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The dependence of the nuclear level density on intrinsic deformation is an important input to
dynamical nuclear processes such as fission. Auxiliary-field Monte Carlo (AFMC) method is a powerful
method for computing state densities. However, the statistical distribution of intrinsic shapes is not
readily accessible due to the formulation of AFMC in a spherical configuration-interaction shell-model
approach. Instead, theory of deformation up to now has largely relied on a mean-field approximation
which breaks rotational symmetry. We show here how the distributions of the intrinsic quadrupole
deformation parameters can be calculated within the AFMC method, and present results for a chain
of even-mass samarium nuclei (148Sm, 150Sm, 152Sm, 154Sm) which includes spherical, transitional,
and strongly deformed isotopes. The method relies on a Landau-like expansion of the Helmholtz free
energy in invariant polynomials of the quadrupole tensor. We find that an expansion to fourth order
provides an excellent description of the AFMC results.
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deformation

I. INTRODUCTION

Nuclear level densities are an essential ingredient in the
Hauser-Feshbach theory [1] of statistical nuclear reactions.
In particular, models of fission require the knowledge of
the level density as a function of nuclear deformation.

The auxiliary-field Monte Carlo (AFMC) method, also
known in nuclear physics as shell-model Monte Carlo
(SMMC) [2–6], is a powerful technique for microscopic
calculations of the nuclear density of states within the
configuration-interaction (CI) shell model approach [7, 8].
The method has been applied to nuclei as heavy as the
lanthanides [9, 10].

Deformation is usually introduced in a mean-field ap-
proximation that breaks rotational invariance. It is thus
a challenge to calculate deformation-dependent statistical
properties in the CI shell model framework which pre-
serves rotational invariance without invoking a mean-field
approximation.

In Refs. [11, 12] the distribution of the axial quadrupole

operator Q̂20 =
∑
i

[
2ẑ2i − (x̂2i + ŷ2i )

]
in the laboratory

frame was calculated using AFMC and shown to exhibit
model-independent signatures of deformation. The use
of quadrupole invariants [13, 14], which in turn can be

related to lab-frame moments of Q̂20 (up to fifth order in
deformation), allowed the extraction of effective intrinsic
deformation parameters β, γ. Quadrupole invariants have
been used in the context of the CI shell model for nuclei
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near shell closure; see Refs. [15, 16] and references cited
therein. Here we introduce a novel method to calculate
the complete intrinsic-frame quadrupole distribution us-
ing a Landau-like expansion of its logarithm. This enables
us to compute the nuclear state density1 as a function
of excitation energy Ex and intrinsic deformation β, γ.
We present our method in the context of the AFMC ap-
proach to the CI shell model. However, this method can
in principle be applied in the context of other CI shell
model approaches. CI-type calculations have been car-
ried out in heavy deformed nuclei within the symplectic
model [19] and a symplectic no-core shell-model approach
has recently been developed to carry out large-scale cal-
culations in medium-mass nuclei [20, 21].

We demonstrate our approach for an isotopic chain
of even-mass samarium nuclei, 148,150,152,154Sm. Signa-
tures of the crossover from spherical to deformed nuclei
in this isotopic chain have been observed in AFMC calcu-
lations [10, 12].

This article is organized as follows. In Sec. II, we briefly
review the AFMC method and its application to calculate
the distribution P (q20) of the axial quadrupole operator

Q̂20 in the laboratory frame. In Sec. III, we introduce
a novel method to determine the quadrupole tensor dis-
tribution as a function of temperature in the intrinsic
frame. In Sec. IV, we use the saddle-point approximation
to convert this temperature-dependent intrinsic frame dis-
tribution to density of states ρ(Ex, β, γ) as a function of

1 The term “level density” is sometimes used as a synonym for
“density of states” or “state density”, more often as synonym for
“spin-dependent level density” [17]. The calculations reported here
are only for the state density. However, they can be extended
to obtain spin-dependent level densities through the use of spin
projection methods in AFMC [18].
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the excitation energy Ex and intrinsic deformation param-
eters β, γ. Finally, in Sec. V we summarize our method
in a more general context. The AFMC data files and the
scripts used to generate our results are included in the
Supplemental Material depository of this article [22].

II. QUADRUPOLE PROJECTION IN THE
LABORATORY FRAME

A. The AFMC method

We briefly review the AFMC method, emphasizing the
elements that are essential for our current application.
For a recent review of AFMC in nuclei, see Ref. [6].

A nucleus at finite temperature T and Hamiltonian Ĥ
is described by the Gibbs ensemble exp(−Ĥ/T ), which
can also be viewed as a propagator in imaginary time
β = 1/T .2 The AFMC method is based on the Hubbard-
Stratonovich (HS) transformation [23], in which the prop-

agator exp(−βĤ) is decomposed into a superposition of

one-body propagators Ûσ that describe non-interacting
nucleons in external time-dependent auxiliary fields σ

e−βĤ =

∫
D[σ] GσÛσ , (1)

where Gσ is a Gaussian weight.
Using Eq. (1), the thermal expectation value of an

observable Ô is given by

〈Ô〉 =
Tr(Ôe−βĤ)

Tr e−βĤ
=

∫
D[σ] Gσ Tr(ÔÛσ)∫
D[σ] Gσ Tr Ûσ

. (2)

