρ (with v2,π fixed to its default distribution). Here, vdef2,ρ

is the default distribution of v2,ρ obtained from data [36–46].
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FIG. 2. (color online) RΨ2(∆S) for various values of v2,π

(with v2,ρ fixed to 0). Here, vdef2,π is the default distribution
of v2,π obtained from data [36–46].

mordial pions are given by default. We find the curves
of CΨ2

, C⊥Ψ2
, and RΨ2

to become more convex when pT,ρ
increases (Fig. 3). This is because of the following. When
pT,ρ is large, the decay opening angle δϕ is small. The
cos ϕ̄δϕ contribution to ∆S in CΨ2

and the sin ϕ̄δϕ con-
tribution to ∆S in C⊥Ψ2

both become small in magnitude,

so the distributions of ∆S in both CΨ2
and C⊥Ψ2

become
narrower. The reshuffled ∆S in the denominators of CΨ2

and C⊥Ψ2
are not as sensitive to the δϕ change as the nu-

merators. Thus, the shapes of CΨ2
and C⊥Ψ2

both become
more convex. Since the change in cos ϕ̄δϕ is larger than
in sin ϕ̄δϕ with increasing pT for ϕ̄ close to the reaction
plane, the narrowing in CΨ2

is more significant, so RΨ2

becomes more convex.

Another way to explain the RΨ2
change is as follows.

When pT,ρ is high, the two decay daughters are close to
each other and preferentially close to the reaction plane
because of the finite v2,ρ. This is characteristic of the
CME background. At low pT,ρ, the two daughters are
preferentially more perpendicular to the RP because of
the large decay opening angle. This case resembles the
CME signal, so the RΨ2

curves with lower pT,ρ becomes
more concave, just like how CME signal would behave.
For our typical pT distribution from data, the high pT,ρ
case wins over the case with low pT,ρ.

The behaviors of CΨ2
and C⊥Ψ2

are recapitulated in

Fig. 4 by the RMS (Root Mean Square) of CΨ2
and C⊥Ψ2

.

We summerize our main findings as follow:

• The curve of CΨ2
becomes more concave when v2,ρ

increases, and C⊥Ψ2
more convex, rendering a more

concave RΨ2
.

• The shapes of the observables (CΨ2
, C⊥Ψ2

, and RΨ2
)

are only weakly dependent on v2,π.

• The curves of CΨ2 and C⊥Ψ2
become more convex

when pT,ρ increases. The effect is more significant
in CΨ2 , rendering a more convex RΨ2 .

3. SUPPLEMENTAL STUDIES USING v3

The CME is a charge separation with respect to the
RP (or the v2 harmonic plane Ψ2). The CME-induced
charge separation must be zero with respect to the third
order harmonic plane because of its random orientation
relative to Ψ2. Resonance backgrounds, on the other
hand, should be still finite with respect to Ψ3. In this
section, we verify this with our toy model simulation.

In term of v3, the reference azimuthal angle is the third
harmonic plane:

ϕ = φ−Ψ3. (8)

There have been two different ways to define the sine
observables for v3, and both are similar to the definition
of the observables for v2.
A. For the first definition [33], one changes Ψ2 into

Ψ3 for ϕ (see Eq. 1, 8) and replaces −π/2 by −π/3 for
∆S (both ∆Ssep and ∆Smix) in C⊥Ψ3

,

C⊥Ψ3
: ∆S =

1

Np

Np∑
1

sin
(
ϕ+ −

π

3

)
− 1

Nn

Nn∑
1

sin
(
ϕ− −

π

3

)
.

(9)
B. For the second definition [35], one still changes Ψ2

into Ψ3 for ϕ. In addition, one adds a factor 3/2 in front
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FIG. 3. (color online) Observable distributions for various values of pT,ρ (with v2,ρ fixed to 0.06).

of the azimuths,

CΨ3 : ∆S =
1

Np

Np∑
1

sin

(
3

2
ϕ+

)
− 1

Nn

Nn∑
1

sin

(
3

2
ϕ−

)
,

C⊥Ψ3
: ∆S =

1

Np

Np∑
1

sin

(
3

2
ϕ+ −

π

2

)
− 1

Nn

Nn∑
1

sin

(
3

2
ϕ− −

π

2

)
.

