This is the accepted manuscript made available via CHORUS. The article has been published as:

Multinucleon transfer in 58Ni+60Ni and 60Ni+60Ni in a stochastic mean-field approach
B. Yilmaz, S. Ayik, O. Yilmaz, and A. S. Umar
Phys. Rev. C 98, 034604 — Published 7 September 2018
DOI: 10.1103/PhysRevC.98.034604
Multi-nucleon transfer in $^{58}\text{Ni} + ^{60}\text{Ni}$ and $^{60}\text{Ni} + ^{60}\text{Ni}$ in stochastic mean-field approach

B. Yilmaz, 1 S. Ayik, 2 O. Yilmaz, 3 and A. S. Umar 4

1Physics Department, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey
2Physics Department, Tennessee Technological University, Cookeville, TN 38505, USA
3Physics Department, Middle East Technical University, 06800 Ankara, Turkey
4Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

(Dated: August 23, 2018)

The multi-nucleon exchange mechanism in $^{58}\text{Ni} + ^{60}\text{Ni}$ and $^{60}\text{Ni} + ^{60}\text{Ni}$ collisions is analyzed in the framework of the stochastic mean-field approach. The results of calculations are compared with the TDRPA calculations and the recent data of $^{58}\text{Ni} + ^{60}\text{Ni}$. A good description of the data and a relatively good agreement with the TDRPA calculations are found.

I. INTRODUCTION

The transfer of particles between two reacting nuclei is believed to have a profound impact on the outcome of nuclear reactions. These include the observed reduction in the number of evaporated neutrons from a compound nucleus linked to the excitation of the pre-compound collective dipole mode [1–5], which is likely to occur when ions have significantly different N/Z ratio, the influence of transfer on fusion particularly at deep subbarrier energies [6–21] and the distribution of fragments in deep-inelastic and quasifission reactions [22–26]. These reaction aspects are intimately related to the dissipation and equilibration during the early stages of the collision [27–31] and at low energies also depend on the shell structure of the participating nuclei [32–36] and is sensitive to the details of the evolution of the shape of the composite system [37]. This is in contrast to most classical pictures, which generally assume near instantaneous, isotropic equilibration. For these low-energy heavy-ion collisions the relative motion of the centers of the two nuclei is characterized by a short wavelength and thus allows for a classical treatment, whereas the wavelength for the particle motion is not small compared to nuclear sizes and should be treated quantum mechanically. The mean-field approach such as the time-dependent Hartree-Fock (TDHF) theory [38,39] and its extensions provide a microscopic basis for describing the heavy-ion reaction mechanism at low bombarding energies, and have been extensively used to study particle transfer [14,40–48].

In recent work, Williams et al. presented an experimental investigation of the nucleon transfer in the $^{58}\text{Ni} + ^{60}\text{Ni}$ collisions at center of mass energies in the vicinity of the fusion barrier [49]. They analyzed the experimental data in conjunction with the numerical simulations using TDHF theory and its extension, the time-dependent random-phase approximation (TDRPA) [41,50–52]. At low energies, the TDHF provides a good description of the mean evolution of the nuclear collective motion but fails to describe the fluctuating dynamics of the collective motion. The authors, employing the Balian and Vénérioni formula (it is referred to as TDRPA in [49]), calculated the dispersion of the primary fragment distributions, and obtained a very good agreement with the experimental results. Apparently, due to a technical difficulty of the approach, the authors interpret the experimental data of the $^{58}\text{Ni} + ^{60}\text{Ni}$ collisions, with the result of the calculations of the symmetric $^{60}\text{Ni} + ^{60}\text{Ni}$ collision at the same $E_{c.m.}/V_B$ value, where V_B is the corresponding barrier height.

