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In most simulations of nonrelativistic nuclear systems, the wave functions found solving the many-
body Schrödinger equations describe the quantum-mechanical amplitudes of the nucleonic degrees
of freedom. In those simulations the pionic contributions are encoded in nuclear potentials and elec-
troweak currents, and they determine the low-momentum behavior. In this work we present a novel
quantum Monte Carlo formalism in which both relativistic pions and nonrelativistic nucleons are
explicitly included in the quantum-mechanical states of the system. We report the renormalization
of the nucleon mass as a function of the momentum cutoff, an Euclidean time density correlation
function that deals with the short-time nucleon diffusion, and the pion cloud density and momen-
tum distributions. In the two nucleon sector we show that the interaction of two static nucleons at
large distances reduces to the one-pion exchange potential, and we fit the low-energy constants of
the contact interactions to reproduce the binding energy of the deuteron and two neutrons in finite
volumes. We show that the method can be readily applied to light-nuclei.

I. INTRODUCTION

Modern nuclear theory is characterized by a series of
attempts to rigorously bridge the gap between quarks
and gluons, the degrees of freedom of quantum chro-
modynamics (QCD), and the confined phase in which
massive particles such as mesons and baryons can be re-
garded as the constituents of matter. Nuclear effective
field theories (EFTs) are employed to connect QCD to
low-energy nuclear observables. EFTs exploit the sep-
aration between the “hard” (M , typically the nucleon
mass) and “soft” (Q, typically the exchanged momen-
tum) momentum scales. The active degrees of freedom at
soft scales are hadrons whose interactions are consistent
with QCD. Effective potentials and currents are derived
in a systematic expansion in Q/M from the most general
Lagrangian constrained by the QCD symmetries. Chiral-
EFT, which is best suited to describe processes character-
ized by Q ' mπ, exploits the (approximate) chiral sym-
metry of QCD and its pattern of spontaneous symmetry
breaking to derive consistent nuclear potentials and cur-
rents, and to estimate their uncertainties [1, 2].

Potentials and electroweak currents derived within
chiral-EFT are the main input to ab-initio many-body
methods that are aimed at solving the many-body
Schrödinger equation associated with the nuclear Hamil-
tonian [3–8]. These schemes rely on the assumption that
processes like the one meson exchange are well approxi-
mated by an instantaneous interaction, and that the me-
son degrees of freedom can be integrated out and their
contribution is encoded in nuclear potentials and elec-
troweak currents, determining their low-momentum be-
havior. Not much attention has been devoted so far
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to the development of techniques capable of including
mesonic degrees of freedom in these many-body calcu-
lations. There are several reasons for this choice. The
main one is that effects arising from not assuming an in-
stantaneous interaction are believed to be unessential for
the derivation of nuclear potentials. Without such as-
sumption, many-body interactions would automatically
be generated already at leading order when integrating
out the meson fields. The fact that, when neglecting
dynamical effects in the meson fields, three- and many-
body interactions appear at next-to-next-to leading or-
der (N2LO) suggests that such effects can be considered
to be sub-leading at any order. However, such assump-
tions have never been rigorously tested in an ab-initio
scheme for a many-nucleon system. This work devises a
formalism in which testing these assumptions is straight-
forward.

Even if few-nucleon sector calculations show that in-
stantaneous pion interactions are justified, our approach
can still be useful to compute quantities unavailable to
other methods. One advantage of our technique is the
ability to directly measure the pion degrees of freedom.
For example, in theories where the pions are integrated
out current operators need to have the pion contributions
calculated from the underlying theory to give two- or
more-body contributions. These pion contributions are
immediate in the present work. Treating pions as dynam-
ical degrees of freedom allows us, for example, to tackle
the pion-production region in electron- and neutrino-
nucleus scattering, which is unaccessible by standard nu-
clear many-body methods in which pion degrees of free-
dom are implicit.

Another possible usage of our approach, including the
case where the instantaneous pion interactions approxi-
mation is valid, is as a computational tool. For exam-
ple, in electronic structure calculations, methods such
as Car-Parrinello [9] are often used. These solve the
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Born-Oppenheimer electronic ground-state, i.e. the in-
stantaneous electron approximation, by promoting the
electronic degrees of freedom to be dynamic variables,
and both the ions and the electronic degrees of freedom
are included in the time-dependent solutions. Similarly,
even if the pion degrees of freedom are well described
by an instantaneous Born-Oppenheimer approximation,
our scheme would be an efficient way to solve for this
Born-Oppenheimer state.