(10)

We use the Toy Monte Carlo to investigate RΨ3
(∆S) of

those two definitions. The toy simulation generates pri-
mordial π+, π− and ρ with the experimental pT spectra
but with only v3 of the ρ. Since Ψ2 and Ψ3 are uncorre-
lated, including non-zero v2 does not change the results.
Including a finite v3 for the primordial pions does not
have significant effect. The default function of v3,ρ(pT )
is approximated by that of v2,ρ(pT ) but with half mag-
nitude, i.e.

v3,ρ(pT ) =
1

2
v2,ρ(pT ). (11)

We constrain the azimuthal range to be [0, 2π) in our
simulation. As will be discussed later in Sec. 4.3, the
sine observables of Definition B unfortunately depend on
which periodic range is used, suggesting Definition B is
not a physically correct definition. The simulation results
are shown in Fig. 5 and Fig. 6.

We make the following observations:

• In Definition A, RΨ3
is always flat.

By Definition A itself, RΨ3 should always be flat, as
follows. The Probability Density Function (PDF)
is f(ϕ) = (1 + 2v3 cos(3ϕ))/(2π), whose period is
2π/3. In the definition of C⊥Ψ3

, ϕ is shifted by π/3
clockwise, ∆S(ϕ)→ ∆S(ϕ−π/3). If we keep shift-
ing ∆S by another period in the same direction, we
would not change the distribution of ∆S in C⊥Ψ3

,
which means ∆S(ϕ − π/3) and ∆S(ϕ − π) have
the same distribution. From the Definition A, we
also know that ∆S(ϕ−π) = −∆S(ϕ). Because the
distribution of ∆S(ϕ) is symmetric about ∆S = 0,
∆S(ϕ) and −∆S(ϕ) have the same distribution as
well. Thus, ∆S(ϕ) and ∆S(ϕ−π/3) have the same

distribution, which means that CΨ3 and C⊥Ψ3
have

the same shape and RΨ3 must be flat and have the
value 1.

This flat RΨ3 can also be explained by the analysis
based on CLT in Sec. 4.

• The CΨ3 and C⊥Ψ3
curves from Definition A show

a similar dependence on resonance pT,ρ as CΨ2 and
C⊥Ψ2

curves in the v2 case.

• The CΨ3 , C⊥Ψ3
, and RΨ3 curves from Definition B

are obviously dependent on the pT,ρ and v3,ρ. In-
creasing pT,ρ makes the curves more convex. In-
creaing v3,ρ makes the CΨ3 , RΨ3 curves more con-
cave, and C⊥Ψ3

more convex. Those tendencies are
consistent with the scans with respect to v2.

• In Definition B, the C⊥Ψ3
and RΨ3 curves are coun-

terintuitively not flat, even if we set v3 to zero.

We note that Definition A was used only in the early
version (version 2) of Ref. [33] where the RΨ3(∆S) vari-
able was studied with respect to v3. In the later version 3
of Ref. [33], Definition B was used.

4. ANALYTICAL RESULTS BASED ON
CENTRAL LIMIT THEOREM

In this section, we use the Central Limit Theorem
(CLT) to analyze the sine observable. This analysis can
be applied to all observables discussed in this paper.
With a few reasonable approximations, the behavior of
the sine observable can be readily understood.

There are many versions of the CLT, and here we use
Lindeberg-Levy ’s expression. Let X1, X2, . . . , Xn be a se-
quence of independent and identically distributed (i.d.d.)
random variables with expectation value E[Xi] = µ and
variance Var[Xi] = σ2 <∞, and

Sn =
X1 +X2 + · · ·+Xn

n
=

1

n

n∑
i=1

Xi (12)

denote their mean. As n approaches infinity, the random
variable

√
n(Sn−µ) converges in distribution to a normal



5

0 0.5 1 1.5

ρ2,
scaling factor for v

0.282

0.284

0.286

0.288

0.29

R
M

S (a)
2ΨC

2ΨC

0.5 1 1.5 2
 (GeV/c)

ρT,
p

0.24

0.26

0.28

0.3

R
M

S (b)
2ΨC

2ΨC

FIG. 4. (color online) RMS of CΨ2 and C⊥Ψ2
depending on v2,ρ and pT,ρ. (a) RMS of CΨ2 and C⊥Ψ2

(shown in Fig. 1) depending

on v2,ρ (with v2,π fixed to its default distribution). (b) RMS of CΨ2 and C⊥Ψ2
(shown in Fig. 3) depending on pT,ρ (with v2,ρ

fixed to 0.06 and v2,π fixed to its default distribution).