II. THEORETICAL APPROACH

Here, we undertake a study for the same experimental data for $^{58}\text{Ni} + ^{60}\text{Ni}$ system by employing the stochastic mean-field (SMF) approach [53]. The SMF approach goes beyond the mean-field approximation by incorporating the mean-field fluctuations into the description. The approach relies on an ensemble of mean-field events specified with quantal and thermal fluctuations at the initial state. It is possible to project the SMF on macroscopic variables which provide a much easier description of the dissipation and fluctuation mechanism in terms of the relevant macroscopic variables. The relevant macroscopic variables evolve according to the generalized Langevin description characterized by a set of quantal transport coefficients. As described in Refs. [54–56], the transport coefficients are determined entirely by the occupied TDHF wave functions. They include quantal effects due to the shell structure, contain the full collision geometry and involve no adjustable parameters.

III. RESULTS

Here, we perform calculations for the nucleon exchange mechanism for range of impact parameters leading to deep-inelastic collisions. In this case, due to the di-nuclear configuration of the collision, the relevant macroscopic variables are the number of neutron and protons on either side of the window plane. Since ^{58}Ni is deformed, we carry out calculations for side and tip configurations of ^{58}Ni nucleus. As an example, Fig. 1 shows the density profile of the $^{58}\text{Ni} + ^{60}\text{Ni}$ at the center of mass energy of $E_{c.m.} = 135.6$ MeV and the impact parameter $b = 5.2$ fm for the initial side orientation of ^{58}Ni, at times 300, 750 and 1250 fm/c. The dynamical symmetry axis of the di-nuclear system is determined by the principle axis of the mass quadrupole moment tensor. The window plane is perpendicular to the symmetry axis and passing through the minimum density slice. The neutron and proton numbers on one side of the di-nuclear system (we refer to as projectile-like fragment) is determined by integrating the local density on
FIG. 1. (color online) Density profile of the 58Ni + 60Ni at the center of mass energy $E_{c.m.} = 135.6$ MeV and the impact parameter $b = 5.2$ fm in the side configuration, at times 300 (a), 750 (b) and 1250 fm/c (c).

one side of the window plane. From the Langevin equations of the neutron N^λ and proton Z^λ numbers of the projectile-like fragments in each event, we can deduce a set of coupled differential equations for the co-variances $\sigma_{NN}^2(t) = (N^\lambda - N)^2$, $\sigma_{ZZ}^2(t) = (Z^\lambda - Z)^2$, and $\sigma_{NZ}^2(t) = (N^\lambda - N)(Z^\lambda - Z)$. Here, $N = \bar{N}^\lambda$ and $Z = \bar{Z}^\lambda$ are mean values of the neutron and proton numbers, λ indicates the event label and the bar denotes the average over the ensemble generated in the SMF simulations. The coupled differential equations for the co-variances are given by Eqs. (17–19) in Ref. [55], which involve the neutron $D_{NN}(t)$ and proton $D_{ZZ}(t)$ diffusion coefficients and the derivatives of drift coefficients. These set of coupled equations for covariances are also familiar from the phenomenological nucleon exchange model, and they were derived from the Fokker-Planck equation for the fragment neutron and proton distributions in deep-inelastic heavy-ion collisions [57–59].

For numerical calculations we employ the TDHF code of Umar et al. [60,61]. The computations are carried out in a box with size of $70 \times 30 \times 50$ fm3. The initial separation of the nuclei is taken as 30 fm. The SLy4d [62] Skyrme interaction is used. We evaluate the diffusion coefficients using the Eq. (37) in Ref. [55] and determine the derivative of the drift coefficients around their mean values from the one-sided drift path as described in Ref. [54]. Figure 2 shows neutron (solid lines) and proton (dotted lines) diffusion coefficients at the center of mass energy $E_{c.m.} = 135.6$ MeV and the impact parameter $b = 5.2$ fm in 60Ni + 60Ni collisions (a) and in 58Ni + 60Ni collisions in the side configuration (b). The fluctuations in the behavior of the diffusion coefficients are partly due to the effect of the shell structure and partly due to the effect of the Pauli blocking of the occupied single particle states. We note that, the contact time in