In AFMC, the expectation value in (2) is evaluated by
Monte Carlo sampling of the auxiliary fields σ according
to the positive-definite weight function Wσ = Gσ|Tr(Ûσ)|.
We define the W -weighted average of a quantity Xσ by

〈Xσ〉W ≡
∫
D[σ]WσXσΦσ∫
D[σ]WσΦσ

, (3)

where Φσ ≡ Tr Ûσ/|Tr Ûσ| is the Monte Carlo sign func-
tion. The thermal expectation in (2) can then be written
as

〈Ô〉 =

〈
Tr(ÔÛσ)

Tr Ûσ

〉
W

. (4)

Denoting the sampled auxiliary-field configurations by σk,
the expectation value in (4) is estimated by

〈Ô〉 ≈
∑
k 〈Ô〉σk

Φσk∑
k Φσk

, (5)

2 Here we adopt natural units kB = 1, and use the circumflex to
denote operators in the many-particle Fock space.

where 〈Ô〉σ = Tr(ÔÛσ)/Tr Ûσ.
An essential feature of the AFMC is that the many-

particle traces Tr can be reduced to expressions involving
only matrix algebra in the single-particle space. For
example, the grand-canonical trace of the many-particle
propagator Ûσ in Fock space is given by

Tr Ûσ = det(1 + Uσ) , (6)

where Uσ is the matrix representation of Ûσ in the single-
particle space.

Since nuclei are finite-size systems, it is important to
evaluate the traces in Eq. (4) in the canonical ensemble,
i.e., at fixed particle number. We use discrete Fourier
transforms to project on fixed number of protons and
neutrons [8, 24].

B. Q̂20 projection

The mass quadrupole tensor operator is defined by

Q̂2µ =

√
16π

5

∫
d3rρ̂(r)r2Y2µ(θ, ϕ) , (7)

where ρ̂(r) =
∑
i δ(ri − r) is the total single-particle

density (including both protons and neutrons) at point r.
The lab-frame probability distribution for measuring

the eigenvalue q20 of the axial quadrupole operator Q̂20 =∑
i[2ẑ

2
i − (x̂2i + ŷ2i )] is defined by

P (q20) =
1

Z
Tr[δ(Q̂20 − q20)e−βĤ ] , (8)

where Z = Tr e−βĤ is the partition function. Expanding
in a basis of many-particle eigenstates

P (q20) =
1

Z

∑
n

δ(q20 − qn)
∑
m

〈qn|em〉2e−βem , (9)

where qn and |qn〉 are the eigenvalues and eigenstates of

the operator Q̂20, and em and |em〉 are the eigenvalues

and eigenstates of the Hamiltonian Ĥ. Since Q̂20 does
not commute with the Hamiltonian, 〈qn|em〉 6= δn,m.

In AFMC, we calculate (8) from

P (q20) =
1

〈Φσ〉W

〈
Tr[δ(Q̂20 − q20)Ûσ]

Tr Ûσ
Φσ

〉
W

, (10)

where the δ function is represented by a Fourier trans-
form. In practice, we divide the range q20 ∈ [−qmax, qmax]
to 2M + 1 equal intervals and evaluate the quadrupole-
projected trace using a discretized Fourier decomposition

Tr[δ(Q̂20−q20)Ûσ] ≈ 1

2qmax

M∑
k=−M

e−iϕkq20 Tr(eiϕkQ̂20Ûσ) ,

(11)
where ϕk = πk/qmax. To aid the otherwise slow thermal-

ization and decorrelation of the moments 〈Q̂n20〉 with the
pure Metropolis sampling, we augment the generated field
configurations by rotating them through a certain set of
angles [11, 12].
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III. QUADRUPOLE DISTRIBUTIONS IN THE
INTRINSIC FRAME

A. Intrinsic variables

For given values of the quadrupole tensor q2µ in the
laboratory frame,3 we define dimensionless quadrupole
deformation parameters α2µ from the liquid drop model

q2µ =
3√
5π
r20A

5/3α2µ , (12)

where r0 = 1.2 fm and A is the mass number of the
nucleus. For each set α2µ we can define an intrinsic frame
whose orientation is specified by the Euler angles Ω and
in which the quadrupole deformation parameters α̃2µ are

α̃21 = α̃2−1 = 0, α̃22 = α̃2−2 = real . (13)

The intrinsic quadrupole deformation variables α̃2µ are
parametrized by the usual coordinates (β, γ) defined by 4

α̃20 = β cos γ ; α̃22 = α̃2,−2 =
1√
2
β sin γ . (14)

The transformation from the lab-frame α2µ to the intrinsic
variables β, γ,Ω is characterized by the metric∏

µ

dα2µ =
1

2
β4| sin(3γ)| dβ dγ dΩ . (15)

B. Distribution of the quadrupole deformation in
the intrinsic frame

We denote the distribution of the quadrupole deforma-
tion tensor in the laboratory frame at temperature T by
P (T, α2µ). This distribution is invariant under rotations
and therefore depends only on the intrinsic variables β, γ,
i.e., P (T, α2µ) = P (T, β, γ).