0.4− 0.2− 0 0.2 0.4
S∆

0.5

1

1.5

S
)

∆( 3
Ψ

C

(a)

0.4− 0.2− 0 0.2 0.4
S∆

0.5

1

1.5

S
)

∆( 3
Ψ

C

(b)2.0GeV/c
0.005
0.015
0.030

0.5GeV/c
0.005
0.015
0.030

ρT,
p

ρ3,v

0.4− 0.2− 0 0.2 0.4
S∆

0.96

0.98

1

1.02

1.04

S
)

∆( 3
Ψ

R

(c)

FIG. 5. (color online) Definition A: observable distributions for various values of v3,ρ and pT,ρ (with v3,π fixed to 0). The CΨ3

and C⊥Ψ3
curves, with the same pT,ρ but various v3,ρ, are very close to each other in figure (a) and (b) (concave dashed lines

for low pT,ρ, and convex solid lines for high pT,ρ).

0.4− 0.2− 0 0.2 0.4
S∆

0.96

0.98

1

1.02

1.04

S
)

∆( 3
Ψ

C

(a)

0.4− 0.2− 0 0.2 0.4
S∆

0.98

1

1.02

1.04

S
)

∆( 3
Ψ

C

(b)def
ρ3,0.0*v

def
ρ3,0.5*v

def
ρ3,1.0*v

def
ρ3,1.5*v

0.4− 0.2− 0 0.2 0.4
S∆

0.98

0.99

1

1.01

1.02

S
)

∆( 3
Ψ

R

(c)

0.4− 0.2− 0 0.2 0.4
S∆

0.8

0.9

1

1.1

1.2

S
)

∆( 3
Ψ

C

(d)

0.4− 0.2− 0 0.2 0.4
S∆

0.8

0.9

1

1.1

1.2

S
)

∆( 3
Ψ

C

0.50
0.75
1.00

1.25
1.50
2.00

:
ρT,

p
(GeV/c)

(e)

0.4− 0.2− 0 0.2 0.4
S∆

0.96

0.98

1

1.02

1.04

S
)

∆( 3
Ψ

R

(f)

FIG. 6. (color online) Definition B: The upper plots (a–c) show observable distributions for various values of v3,ρ (with v3,π fixed

to 0). Here, vdef3,ρ is the default distribution of v3,ρ approximated by 0.5vdef2,ρ (Eq. 11). The lower plots (d–f) show observable
distributions for various values of pT,ρ (with v3,ρ fixed to 0.03 and v3,π fixed to 0).
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N (0, σ2). Generally, if X1, X2, . . . , Xn are independent
normal distributions,

Xi ∼ N (µi, σ
2
i ), (13)

then the weighted sum of them is a normal distribution,

n∑
i=1

aiXi ∼ N

(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
. (14)

4.1. Analysis of CΨ2 , C
⊥
Ψ2

, and RΨ2

First, we write the PDF of φ,

f(φ) =
1

2π

(
1 + 2

∞∑
m=2

vm cos (m (φ−Ψm))

)
, (15)

where Ψm are normally different and uncorrelated among
different m. When we focus only on one specific m, for
example m = 2 or 3 in the former discussion, we can just
use ϕ = φ−Ψm as the relative azimuth of particles.

4.1.1. Numerator of CΨ2

The PDF of ∆Ssep can describe N(∆Ssep), the numer-
ator of CΨ2 . For simplicity, we assume that the number
of positive charges is the same as the number of negative
charges in the final state. In each event, before any de-
cay, nρ denotes the number of ρ mesons, and nπ denotes
the number of primordial pions. Thus,

Nn = Np = nρ + 0.5nπ. (16)

We rewrite

∆Ssep =
1

nρ + 0.5nπ

(
nρ∑
1

(sinϕ+ − sinϕ−)

)

+
1

nρ + 0.5nπ

(
0.5nπ∑

1

(sinϕ+ − sinϕ−)

)
.

(17)

The first sum is over ρ decay pions, and the second is
over primordial pions.