Most of the progress to account for explicit pions into
nuclear EFT has been made so far by using lattice meth-
ods. Whilst the inclusion of pion fields into the La-
grangians is straightforward, dynamical pions bring noise
and sign problems in lattice Monte Carlo calculations
[10]. One alternative approach is to use static pion aux-
iliary fields [11, 12], where time derivatives are neglected,
and thus pions couple to nucleons only through spatial
derivatives. Since these pion fields are instantaneous,
this eliminates the self-energy diagrams responsible for
mass renormalization. It is noteworthy to point out that
there is a condensed matter analog to the axial-vector
coupling between one nucleon and the pions, the polaron
[13]. However, the coupling between the electron and
the phonons is scalar, and the bosonic degrees of free-
dom can be integrated out explicitly. Quantum Monte
Carlo (QMC) methods have been successful at tackling
both problems [14].

In this paper, we devise a QMC framework in which
both relativistic pions and nonrelativistic nucleons are
explicitly included in the quantum-mechanical states of
the system. From a given order chiral-EFT Lagrangian,
the corresponding Hamiltonian is derived, and the pion
fields are expressed in the Schrödinger representation.
The nuclear structure problem is written in terms of
the modes of the relativistic pion field, and of the po-
sition and spin-isospin degrees of freedom of the nucle-
ons. QMC techniques are employed to accurately solve
the corresponding Schrödinger equation, which is equiva-
lent to summing all Feynman diagrams originating from
a given order of the chiral-EFT Lagrangian. Resumma-
tion techniques are already employed in chiral-EFT. The
nucleon-nucleon (NN) system at low angular momenta
is characterized by a shallow bound state, the deuteron,
and large scattering lengths, which prevents the appli-
cability of standard chiral perturbation theory. Wein-
berg suggested to use perturbation theory to calculate
the irreducible diagrams defining the NN potential, and
apply it in a scattering equation to obtain the NN ampli-
tude [15]. Solving the scattering equation corresponds to
summing all diagrams with purely nucleonic intermedi-
ate states [2]. Diagrammatic resummation in chiral-EFT
is also needed to describe resonances in pion-pion scat-
tering that cannot be obtained in perturbation theory to
any finite order [16].

Before moving to larger systems, there are several non-
trivial questions arising when including pions in a QMC
calculation, that need to be addressed already for the one
and two nucleon cases. One of the major issues is the

assessment of finite size effects, since our calculations are
necessarily limited to nucleons and pions lying in a box of
side L with periodic boundary conditions. This naturally
introduces an infrared cutoff dependence which, together
with the ultraviolet cutoff we employ, affects the pion-
nucleon interaction.

In the single-nucleon sector, we study the energy-shift
of the nucleon mass as a function of the momentum cut-
off. We also compute the pion cloud density and momen-
tum distributions. In the NN sector, we first verified that
our results for two static nucleons correctly reduce to the
one-pion exchange potential at sufficiently large separa-
tion distance. We then fit the low-energy constants as-
sociated to the contact terms of the leading-order (LO)
chiral-EFT Lagrangian to describe the deuteron and two
neutrons in a finite volume.

This work is structured as follows. In Sec. II we in-
troduce our methodology, providing the explicit expres-
sions for the Lagrangian and Hamiltonian densities we
use throughout the manuscript. The Schrödinger repre-
sentation of the pion field is also presented, along with
related quantities, such as the pion cloud density and
the total charge of the system. Sec. III describes the
ingredients required for the quantum Monte Carlo calcu-
lations. These are the Hamiltonian for a fixed number
A of nucleons interacting with the pions, the form for a
trial wave function for these systems, and the modifica-
tions to the propagator sampling needed. We present an
efficient procedure to optimize our trial wave functions,
and a method to calculate observables that do not com-
mute with the Hamiltonian. In Sec. IV we present our
results and in Sec. V we summarize our work and give a
brief outlook. In the Appendices we list the conventions
adopted in this manuscript, we present a nonrelativistic
calculation of the nucleon self-energy at leading order,
and we investigate a different choice for the contact in-
teractions.

II. GENERAL FORMALISM

A. Chiral Lagrangian

The heavy baryon leading order chiral Lagrangian den-
sity in which only nucleon and pion degrees of freedom
are included reads [2]

L0 =
1

2
∂µπi∂

µπi −
1

2
m2
ππiπi +N†

[
i∂0 +

∇2

2M0

− 1

4f2π
εijkτiπj∂0πk −

gA
2fπ

τiσ
j∂jπi −M0

]
N

− 1

2
CS(N†N)(N†N)− 1

2
CT (N†σiN)(N†σiN) , (1)

where mπ is the pion mass, M0 is the bare nucleon mass,
fπ = 92 MeV is the pion decay constant, gA = 1.26 is
the nucleon axial-vector coupling constant, CS and CT
are low-energy constants, and i = x, y, z. Throughout
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this work we adopt the convention that repeated indices
imply the summation; additional conventions and nota-
tion details are reported in Appendix A. At leading order,
mπ is the physical pion mass, whereas M0 is regulariza-
tion dependent and must be properly tuned for a given
ultraviolet cutoff.