FIG. 2. (color online) Neutron (solid lines) and proton (dotted lines) diffusion coefficients at the center of mass energy $E_{c.m.} = 135.6$ MeV and the impact parameter $b = 5.2$ fm in 60Ni + 60Ni collisions (a) and in 58Ni + 60Ni collisions in the side configuration (b).
the collision of \(^{60}\text{Ni} + ^{60}\text{Ni}\) is about 600 fm/c, which is shorter than the contact time of about 800 fm/c in the side collision of the \(^{58}\text{Ni} + ^{60}\text{Ni}\) system. Figure 3 shows the one-sided mean drift path at the center of mass energy \(E_{\text{c.m.}} = 135.6\) MeV and the impact parameter \(b = 5.2\) fm in \(^{60}\text{Ni} + ^{60}\text{Ni}\) collisions (a) and in \(^{58}\text{Ni} + ^{60}\text{Ni}\) collisions in the side configuration (solid line) and in the tip configuration (dashed line) (b). Here \(n = N_0 - N_1\) and \(z = Z_0 - Z_1\). The quantity \((N_0, Z_0)\) indicates the equilibrium values of neutron and proton numbers which are \((32, 28)\) for \(^{60}\text{Ni} + ^{60}\text{Ni}\) and \((31, 28)\) for \(^{58}\text{Ni} + ^{60}\text{Ni}\). The quantity \((N_1, Z_1)\) indicates the neutron and proton numbers of the fragment which are increasing due to gaining flux from its partner. Figure 4 shows the co-variances in the collision of \(^{60}\text{Ni} + ^{60}\text{Ni}\) in the upper panel (a) and in the collision of \(^{58}\text{Ni} + ^{60}\text{Ni}\) in the side geometry (b) at the center of mass energy \(E_{\text{c.m.}} = 135.6\) MeV and the impact parameter \(b = 5.2\) fm, or equivalently initial orbital angular momentum \(\ell = 73h\). Neutron-neutron \(\sigma^2_{NN}\), proton-proton \(\sigma^2_{ZZ}\), and neutron-proton \(\sigma^2_{NZ}\) co-variances are indicated by solid, dashed and dotted lines, respectively. Since for the side geometry of the \(^{58}\text{Ni} + ^{60}\text{Ni}\) system, contact time is longer than the spherical \(^{60}\text{Ni} + ^{60}\text{Ni}\) system, even though the center of mass energy and the impact parameters are nearly the same, the co-variances are slightly larger in the \(^{58}\text{Ni} + ^{60}\text{Ni}\) system. The mass number variance is determined as \(\sigma_A^2 = \sigma_{NN}^2 + \sigma_{ZZ}^2 + 2\sigma_{NZ}^2\). In the upper panel of Fig. 5 (a), we compare the result of SMF calculations (solid line) for the mass number dispersion per unit nucleon \(\sigma_{MR} = \sigma_A/\AA T\), where \(\AA T\) is the total mass number of the system, with the calculations carried out in the TDRPA (dashed line with dots) framework as a function of the impact parameters in the collision of the system \(^{60}\text{Ni} + ^{60}\text{Ni}\) at the same center of mass energy \(E_{\text{c.m.}} = 135.6\) MeV. Even though the same Skyrme force, SLy4d, is used in both calculations, the SMF calculations give up to 30\% larger value than the TDRPA results for the dispersion in the impact parameter interval \(b = (5.2-5.6)\) fm. There are two issues in relation with the results presented in Fig. 5 (a). In the SMF approach the co-variances are determined by solving a set of coupled differential equations given

![Fig. 3](image)