Using the metric (15), and integrating over the spatial
angles Ω, the probability distribution in the intrinsic
variables β, γ is given by

4π2β4| sin(3γ)|P (T, β, γ) . (16)

Quadrupole invariants can be constructed by taking
products of the second-rank tensor α2µ that couple to
total angular momentum zero. Up to fourth order, these
invariants are given by

α · α = β2 , (17a)

3 The quadrupole operators commute in coordinate space but not
in the truncated CI shell model space. However, the effect of their
non-commutation is small and will be ignored in the following.

4 Following established conventions, we denote both the inverse
temperature and the axial deformation parameter by the same
symbol β. The intended meaning should be clear from the context
at each occurrence throughout this article.

[α× α]2 · α = −
√

2

7
β3 cos(3γ) , (17b)

(α · α)2 = β4 . (17c)

We note that there are other ways to construct a fourth
order quadrupole invariant, e.g., [α × α]2 · [α × α]2 and
[α× α]4 · [α× α]4 but they are all proportional to β4.

1. Landau-like expansion

Since the distribution P (T, α2µ) is invariant under ro-
tations, its logarithm can be expanded in quadrupole
invariants. In the spirit of Landau theory of shape tran-
sitions [25, 26], we carry out this expansion to fourth
order using the invariants in Eqs. (17)5. This leads to the
following probability distribution

P (T, β, γ) = N (T )e−a(T )β2−b(T )β3 cos(3γ)−c(T )β4

, (18)

where a, b, and c are temperature-dependent parameters
and N is a normalization constant. The expectation
value of a function f(β, γ) that depends on the intrinsic
deformation parameters β, γ is given by

〈f(β, γ)〉L ≡ 4π2

∫
dβ dγ β4| sin(3γ)|f(β, γ)P (T, β, γ) ,

(19)
where we have used the metric (15) and the subscript L de-
notes an expectation value with respect to the distribution
(18) obtained in a Landau-like expansion. In calculating
the expectation values of the three quadrupole invariants
in (17), the integration over γ can be done analytically;
see Eqs. (A3) and (A4) in Appendix A. The normalization
constant N in (18) is determined as a function of a, b, c
from the normalization condition 〈1〉L = 1.

The expansion parameters a, b, and c in Eq. (18)
are determined from the expectation values of the three
quadrupole invariants. The latter can be calculated in
AFMC using their relations to moments of the axial
quadrupole operator Q̂20 in the laboratory frame

〈Q̂n20〉 =

∫
dq20 q

n
20P (q20) (20)

as follows [11, 12]

〈Q̂ · Q̂〉 = 5〈Q̂2
20〉, (21a)

〈[Q̂× Q̂]2 · Q̂〉 = −5

√
7

2
〈Q̂3

20〉, (21b)

5 In the Landau theory developed in Refs. [25, 26], the Helmholtz
free energy F (T, β, γ) was expanded in the invariants to fourth
order and the quadrupole shape fluctuations were described by
the distribution ∝ exp[−F (T, β, γ)/T ]. Thus lnP (T, β, γ) corre-
sponds to −F (T, β, γ)/T up to an additive constant.
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and

〈(Q̂ · Q̂)2〉 =
35

3
〈Q̂4

20〉 . (21c)

Matching the quadrupole invariants computed using
the distribution (18) with the invariants determined from
the AFMC calculation using Eqs. (21), we obtain a set of
nonlinear equations for a, b, c

χ2〈β2〉L = 5〈Q̂2
20〉 , (22a)

χ3〈β3 cos(3γ)〉L =
35

2
〈Q̂3

20〉 , (22b)

χ4〈β4〉L =
35

3
〈Q̂4

20〉 , (22c)

where χ = 3√
5π
r20A

5/3 [see Eq. (12)].

2. Validation of the Landau-like expansion

In deriving the distribution (18), we expanded the
logarithm of P (T, β, γ) in the quadrupole invariants to
fourth order. In principle, higher-order invariants also
contribute to this expansion. To test the validity of the
fourth-order expansion, we can rewrite the distribution
(18) in terms of the lab-frame deformation variables α2µ

P (T, α2µ) = N (T )e−a(T )α·α+b(T )
√

7
2 [α×α]2·α−c(T )(α·α)2 ,

(23)
where we have used Eqs. (17). We can then integrate
over the four variables α2µ with µ 6= 0 to determine the
marginal distribution P (T, α20) and thus the distribu-
tion P (q20) of the axial quadrupole q20 in the laboratory
frame. This distribution can be compared directly with
the AFMC distribution P (q20).

In Fig. 1 we compare the distribution P (q20) calculated
from the marginal distribution of Eq. (23) (solid line) with
the corresponding AFMC distribution (open circles) for
154Sm. At the resolution seen in the figure, the agreement
is perfect. We conclude that the fourth-order Landau-like
expansion is sufficient at all temperatures.

C. Applications to samarium isotopes

We demonstrate our method for computing the intrinsic
shape distribution P (T, β, γ) for the family of even-mass
samarium isotopes 148−154Sm, which are known to exhibit
a crossover from spherical to deformed shapes [10, 27, 28].