For convenience, we will use the following short-hand
notations:

c := cosϕ, c̄ := cos ϕ̄, s := sinϕ, s̄ := sin ϕ̄,

δ := 2 sin(δϕ/2)
(18)

where ϕ̄ = (ϕ+ + ϕ−)/2 is related to the ρ angular po-
sition and δϕ = ϕ+ − ϕ− represents the decay opening
angle. We use the indices ρ or π to indicate whether the
variables are for ρ or primordial π±.

We express the first sum of Eq. 17 into

nρ∑
1

(sinϕ+ − sinϕ−) =

nρ∑
1

2 cos(ϕ̄) sin(δϕ/2) =

nρ∑
1

c̄ρδ.

(19)

Because the primordial pions all independently obey the
same distribution related to the global harmonic plane,
we rewrite the second sum of Eq. 17 into

0.5nπ∑
1

(sinϕ+− sinϕ−) =

0.5nπ∑
1

sinϕ+−
0.5nπ∑

1

sinϕ−. (20)

We make two assumptions: (1) In a resonance decay,
ϕ̄ could be regarded as an approximation for ϕρ, so the
PDF of ϕ̄ is the same as the PDF of ϕρ; (2) For two
tracks from one resonance decay, cos ϕ̄ and 2 sin(δϕ/2)
are independent.

From symmetry, E[δ] = E[2 sin(δϕ/2)] = 0 at any
given c̄ρ, so:

E[c̄ρδ] = E[c̄ρ]E[δ] = E[c̄ρ]× 0 = 0. (21)

We therefore get

Var[c̄ρδ] = Var[c̄ρ]Var[δ] + E[c̄ρ]
2Var[δ] + Var[c̄ρ]E[δ]2

= E
[
c̄2ρ
]

Var[δ].

(22)

In our simulations, nρ is a Poisson distribution, so to
get the variance of

∑nρ
1 c̄ρδ is a problem of Compound

Poisson Distribution. Thus, we have

Var

[
nρ∑
i

c̄ρδ

]
= E [nρ] Var[c̄ρδ] + E[c̄ρδ]

2Var[nρ]

= E [nρ] Var[c̄ρδ].

(23)

Eq. 23 indicates that it makes no difference whether nρ
is a single value or a Poisson distribution. For simplicity,
we can just use nρ as if it is fixed to a specific value.
According to CLT,

nρ∑
1

c̄ρδ ∼ N
(
0, nρVar[δ]E

[
c̄2ρ
])
. (24)

The PDF of ϕ of the primordial pions has the same
form as Eq. 15, so we can readily obtain the variances
(Var[cπ] and Var[sπ]). As for the term about primordial
pions, the two terms in the right hand side of Eq. 20
should have the same distribution. The discussion about
nπ is as same as the discussion of nρ. According to CLT,
we have

0.5nπ∑
1

sinϕ+,

0.5nπ∑
1

sinϕ− ∼ N (0.5nπE[sπ], 0.5nπVar[sπ]),

(25)
so the difference is

0.5nπ∑
1

sinϕ+ −
0.5nπ∑

1

sinϕ− ∼ N (0, nπVar[sπ]). (26)

Finally, we write ∆S in our new notation,

∆Ssep =

∑nρ
1 c̄ρδ +

∑nπ/2
1 sπ+ −

∑nπ/2
1 sπ−

nρ + 0.5nπ
, (27)
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where sπ+ and sπ− are the sine values for π+ and π− from
resonance decay, and they obey the same distribution
independently, so we just call them both sπ. According
to CLT,

∆Ssep ∼ N

(
0,
nρVar[δ]E

[
c̄2ρ
]

+ nπVar[sπ]

(nρ + 0.5nπ)2

)
:= N

(
0, σ2
↑
)
.

(28)

4.1.2. Denominator of CΨ2

The PDF of ∆Smix can describe N(∆Smix), the de-
nominator of CΨ2

. The analysis here is very similar to
the analysis of ∆Ssep. In shuffling, we keep the number
of positive charges to be still the same as the number of
negative charges.

N ′n = N ′p = nρ + 0.5nπ (29)

Relaxing this requirement to an average level does not
change our results.