![Fig. 4](image)
by Eqs. (17-19) in Ref. [55]. These coupled differential equations involve the neutron and proton diffusion coefficients and the derivatives of the drift coefficients with respect to the neutron and proton numbers of one side of the di-nuclear partner around their mean values. The TDHF can only determine the evolution of the mean mass and charge asymmetries. It is not possible to calculate the derivatives of the drift coefficients with respect to the neutron and proton numbers in the TDHF description. As described in Refs. [54,55], we develop an approximate method to calculate the derivatives of the drift coefficients: We parameterize the potential energy surface of the di-nuclear complex in (N-Z) plane in terms of two parabolic forms, one of the parabolas is parallel to the valley of the stability and the other parabola is perpendicular to the stability line [54,55]. The parameters of these parabolic potential energies are determined from the mean-drift path in the case of asymmetric systems and the one-sided drift path in the cases of the symmetric systems. A great advantage of this approach, with the help of the Einstein relation, is that it provides an analytical determination of the derivatives of drift coefficients. However, in particular in the symmetric collisions, as a result of the systematic error for determining the parameters of the potential energy surface, the method may give about 10% larger reduced dispersion for small impact parameters. Currently we are trying to improve this aspect of the calculations. The second issue in Fig. 5 (a) is connected with the TDRPA calculations. In the table presented in the supplementary material of the Ref. [49], at a very small impact parameters range of Δb = (5.13–5.25) fm, the reduced dispersion takes a nearly sudden drop from σMR = 0.06 to σMR = 0.03, except a large value σMR = 0.06 of the reduced dispersion at b = 5.15 fm, which is not indicated in Fig. 5 (a). Apparently, there are also numerical issues in the TDRPA calculations at small impact parameters. The lower panel of Fig. 5 (b) shows a comparison of the SMF calculations of σMR = σAA/AF for the side (solid line) and the tip (dashed line) configurations with data as a function of the impact parameters. There are four data points that are reported in Fig. 3 of Ref. [49]. These points are indicated in the figure including experimental error bars. The SMF calculations with the side configurations provide a better fit to the data. The data presented in the Fig. 1 in Ref. [49] represents the cumulative mass distribution of the binary fragments. Unfolding the data to extract the reduced mass width with the help of the TDHF trajectory, in particular with small impact parameters is strongly model dependent. We believe that, in particular the extraction of the reduced mass dispersions σMR = 0.06 and σMR = 0.04 at the nearly the same impact parameter b = 5.20 fm should be re-examined more carefully.

The stochastic Langevin dynamics of a set of macroscopic variables is equivalent to the Fokker-Planck description of the distribution function of the macroscopic variables [63-65]. When the driving potential energy has a parabolic form, distribution function is a correlated Gaussian of macroscopic variables. Here, the macroscopic variable is the mass number A of projectile-like fragment. For a given impact parameter b or the initial orbital angular momentum ℓ, the fragment mass distribution is given by a Gaussian function,

\[
F_\ell(A) = \frac{1}{\sqrt{2\pi} \sigma_{AA}(\ell)} \exp \left[-\frac{1}{2} \left(\frac{A-A(\ell)}{\sigma_{AA}(\ell)} \right)^2 \right],
\]

where \(A(\ell)\) and \(\sigma_{AA}(\ell)\) denote the mean value and the dispersion of the mass number in the collision with initial orbital angular momentum \(\ell\). In order to calculate the mass distribution in the collision \(^{58}\text{Ni} + ^{60}\text{Ni}\) at center of mass energy \(E_{\text{c.m.}} = 135.6\) MeV, we average the Gaussian distribution given by Eq. (1) over a range of initial orbital angular momentum \(\ell_0 \leq \ell \leq \ell_m\), where \(\ell_0 = 73\hbar\) is the lowest initial orbital which does not lead to fusion and \(\ell_m = 96\hbar\) is the maximum angular momentum corresponding to the detector resolution limit. The mass distribution of the primary fragment is given by the weighted average of the Gaussian functions,

\[
P(A) = \frac{\eta}{\sum_{\ell}(2\ell+1)} \sum_{\ell}(2\ell+1) F_\ell(A),
\]