Our single-particle shell-model space includes the or-
bitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, and 1f7/2 for
protons, and the orbitals 0h11/2, 0h9/2, 1f7/2, 1f5/2, 2p3/2,
2p1/2, 0i13/2, and 1g9/2 for neutrons. The single-particle
energies and wave functions were obtained from a Woods-
Saxon potential plus a spin-orbit interaction using the

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

(c) T = 0.07 MeV

P
(q
20
) 
(1
0
-3

 
fm
-2
)

q20 (10
3
 fm2)

 0

 0.5

 1

 1.5
(b) T = 1.1 MeV

P
(q
20
) 
(1
0
-3

 
fm
-2
)

 0

 0.5

 1

 1.5
(a) T = 4.0 MeV

P
(q
20
) 
(1
0
-3

 
fm
-2
)

Figure 1. The lab-frame axial quadrupole distribution P (q20)
for 154Sm at three distinct temperatures: (a) a high temper-
ature T = 4 MeV, (b) an intermediate temperature T = 1.1
MeV near the shape transition, and (c) a low temperature
T = 0.07 MeV. Solid lines are the marginal distributions
P (q20) obtained from the Landau-like expansion of the in-
trinsic shape distribution [Eq. (18)], with parameters a, b, c
determined from the AFMC moments of q2,0. Open circles
are the direct AFMC calculation of P (q2,0) using Eqs. (10)
and (11). For clarity, only every fifth AFMC point has been
included in the plot. The uncertainties in the AFMC results
are smaller than the size of the symbols.

parameters of Ref. [17]. The interaction is a multipole-
multipole interaction obtained by expanding a separable
surface-peaked interaction up to the hexadecupole term,
plus a monopole pairing interaction using the coupling
parameters given in Ref. [10].

We estimate the statistical errors in our AFMC re-
sults using the block jackknife method (the method is
described briefly in Appendix B). At each temperature
T , we use an imaginary-time slice of ∆β = 1/64 MeV−1

and 5120 Monte Carlo samples, consisting of 128 inde-
pendent Monte Carlo walkers (on different CPUs), each
composed of 40 samples taken after thermalization. We
chose a sufficiently large number of decorrelation sweeps
for the samples to be generally decorrelated. However,
we observed that for the more deformed isotopes, decorre-
lation of the moments 〈Q̂n20〉 was difficult to achieve. To
obtain the correct uncertainty estimates, we chose in our
jackknife method each independent 40-sample walker as
a block over which we averaged all observables used in
the next steps of the analysis.
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Figure 2. The second [panel (a)], third [panel (b)] and fourth

[panel (c)] moments of Q̂20, evaluated from the AFMC distri-
butions P (q20) as function of temperature T for the even-mass
samarium isotopes 148−154Sm. The error bars are included
but are typically smaller than the size of the symbols.

1. Moments of Q̂20 and the expansion parameters a, b, c

The second, third and fourth moments of Q̂20 evaluated
from the AFMC distribution P (q20) are shown in Fig. 2 as

a function of temperature. In these results, we scaled Q̂20

by a factor of 2 to account for core polarization effects.
At any given temperature T , the moments increase with
the number of neutrons.

We determined the parameters a, b, and c by solving
Eqs. (22) to match the quadrupole invariants computed
using the distribution (18) with the AFMC moments

〈Q̂n20〉 calculated from P (q20) for n = 2, 3, 4. Figure 3
shows the expansion coefficients a, b, c as a function of
temperature for the four even-mass samarium isotopes
148−154Sm.
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Figure 3. The expansion parameters a [panel (a)], b [panel (b)],
and c [panel (c)] vs. temperature T for the even-mass samarium
isotopes 148−154Sm, as determined from the moments in Fig. 2
by solving Eqs. (22) (open circles). The solid lines describe
the smoothing spline interpolation (see text).

2. Intrinsic quadrupole shape distributions at fixed
temperature

In Fig. 4 we show log10 P (T, β, γ) in the β−γ plane for
the four even-mass samarium isotopes 148−154Sm at a low
temperature T = 0.07 MeV, an intermediate temperature
T = 0.8 MeV and a high temperature T = 4 MeV. The
maxima of these distributions mimic the shape transitions
that are usually observed in a mean-field approximation
but within CI shell model approach that takes into ac-
count correlations in full. The signature of a thermal
shape transition from prolate to spherical as the tem-
perature increases is clearly seen in 152,154Sm which are
dominated by a prolate deformation in their ground state.
In contrast, no thermal shape transition is observed in the
spherical nucleus 148Sm. The transitional nucleus 150Sm
undergoes a thermal shape transition, although it is not as
distinctive as for the heavier samarium isotopes. We also
observe a quantum shape transition of the ground state
(described here by the low-temperature distributions at
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T = 0.07 MeV) from a spherical shape to a prolate shape
as we increase the number of neutrons between 148Sm
and 154Sm.

In Fig. 5 we show on a logarithmic scale the distribu-
tions P (T, β, γ = 0) as a function of the axial deformation
β (negative values of β describe axial deformations with
γ = π/3) for 148−154Sm at the same temperatures as in
Fig. 4. Following the maxima of these distributions, we
again observe that 148Sm is spherical at all temperatures
while 152,154Sm exhibit a clear shape transition from a
prolate to a spherical shape as the temperature increases.
The transitional nucleus 150Sm also undergoes a thermal
shape transition but the shape distribution at the inter-
mediate temperature is rather flat for a wide range of β
values, reflecting coexistence of shapes.