After shuffling, all the pions are independent, no mat-
ter whether they are primordial or from resonance decays.
For pions from resonance decays, the pion azimuth can
be written as ϕ = ϕ̄ + δϕ/2 ≈ ϕρ + δϕ/2. Because the
distribution of δϕ is symmetric about δϕ = 0, we just
use +δϕ/2 here. The expression of ∆Smix can therefore
be rewritten as:

∆Smix =
1

nρ + 0.5nπ

(
nρ∑
1

(sinϕ+ − sinϕ−)

)

+
1

nρ + 0.5nπ

(
0.5nπ∑

1

(sinϕ+ − sinϕ−)

)

=

∑nρ
1 sin (ϕρ + δϕ+/2)−

∑nρ
1 sin (ϕρ + δϕ−/2)

nρ + 0.5nπ

+

∑nπ/2
1 sπ+ −

∑nπ/2
1 sπ−

nρ + 0.5nπ
.

(30)

The second term is already calculated in Eq. 26, and we
calculate the distribution of the first term as

nρ∑
1

sin

(
ϕρ +

δϕ+

2

)
−

nρ∑
1

sin

(
ϕρ +

δϕ−
2

)
∼ N

(
0, 2nρVar

[
sin

(
ϕρ +

δϕ

2

)])
,

(31)

The first and the second moment below are needed in
order to complete the calculation of the variance:

E

[
sin

(
ϕρ +

δϕ

2

)]
=E [sinϕρ] E

[
cos

δϕ

2

]
+ E [cosϕρ] E

[
sin

δϕ

2

]
=E [sinϕρ] E

[
cos

δϕ

2

]
,

(32)

E

[
sin2

(
ϕρ +

δϕ

2

)]
=

1

2
− 1

2
E [cos(2ϕρ) cos(δϕ)] +

1

2
E [sin(2ϕρ) sin(δϕ)]

=
1

2
− 1

2
E

[(
1− 2 sin2 ϕρ

)(
1− 1

2
δ2

)]
+ 0

=E[s2
ρ] +

1

4
Var[δ]− 1

2
E[s2

ρ]Var[δ].

(33)

The last step uses the fact that E[δ] = 0 and therefore
Var[δ] = E[δ2].

Thus, we can get the distribution of ∆Smix,

∆Smix ∼ N

0,
2nρVar

[
sin
(
ϕρ + δϕ

2

)]
+ nπE[s2

π]

(nρ + 0.5nπ)2


=: N

(
0, σ2
↓
)
.

(34)

4.1.3. Shape of CΨ2

We use the PDF of normal distribution Gaussian func-
tion:

f(x|µ, σ) :=
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (35)

The shape of CΨ2 is described by the ratio of the PDF of
∆Ssep to the PDF of ∆Smix. Using Gaussian functions
for those PDFs, the shape of CΨ2 is

CΨ2(x) =
f(x|0, σ↑)
f(x|0, σ↓)

=
σ↓
σ↑

exp

[
−x

2

2

(
1

σ2
↑
− 1

σ2
↓

)]
.

(36)
Here, x denotes ∆S (representing ∆Ssep or ∆Smix).

4.1.4. Shape of C⊥Ψ2

The analysis of C⊥Ψ2
is nearly the same as that of CΨ2

by shifting the relative azimuth ϕ by a centain angle:
ϕ′ = ϕ − ξ. Accordingly, we use the parallel short-hand
notations as follows:

c′ := cosϕ′, c̄′ := cos ϕ̄′, s′ := sinϕ′,

s̄′ := sin ϕ̄′, δ := 2 sin(δϕ′/2) = 2 sin(δϕ/2).
(37)

Then, the format of variances here is just like before:

σ2
⊥↑ =

nρVar[δ]E[c̄′2ρ ] + nπVar[s′π]

(nρ + 0.5nπ)2
, (38)

σ2
⊥↓ =

2nρVar
[
sin
(
ϕ′ρ + δϕ

2

)]
+ nπE[s′2π ]

(nρ + 0.5nπ)2
. (39)
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The shape of C⊥Ψ2
is

C⊥Ψ2
(x) =

f(x|0, σ⊥↑)
f(x|0, σ⊥↓)

=
σ⊥↓
σ⊥↑

exp

[
−x

2

2

(
1

σ2
⊥↑
− 1

σ2
⊥↓

)]
.

(40)

4.1.5. Shape of RΨ2

According to the definition of RΨ2 , the shape of RΨ2

is given by

RΨ2(x) =
f(x|0, σ↑)
f(x|0, σ↓)

/
f(x|0, σ⊥↑)
f(x|0, σ⊥↓)

=
σ↓σ⊥↑
σ↑σ⊥↓

exp

[
−x

2

2

(
1

σ2
↑
− 1

σ2
↓
− 1

σ2
⊥↑

+
1

σ2
⊥↓

)]
.