where \(\eta\) is a normalization constant. The solid and dashed lines in Fig. 6 show the yield obtained from the SMF calculations which are averaged over the tip and side configurations.
The experimental data is indicated by the dotted line. Since
the system is very close to symmetry, the mass asymmetry
reaches the equilibrium value in a very short time interval. In
Eq. (2) we take the equilibrium value $A = 59$ for each initial
orbital angular momentum in the interval where the summation
is carried out. We determined the normalization constant η
by matching the peak value of the experimental yield at
$A = 59$ by matching the peak value of the experimental yield at
$A = 59$. The experimental yield indicated by the dotted line,
is deduced from the part (a) of the Fig. 1 in Ref. [49] with the
data taken at the energy $E_{\text{c.m.}}/V_B = 1.4$. In order to check
the sensitivity of the range of impact parameters on the fragment
cumulative yield, we carry out the calculation of Eq. (2) for
the cumulative yield by taking the upper limit of the range
of the initial angular momentum as $\ell_m = 90\hbar$. The result is
shown by dashed line in Fig. 6, and we observe no appreciable
difference in the integrated mass yield. In the calculation of
the integrated yield, we employ a sharp cut of approximation.
We determine the critical angular momentum $\ell_0 = 73\hbar$ for fu-
sion from the TDHF calculations, and assume multi-nucleon
exchange occurs above this critical angular momentum. In
principal transition should take place smoothly from fusion to
the multi-nucleon transfer process. If the SMF calculations
are carried out by generating an ensemble of events, it should
be possible to observe partial transition from fusion to multi-
nucleon transfer process. However, in the present diffusion
approach, it is not possible to describe the smooth transition
from fusion to the multi-nucleon transfer mechanism.

IV. CONCLUSIONS

In conclusions, we find that the quantal diffusion descrip-
tion deduced from the SMF approach provide a good descrip-
tion for the fragment mass distribution observed in $^{58}\text{Ni} + ^{60}\text{Ni}$
collisions at the center of mass energy $E_{\text{c.m.}} = 135.6$ MeV
without any adjustable parameters except the parameters of
the effective Skyrme interaction in the TDHF code. Since in
small impact parameter range, the mass dispersions take rather
large values, the partition of the integrated data into small im-
 pact parameter range may introduce large experimental errors.
The sizable discrepancy between the SMF calculations and
the data from the part (b) of Fig. 5 may arise from such parti-
tioning of the integrated experimental data, in particular in the
small impact parameter range.

ACKNOWLEDGMENTS

S.A. gratefully acknowledges the IPN-Orsay and the Mid-
dle East Technical University for warm hospitality extended to
him during his visits. S.A. also gratefully acknowledges use-
ful discussions with D. Lacroix, and very much thankful to F.
Ayik for continuous support and encouragement. This work is
supported in part by US DOE Grants Nos. DE-SC0015513
and DE-SC0013847, and in part by TUBITAK Grant No.
117F109.

[1] Ph. Chomaz, M. Di Toro, and A. Smerzi, “Pre-equilibrium ef-
effects on properties of hot giant-dipole resonances,” Nucl. Phys.
tion following multinucleon transfer processes with radioactive
T. E. Drake, A. Galindo-Uribarri, V. P. Janzen, J. Jonkman,
S. W. Marshall, S. M. Mullins, J. M. Nieminen, D. C. Radford,
J. L. Rodriguez, J. C. Waddington, D. Ward, and J. N. Wil-
son, “Pre-equilibrium Effects in the Population of Giant Dipole
developments in heavy-ion fusion reactions,” Rev. Mod. Phys.
“Possible effect of transfer reactions on heavy ion fusion at sub-
Lemmon, J. P. Lestone, J. C. Mein, J. O. Newton, H. Timmers,
N. Rowlcy, and A. T. Kruppa, “Clear signatures of specific
inelastic and transfer channels in the distribution of fusion bar-