The topography of the distribution P (T, β, γ) of
Eq. (18) is completely determined by the dimensionless
parameter τ = ac/b2 [25, 26].6 In Fig. 6 we show τ
as a function of temperature T for the four even-mass
samarium isotopes 148−154Sm. In the Landau theory of
quadrupole shape transitions the spherical and prolate
maxima of P (T, β, γ) coexist as local maxima within the
interval τ = [0, 9/32] (shown as the “mixed” region in
the figure) with a first-order shape transition between
the spherical and prolate shapes occurring at τ = 1/4.
According to our AFMC calculations, these shape tran-
sitions in 150Sm, 152Sm and 154Sm occur, respectively,
at temperatures of T = 0.81 MeV, T = 1.03 MeV, and
T = 1.29 MeV. The corresponding transition tempera-
tures according to the HFB calculations of Ref. [12] are
T = 0.74 MeV, T = 0.94 MeV, and T = 1.10 MeV, re-
spectively. It is interesting to note that 148Sm almost
undergoes a shape transition as the temperature decreases
to just below 0.5 MeV. However, as the temperature con-
tinues to decrease, τ increases again since the pairing in-
teraction, which dominates at low temperatures in 148Sm,
favors a spherical shape.

To facilitate the presentation of our results, we divide
the (β, γ)-plane into three distinct regions, which repre-
sent spherical, prolate, and oblate shapes as in Fig. 7 with
β0 = 0.15 separating between the spherical and deformed
regions. The probability of each of the three regions is de-
termined by integrating the probability density P (T, β, γ)
with the corresponding metric over each of the regions

Pshape(T ) = 4π2

∫
shape

dβ dγ β4| sin(3γ)|P (T, β, γ) . (24)

Here “shape” refers to any of the three regions — spherical,
prolate, or oblate — as defined in Fig. 7. The sum of
these three shape probabilities is equal to 1.

The integrals over the intrinsic deformation coordinates
β, γ were approximated using the compound trapezoidal

6 The stationary points of the distribution (18) are axial with γ = 0
(β > 0) or γ = π/3 (β < 0), and hence can be characterized (up
to an overall scale) by a single parameter τ .

rule on a 20× 20 mesh extending up to βmax = 0.3. An
exception to this were the integrals in 〈βm cosn(3γ)〉L,
for which the integration over γ is done analytically; see
Eqs. (A3) and (A4) in Appendix A. This number of mesh
points and the cutoff βmax were determined by requiring
convergence of the integrals for the samarium isotopes;
other nuclei may require a larger number of mesh points
and/or a larger cutoff βmax.

In Fig. 8 we show the spherical (open circles), prolate
(solid circles) and oblate (pluses) shape probabilities as
a function of temperature T for the four samarium iso-
topes 148−154Sm. In the isotopes that are deformed in
their ground state (150−154Sm) we observe a competition
between the prolate and spherical shapes. Prolate shapes
dominate at low temperatures and spherical shapes at
higher temperatures. The prolate and spherical shape
probabilities cross at a temperature that is higher for the
heavier isotopes which are more strongly deformed in their
ground state. In 148Sm, the spherical region dominates at
all temperatures but its probability has a minimum at a
temperature of T ∼ 0.4 MeV that is close to the temper-
ature where the parameter τ has a minimum (see Fig. 6).
The contribution from oblate shapes is small for all four
isotopes. In the most deformed isotope 154Sm, it slightly
exceeds the spherical probability at low temperatures.

IV. STATE DENSITIES VERSUS INTRINSIC
DEFORMATION

In this section we discuss the calculation of the state
density as a function of intrinsic deformation β, γ and
excitation energy Ex from the intrinsic shape distribution
P (T, β, γ).

A. Saddle-point approximation

The state density ρ(E, β, γ) at energy E and given
intrinsic deformation parameters β, γ is given by the in-
verse Laplace transform of the shape-dependent partition
function Z(T, β, γ)

ρ(E, β, γ) =
1

2πi

∫ i∞

−i∞
d(1/T ) eE/TZ(T, β, γ) . (25)

We calculate the shape-dependent partition function from
the distribution P (T, β, γ) using the relation

P (T, β, γ) =
Z(T, β, γ)

Z(T )
, (26)

where Z(T ) is the total partition function calculated from
the thermal energy E(T ) as in Ref. [7].

To determine the average state density at a given de-
formation, we evaluate the integral in (25) using the
saddle-point approximation

ρ(E, β, γ) ≈ eS(T,β,γ)√
2πT 2C(T, β, γ)

. (27)
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Figure 4. Distributions P (T, β, γ) (shown in a logarithmic scale) in the β − γ plane for the even-mass samarium isotopes at
different temperatures: a high temperature T = 4 MeV [panels (a)-(d)], an intermediate temperature T = 0.8 MeV [panels
(e)-(h)], and a low temperature T = 0.07 MeV [panels (i)-(l)]. A thermal shape transition from prolate to spherical shape is
evident for all but the spherical nucleus 148Sm as the temperature increases. A quantum shape transition from a spherical to a
prolate shape is also observed near the ground state (T = 0.07 MeV) as the neutron number increases.
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Figure 5. The distribution P (T, β, γ = 0) (shown on a logarithmic scale) as a function of the axial deformation parameter β for
the even-mass samarium isotopes (a) 148Sm, (b) 150Sm, (c) 152Sm, and (d) 154Sm. The solid, dashed and doted lines correspond,
respectively, to temperatures of T = 0.07 MeV, T = 0.8 MeV, and T = 4 MeV.