(41)

Thus, whether RΨ2
is convex or concave is determined

by the following parameter:

ζ :=
1

σ2
↑
− 1

σ2
↓
− 1

σ2
⊥↑

+
1

σ2
⊥↓
. (42)

• If ζ > 0, then RΨ2 is convex, and the more positive
ζ is, the more convex RΨ2

will be.

• If ζ < 0, then RΨ2
is concave, and the more nega-

tive ζ is, the more concave RΨ2
will be.

• If ζ = 0, then RΨ2
is flat.

4.2. CLT analysis for v2

If we only focus on v2, the PDF in Eq. 15 can be sim-
plified as

f(ϕ) =
1

2π
(1 + 2v2 cos(2ϕ)) . (43)

From the definition of C⊥Ψ2
for v2, the relative azimuth is

shifted by ξ = π/2. Thus,

E[c2ρ] = E[c̄2ρ] =
1 + v2,ρ

2
, E[s2

ρ] =
1− v2,ρ

2
,

E[c′2ρ ] = E[c̄′2ρ ] =
1− v2,ρ

2
, E[s′2ρ ] =

1 + v2,ρ

2
,

E[s2
π] =

1− v2,π

2
, E[s′2π ] =

1 + v2,π

2
.

(44)

We can easily get that the first moment of sin (ϕρ + δϕ/2)
in Eq. 32 is 0, so its variance is equal to its second moment
which can be expressed as Eq. 33 by the terms in Eq. 44.

After slightly changing the sequence in the expression
of ζ, we have

ζ =

(
1

σ2
↑
− 1

σ2
⊥↑

)
−

(
1

σ2
↓
− 1

σ2
⊥↓

)

=

(
2(nρ + 0.5nπ)2

nρVar[δ](1 + v2,ρ) + nπ(1− v2,π)

− 2(nρ + 0.5nπ)2

nρVar[δ](1− v2,ρ) + nπ(1 + v2,π)

)
−
(

2(nρ + 0.5nπ)2

2nρ(1− v2,ρ) + nρv2,ρVar[δ] + nπ(1− v2,π)

− 2(nρ + 0.5nπ)2

2nρ(1 + v2,ρ)− nρv2,ρVar[δ] + nπ(1 + v2,π)

)
.

(45)

For further insights, we make two more assumptions
(in addition to those in Sec. 4.1.1): (3) The magnitude
of v2 (including v2,ρ and v2,π) is much smaller than 1. In
our simulations, they are around 0.1; (4) In each event,
the number of primordial pions are much larger than the
number of ρ mesons. In our simulations, nπ ≈ 10nρ.

In our simulations, v2,ρ, v2,π, and nρ/nπ are of the
same order of magnitude (∼ 0.1). To the leading order
of them,

ζ =
nρ
nπ

(2nρ+nπ)2

(
4v2,π − 2v2,ρ − 2v2,πVar[δ]

nπ + nρ (4 + 2Var[δ])

)
. (46)

The first derivatives are

∂ζ

∂v2,ρ
=
nρ
nπ

(2nρ + nπ)2

(
−2

nπ + nρ (4 + 2Var[δ])

)
< 0,

(47)

∂ζ

∂v2,π
=
nρ
nπ

(2nρ + nπ)2

(
4− 2Var[δ]

nπ + nρ (4 + 2Var[δ])

)
, (48)

∂ζ

∂Var[δ]
=
−2nρ
nπ

(
2nρ + nπ

nπ + nρ (4 + 2Var[δ])

)2

× (v2,πnπ + 8v2,πnρ − 2v2,ρnρ) .

(49)

When 0 ≤ Var[δ] < 2, ∂ζ/∂v2,π > 0; When 2 < Var[δ] ≤
4, ∂ζ/∂v2,π < 0.

Varying the pT,ρ changes Var[δ]. As long as v2,ρ is no
more than 9v2,π (which is almost always the case), then
∂ζ/∂Var[δ] < 0. In our pT scan, v2,ρ is a single value
0.06, and the average of v2,π is also around this value.