Here

S(T, β, γ) = lnZ(T, β, γ) + E/T (28)

and

C(T, β, γ) = T
∂S(T, β, γ)

∂T
(29)

are, respectively, the entropy and heat capacity at the
corresponding deformation β, γ. The temperature T in
(28) and (29) is determined as a function of energy E and
deformation β, γ from the saddle-point condition

E(T, β, γ) ≡ T 2 ∂ lnZ(T, β, γ)

∂T
= E . (30)
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shapes while τ > 9/32 describes spherical shapes. The inter-
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Figure 7. Partition of the (β, γ) plane into spherical, prolate,
and oblate regions.

Substituting T = T (E, β, γ) in (28) and (29), we deter-
mine the state density in (27) as a function of E, β, γ.
The corresponding excitation energy is calculated from
Ex = E − E0, where E0 is the ground-state energy.

The shape-dependent partition function Z(T, β, γ)
depends on the expansion coefficients a, b, c through
Eqs. (26) and (18). Consequently, the shape-dependent
entropy in (28) depends on the first derivatives
da/dT, db/dT and dc/dT , while the heat capacity in (29)
depends on both the first derivatives and the second
derivatives d2a/dT 2, d2b/dT 2 and d2c/dT 2. The explicit
expressions are given in Appendix A.

In analogy with Eq. (24), we can define state densities
that correspond to each of the three deformation regions
in Fig. 7 by integrating the deformation-dependent state
density over the corresponding regions

ρshape(E) = 4π2

∫
shape

dβ dγ β4| sin(3γ)|ρ(E, β, γ) . (31)

B. Application to samarium isotopes

1. Spline fits for a, b, c and their temperature derivatives

The coefficients a, b, and c which characterize the proba-
bility distribution (18) and which are determined from the
AFMC moments of q20 in the laboratory frame, have sta-
tistical errors that are significantly amplified when taking
the first derivatives and especially their second deriva-
tives with respect to temperature. These derivatives are
required in the calculation of the shape-dependent energy,
entropy and heat capacity in Eqs. (30), (28), and (29).
To reduce the uncertainties in the derivatives of a, b, c, we
fit a cubic smoothing spline for each of the coefficients,
and use this spline for both interpolation between the
sampled temperature values and for the derivatives.

The least-squares spline fit is made for each of the
coefficients a, b, and c as function of 1/T . The number of
knot points for the spline is chosen so that the reduced
χ2 of the fit for each coefficient is between 1 and 1.5. In
our computations, this translated to seven (150Sm), ten
(148,152Sm), or eleven (154Sm) spline segments. The knot
points are placed so that the points extracted from the
moments are partitioned between the spline intervals as
evenly as possible. We set natural boundary conditions
for the spline, i.e. the second derivative is required to
vanish at both ends. The cubic spline fits are shown by
the solid lines in Fig. 3.

In Fig. 9, we show the derivatives da/dT, db/dT and
dc/dT as a function of 1/T obtained from the fitted splines
(dashed lines with shaded bands describing the statistical
error) and compared to the derivatives calculated by direct
numerical differentiation (open circles with statistical
errors).

2. Shape-dependent state densities

Using Eq. (26), the shape-dependent energy E(T, β, γ)
in the saddle-point condition Eq. (30), and the shape-
dependent entropy S(T, β, γ) and heat capacity C(T, β, γ)
in Eqs. (28) and (29) can be written as

E(T, β, γ) = E(T ) + T 2 ∂

∂T
lnP (T, β, γ) , (32)

S(T, β, γ) = S(T ) + lnP (T, β, γ) + T
∂

∂T
lnP (T, β, γ) ,

(33)
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and

C(T, β, γ) =C(T ) + 2T
∂

∂T
lnP (T, β, γ)

+ T 2 ∂2

∂T 2
lnP (T, β, γ) .

(34)

Here E(T ) is the total thermal energy calculated in

AFMC from 〈Ĥ〉, S(T ) = lnZ(T ) +E(T )/T is the canon-
ical entropy and C(T ) is the canonical heat capacity
C(T ) = dE/dT . To reduce the AFMC uncertainty of
C(T ), we employed the method introduced in Ref. [29],
in which the same auxiliary-field configurations are used
at inverse temperatures β ± δβ to compute the numer-
ical derivative of the total energy (taking into account
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correlated errors).
Figure 10 shows the total state densities ρ(Ex) as a

function of excitation energy Ex for the four samarium
isotopes, calculated directly from the thermal energy E(T )
as in Ref. [7].
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Figure 10. The total state densities ρ(Ex) computed directly
from the thermal energy E(T ) for the even-mass samarium
isotopes 148−154Sm.

Figure 11 presents the main result of this work, show-
ing (for the four even-mass samarium isotopes 148−154Sm)
the ratios ρshape(Ex)/ρ(Ex) of the shape-dependent state
densities ρshape(Ex) in Eq. (31) to the total state density
ρ(Ex) vs. excitation energy Ex for each of the three de-
formation regions of Fig. 7 (i.e., spherical, prolate and
oblate). In the isotopes that are deformed in their ground
state 150,152,154Sm, the prolate state density dominates at
low excitation energies but the spherical state density ex-
ceeds it at above a certain excitation energy that becomes
higher for the heavier isotopes.7 In the well-deformed
nuclei 152,154Sm the probability of the prolate shape is
close to 1 up to excitations of Ex ∼ 5 MeV, while in the
transitional nucleus 150Sm it is only ∼ 0.8 up to Ex ∼ 3
MeV. In the spherical nucleus 148Sm, the spherical state
density dominates at all excitation energies although the
prolate shape region makes a significant contribution. The
contribution of the oblate shape is relatively small in all
four isotopes.

While the excitation energy dependence of
ρshape(Ex)/ρ(Ex) in Fig. 11 exhibits an overall
similarity to the temperature dependence of the shape
probabilities Pshape(T ) in Fig. 8, there are also noticeable

7 We note that the exact excitation energy for which the crossing
of the spherical and prolate densities occur depends on the value
of β0 used to differentiate between the spherical and deformed
regions in Fig. 7.

differences. In particular for 148Sm and 150Sm, the
dependence of ρshape(Ex)/ρ(Ex) on Ex at low excitations
is considerably weaker than the dependence of Pshape(T )
on T at low temperatures. We note that in converting
shape probabilities P (T, β, γ) to shape-dependent level
densities ρ(E, β, γ), we have to use the saddle-point
condition (30), and thus the temperature T which
corresponds to a given excitation energy Ex depends
on the deformation (β, γ). Also for this reason, the
statistical errors in Fig. 11 are correlated between nearby
excitation energies. The statistical errors in Fig. 8
are uncorrelated at different temperatures, since the
Monte Carlo calculations at different temperatures are
independent.

3. Sum rule

Integrating the shape-projected state density over all
shapes β, γ in the intrinsic frame should yield the total
state density and can thus be compared with the total
state density ρ(Ex) of Fig. 10. Alternatively, the sum
of the three shape probabilities (spherical, prolate and
oblate regions in Fig. 7) should satisfy the sum rule∑

shapes

ρshape(Ex)/ρ(Ex) = 1 . (35)

These sums are shown for the four samarium isotopes by
the solid lines in the figure with error bars indicated by
the shaded gray bands. We find that the sum rule (35)
is satisfied within the error bars in all four isotopes. We
note that since the saddle-point approximation is used
separately for each deformation β, γ, the sum rule is not
expected to be satisfied exactly and provides a non-trivial
test of the accuracy of our method.

V. CONCLUSION

We have presented a method for computing the nuclear
state density as a function of the intrinsic quadrupole
deformation and excitation energy that preserves the
rotational invariance of the Hamiltonian. Specifically, the
AFMC method is applied in the framework of the CI
shell model to compute the distribution of the axial mass
quadrupole in the laboratory frame [defined by Eq. (8)]
which is then used to extract the intrinsic properties.

In broader terms, this article describes a method to cal-
culate energy-dependent statistical properties of a finite-
size many-particle system that undergoes a symmetry-
breaking phase transition in the thermodynamic limit.
This phase transition is described by order parameters
which in the low-temperature phase break a certain sym-
metry of the Hamiltonian. The challenge is to calculate
the thermal distribution of the order parameters within a
framework that preserves the exact symmetry and with-
out invoking a mean-field approximation. In the following,
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we assume that the order parameters are described by
one-body operators that transform according to an ir-
reducible representation of the corresponding symmetry
group. The important ingredients of the method are:

a) Construction of the marginal distribution with respect
to one or more components of the order parameter by us-
ing a projection on the corresponding one-body operator.

b) Determination of the expectation values of low-order
polynomial combinations of the order parameters that are
invariant under the symmetry group. This is accomplished
by relating these invariants to moments of the marginal
distributions constructed in a).

c) Expansion of the logarithm of the thermal distribution
of the order parameters (i.e., the Helmholtz free energy)
in the invariants described in b). Such a Landau-like
expansion is justified by the invariance of the this distri-
bution under transformations of the symmetry group and
is carried out up to the lowest order that is sufficient to de-
scribe the phase transition. The temperature-dependent
parameters that appear in this expansion are determined
from the expectation values of the invariants calculated
in b).

In the particular example discussed in this article,
the symmetry group is the rotation group and the or-
der parameters are the quadrupolar deformation tensor
q2µ = χα2µ in the laboratory frame. The marginal distri-
bution is that of the axial quadrupole q20 in the laboratory
frame defined by Eq. (8). This marginal distribution has
been calculated using Eqs. (10) and (11) as described in
Refs. [11, 12]. We have used the AFMC computational
scheme, but for smaller model spaces it could also have
been done by standard matrix configuration-interaction
methods.

We found remarkable simplifications in carrying out
part b) for our application in that the marginal distri-
bution P (q20) of a single component of the quadrupolar
tensor was sufficient to determine the expectation val-

ues of the three lowest order invariants [see Eqs. (21)].
It is also remarkable that these three invariants turn
out to be sufficient to construct a Landau-like expansion
of lnP (T, α2µ) [see Eq. (23)] that describes the actual
marginal distribution P (q20) to a very good accuracy (see
Fig. 1).