Thus, after suitable approximations, we can see the
effects on the shape of RΨ2

from those variables:

• Increasing v2,ρ makes RΨ2
more concave.

• Increasing Var[δ] makes RΨ2
more concave. In-

creasing pT,ρ makes RΨ2
more convex, because

larger pT,ρ makes the two daughter pions closer to
each other in angle, yielding a smaller Var[δ] (see
Fig. 7a).
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• Increasing v2,π makes RΨ2
more convex when

Var[δ] < 2, and more concave when Var[δ] > 2. In
our default simulation (Fig. 7b), Var[δ] ≈ 1.3592 <
2, so RΨ2

becomes more convex as v2,π increases.

The conclusions of the CLT analysis are consistent
with the simulation results.

0.5 1 1.5 2
 (GeV/c)

ρT,
p

1

2

3

]δ
V

ar
[ (a)

2− 1− 0 1 2
δ

0

20

40

60

610×

 c
ou

nt
-6

10

-510× 2.507± -510×Mean: 1.291

 0.000±RMS:  1.359 

(b)

FIG. 7. Var[δ] in the default simulation and the scan of pT,ρ.
(a) Var[δ] depending on pT,ρ. (b) δ distribution in the default
simulation.

4.3. CLT analysis for v3

If we only focus on v3, the PDF in Eq. 15 could be
simplified as follows:

f(ϕ) =
1

2π
(1 + 2v3 cos(3ϕ)) . (50)

4.3.1. Analysis for Definition A

By Definition A, we list the short-hand notations:

c := cosϕ, s := sinϕ, ξ = π/3,

c′ := cos
(
ϕ− π

3

)
, s′ := sin

(
ϕ− π

3

)
,

δ := 2 sin

(
1

2
δϕ

)
.

(51)

By using the simplified PDF (Eq. 50), we can easily get
the second moments needed:

E[c2ρ] = E[c̄2ρ] =
1

2
, E[s2

ρ] =
1

2
, E[s2

π] =
1

2
,

E[c′2ρ ] = E[c̄′2ρ ] =
1

2
, E[s′2ρ ] =

1

2
, E[s′2π ] =

1

2
.

(52)

There is no v3,ρ or v3,π in any term above, so the shapes
of the observables should not change with v3,ρ or v3,π.
We can just utilize the CLT analysis results for v2 by
setting all v2 values to 0, and then from the expression
of ζ in Eq. 45, we see the terms in each bracket cancel
each other. Thus, the CLT analysis shows ζ = 0, and
accordingly, RΨ3

should be always flat, as indeed shown
in Fig. 5c.

4.3.2. Analysis for Definition B

By Definition B, we list the short-hand notations:

c := cos

(
3

2
ϕ

)
s := sin

(
3

2
ϕ

)
, ξ =

π

3
,

c′ := cos

(
3

2

(
ϕ− π

3

))
, s′ := sin

(
3

2

(
ϕ− π

3

))
,

δ := 2 sin

(
3

4
δϕ

)
.

(53)

From the simplified PDF (Eq. 50), we can get the first
and the second moments:

E[sρ] = E[c′ρ] =
6− 4v3,ρ

9π
, E[cρ] = E[s′ρ] = 0,

E[sπ] = E[c′π] =
6− 4v3,π

9π
, E[cπ] = E[s′π] = 0,

(54)

E[c2ρ] = E[c̄2ρ] =
1 + v3,ρ

2
, E[s2

ρ] =
1− v3,ρ

2
,

E[c′2ρ ] = E[c̄′2ρ ] =
1− v3,ρ

2
, E[s′2ρ ] =

1 + v3,ρ

2
,

E[s2
π] =

1

2
, E[s′2π ] =

1

2
,

(55)

where we have a constraint that the azimuthal range
must be 0 ≤ ϕ < 2π. Because of the non-zero first mo-
ments, the RΨ3

curve is not flat (ζ 6= 0) even if both v3,ρ

and v3,π are set to 0. This counterintuitive observation
is due to the absence of the periodical symmetry in the
definition B. For the same reason, definition B has some
disadvantages as follow:

• The RΨ3
curve is counterintuitively not flat, even

if both v3,ρ and v3,π are set to 0 which means all
azimuths are isotropically distributed.