The example we studied in this article, the samarium
isotope chain, is a paradigm for the shape transition be-
tween spherical and deformed nuclei. As is known experi-
mentally and supported by many studies using mean-field
approximations, the lighter isotopes are spherical in their
ground state and the heavier isotopes become progres-
sively more deformed [27, 28]. Besides confirming this
behavior, our method describes how the deformation be-
comes progressively weaker at higher excitation energies.
In this respect, we confirm earlier studies showing that the
transition from deformed to spherical shapes as the exci-
tation energy increases is rather gradual and far from that
characterized by a first-order phase transition predicted
by pure mean-field theory.
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Appendix A: Logarithmic derivatives of the
shape-dependent probability P (T, β, γ)

The evaluation of the shape-dependent energy, entropy
and heat capacity in Eqs. (32), (33) and (34) require the
first and second logarithmic derivatives of the distribution
P (T, β, γ) with respect to temperature. Here we express
these derivatives in terms of derivatives of the Landau-like
expansion coefficients a, b, c.

∂

∂T
lnP (T, β, γ) =

∂a

∂T

(
〈β2〉L − β2

)
+
∂b

∂T

(
〈β3 cos(3γ)〉L − β3 cos(3γ)

)
+
∂c

∂T

(
〈β4〉L − β4

)
(A1)

and

∂2

∂T 2
lnP (T, β, γ) =

∂2a

∂T 2

(
〈β2〉L − β2

)
+
∂2b

∂T 2

(
〈β3 cos(3γ)〉L − β3 cos(3γ)

)
+
∂2c

∂T 2

(
〈β4〉L − β4

)
+

(
∂a

∂T

)2(
〈β2〉2L − 〈β4〉L

)
+

(
∂b

∂T

)2(
〈β3 cos(3γ)〉2L − 〈β6 cos2(3γ)〉L

)
+

(
∂c

∂T

)2(
〈β4〉2L − 〈β8〉L

)
+ 2

∂a

∂T

∂b

∂T

(
〈β2〉L〈β3 cos(3γ)〉L − 〈β5 cos(3γ)〉L

)
+ 2

∂a

∂T

∂c

∂T

(
〈β2〉L〈β4〉L − 〈β6〉L

)
+ 2

∂b

∂T

∂c

∂T

(
〈β3 cos(3γ)〉L〈β4〉L − 〈β7 cos(3γ)〉L

)
,

(A2)

where the expectation values 〈. . .〉L are defined as in (19).

The integration over γ in calculating the expectation
values 〈βm cosn(3γ)〉L can be done analytically. This
yields the formula

〈βm cosn(3γ)〉L =

∫∞
0

dβ e−aβ
2−cβ4

Cnm(β)∫∞
0

dβ βe−aβ2−cβ4 sinh(bβ3)
, (A3)

where the functions Cnm(β) for n = 0, 1, 2 are given by

C0m = βm+1 sinh(bβ3) , (A4a)

C1m =
1

b
βm−2 sinh(bβ3)− βm+1 cosh(bβ3) , (A4b)

and

C2m = βm+1

[(
1 +

2

b2β6

)
sinh(bβ3)

− 2

bβ3
cosh(bβ3)

]
.

(A4c)

The remaining quadratures over the axial deformation
parameter β are calculated numerically.

Appendix B: The jackknife method

The jackknife technique is a well-known method for
variance and bias estimation in statistics. Here we sum-
marize the method, referring to Refs. [30–32] for more
detail.

While the original motivation for the jackknife was to
reduce the bias of statistical estimates, the procedure
has an additional major advantage in case of complex
computations. It does not require computing analytical
partial derivatives, in contrast to the traditional error
propagation formula based on Taylor’s expansion. The
jackknife method is particularly useful when the analytic
form of the partial derivatives is intractable.

The jackknife method for estimating the uncertainty
is straightforward. Given a function f(x, y, · · · ) and N
independent and identically distributed (i.i.d.) samples
of its variables (x, y, · · · ), one first leaves out the i-th
sample (xi, yi, · · · ) of the data (for each i at a time), and
computes the averages

(x(i), y(i), · · · ) =

(
1

N − 1

∑
j 6=i

xj ,
1

N − 1

∑
j 6=i

yj , · · ·
)
(B1)

for i = 1, . . . , N . One then computes the function f for
each of these N averages

f (i) = f(x(i), y(i), · · · ) . (B2)

Finally, one uses the N values f (i) to estimate the average
value of the function

fJ =
1

N

∑
i

f (i) , (B3)
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and its standard error

δfJ =

√
N − 1

N

∑
i

(
fJ − f (i)

)2
. (B4)

We note that (B4) differs from the usual error formula
(which is used for uncorrelated values) by the factor N −1
because the values f (i), computed from averages of sets
differing from one another only by one sample, are highly
correlated.

The jackknife procedure is consistent with the standard
error formula obtained by using the Taylor expansion for
the function f (see, e.g., in Ref. [30]). If the samples are
correlated but can be divided into equally sized uncor-
related blocks of samples, the jackknife method can be
applied to block averages of the variables x, y, . . . (this is
the case where each block is generated by a Monte Carlo
walk on a different CPU). It is easy to show that this
is equivalent to leaving out consecutive non-overlapping
blocks of samples (instead of single samples), also known
as delete-k jackknife.
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