• The azimuthal range must be set. In the former
discussion, we let ϕ ∈ [0, 2π). However, if we let the
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azimuthal range be ϕ ∈ [−π, π), the first moments
will change from Eq. 54 into

E[sρ] = E[c′ρ] = 0, E[cρ] = E[s′ρ] =
6− 4v3,ρ

9π
,

E[sπ] = E[c′π] = 0, E[cπ] = E[s′π] =
6− 4v3,ρ

9π
,

(56)

which can make obvious differences to the features
of the sine observales.

• The azimuthal range is by choice, however, it in-
troduces artificial unphysical differences using Def-
inition B. Take Fig. 8 as an example. If we take
the azimuthal range [−π, π), we have α > 0 and
β < 0. However, if we take the range [0, 2π), β
will become β′ = β + 2π. The contribution of this
resonance decay to ∆Ssep changes from

sin

(
3

2
α

)
− sin

(
3

2
β

)
into

sin

(
3

2
α

)
− sin

(
3

2
β′
)

= sin

(
3

2
α

)
+ sin

(
3

2
β

)
.

It seems just like the negative charge becomes a
positive one.

FIG. 8. The choice of the azimuthal range affects the physical
results using Definition B.

We thus conclude that Definition B is ill-devised, and
should not be used. On the other hand, Definition A
always yields a flat RΨ3

distribution and therefore is not
sensitive to the CME or background. It therefore appears
that the Ψ3 harmonic plane is not suitable for the sine
observables.

SUMMARY

We have presented a systematic study of resonance
backgrounds as functions of the resonance v2 and pT with
toy-model simulations and CLT calculations, in order to
better understand the behaviors of the sine observable.
It is found that the concavity or convexity of RΨ2

(∆S)
depends sensitively on the resonance v2 (which yields dif-
ferent numbers of decay π+π− pairs in the in-plane and

out-of-plane directions) and pT (which affects the open-
ing angle of the decay π+π− pair). Qualitatively, low pT
resonances decay into large opening-angle pairs and re-
sult in more “back-to-back” pairs out-of-plane (because
of the positive resonance v2), mimicking a CME signal,
or a concave RΨ2

(∆S). High pT resonances, on the other
hand, result in more close pairs in-plane, constituting a
well-known background, or convex RΨ2

(∆S). In other
words, resonance backgrounds can yield both concave
and convex RΨ2(∆S) distributions, depending on the res-
onance kinematics.

We have also conducted a supplemental study using
the triangular flow (v3) and discussed two definitions for
the sine variables. For one of the definitions, it is found
that RΨ3(∆S) is always flat due to the inherited symme-
try in the definition. For the other definition, RΨ3(∆S)
for v3 is found to to behave similarly as RΨ2

(∆S) for v2,
if the azimuthal angle is kept in the range [0, 2π); RΨ3

can be concave or convex depending on details. However,
RΨ3

is found to depend on the choice of the azimuthal
angle range due to the inconsistency between the periods
of RΨ3

(4π/3) and azimuthal position (2π). If [−π, π) is
chosen to be the range, then the RΨ3

results are com-
pletely different. Therefore, the Ψ3 may not be suitable
for the sine-observable studies. One has to be careful to
keep the identical azimuthal angle range in the model-
data comparison studies.

We have verified our toy-model simulation results by
analytical CLT calculations.

If the CME is the only source for the RP-dependent
and charge-dependent correlations, then the RΨ2

(∆S)
would be concave and RΨ3

(∆S) would be convex for
the nontrivial defintion. However, given the existence
of backgrounds, a concave RΨ2

(∆S) and a simultaneous
convex RΨ3(∆S) do not lead to the conclusion of CME.
This is because the RΨ2(∆S) and RΨ3(∆S) variables do
not necessarily have a prior relationship, each individ-
ually varying with their respective vm(pT ) (m = 2, 3)
of resonances, and because the RΨ3 variable depends on
what azimuthal range is used. Based on our results, it
is clear that the qualitative concavity or convexity of
the RΨ2

(∆S) or RΨ3
(∆S) variable, or the comparison

between them, cannot conclude on the existence, nor
the magnitude, of the CME. Since the RΨ2

(∆S) and
RΨ3

(∆S) variables depend on the details of the reso-
nance kinematics and anisotropies, as well as the reso-
nance abundances, a precise knowledge of all resonance
distributions is required in order to quantify the CME
using the RΨm(∆S) (m = 2, 3) observables.
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