Establishing a rigorous power-counting scheme in chi-
ral effective field theory is currently a subject of debate
[17–21]. Our power counting gives an expansion in the
number of pion field variables, in this work truncated
at the quadratic level. This truncation then defines the
interaction between our degrees of freedom: pions and
nucleons. As in calculations in which nucleons are the
only active degrees of freedom, we solve the Schrödinger
equation for the states of our system using this truncated
interaction at all orders. Therefore, we consider this to
be a leading-order calculation. The nucleon kinetic en-
ergy has been promoted (as it is in other real-space in-
teractions) since, with the nucleons on a continuum, the
kinetic energy is required to have a well behaved Hamilto-
nian with physical states. In principle, going to higher or-
der is straightforward – higher order Lagrangians would
include more pion interactions. Since pions are bosons,
the computational complexity of the problem might in-
crease, but we do not expect any fundamental difficulties.
If other power counting methods were to be devised, we
foresee no major difficulty in modifying the techniques
described here for those possible future choices.

The conjugate momenta of the nucleon fields are de-
fined as

ΠN =
∂L0

∂(∂0N)
= iN†,

ΠN† =
∂L0

∂(∂0N†)
= 0, (2)

while for the pions,

Πk =
∂L0

∂(∂0πk)
= ∂0πk −

1

4f2π
εijkπjN

†τiN . (3)

The Hamiltonian can be written as a sum of three terms,

H = Hππ +HπN +HNN .

The pion Hamiltonian Hππ is given by

Hππ =

∫
d3x

1

2

[
Π2
i (x) + (∇πi(x))2 +m2

ππ
2
i (x)

]
, (4)

where the standard conventions adopted for the gradient
are given in Appendix A. The pion-nucleon interaction
Hamiltonian reads

HπN =

∫
d3x

[
gA
2fπ

N†(x)τiσ
j∂jπi(x)N(x)

+
1

4f2π
εijkπj(x)Πk(x)N†(x)τiN(x)

]
. (5)

The first term is the axial-vector pion-nucleon coupling,
and the second (referred to as the Weinberg-Tomozawa

term) is the contact interaction with two factors of
the pion field interacting with the nucleon at a single
point [22]. Finally, the nucleon Hamiltonian is given by

HNN =

∫
d3x
[
N†(x)

(
− ∇

2

2M0
+M0

)
N(x)

+
1

2
CSN

†(x)N(x)N†(x)N(x)+

1

2
CTN

†(x)σiN(x)N†(x)σiN(x)
]
. (6)

where CS and CT are two low-energy constants (LEC)
that have to be fitted against two-nucleon properties.

B. Pion fields in the Schrödinger picture

We work in the Schrödinger picture, where the pion
fields and their conjugate momenta are time independent,
and obey the canonical commutation relations,

[πi(x), πj(y)] = [Πi(x),Πj(y)] = 0,

[πi(x),Πj(y)] = iδijδ
(3)(x− y). (7)

Let us perform a plane-wave expansion in a box of size
L with periodic boundary conditions, implying that the
allowed momenta are discretized,

k =
2π

L
(nx, ny, nz), with ni = 0,±1,±2, . . . (8)

This discretization introduces an infrared cutoff on the
three-momentum of the pions, proportional to the inverse
of the size of the box. To avoid infinities, the theory is
regularized introducing an ultraviolet cutoff for the three-
momentum of the pions, such that k ≡ |k| ≤ kc. The
Fourier expansions read

πi(x) =
1√
L3

∑
k

πike
ik·x,

Πi(x) =
1√
L3

∑
k

Πike
ik·x . (9)

Since the fields are hermitian, the mode operators are

such that π†ik = πi−k and Π†ik = Πi−k. The canonical
commutation relations of Eq. (7) imply

[πik, πjk′ ] = [Πik,Πjk′ ] = 0,

[πik,Πjk′ ] = iδijδk−k′ . (10)

When expressed in terms of the pion modes, the free pion
Hamiltonian of Eq. (4) describes a collection of harmonic

oscillators with frequencies ωk =
√
k2 +m2

π,

Hππ =
∑
k

∑
i

[
1

2
Π2
ik +

1

2
ω2
kπ

2
ik

]
. (11)
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The latter can be quantized by defining the creation and
annihilation operators,

aik =
1√
2ωk

(ωkπik + iΠik)

a†ik =
1√
2ωk

(ωkπ
†
ik − iΠ

†
ik) , (12)

which are independent for each mode, and satisfy the
canonical commutation relations,

[aik, a
†
jq] = δijδkq . (13)

Using Eq. (12) to express πik and Πik in Eq. (9) in terms
of the creation and annihilation operators, we recover
the usual expansion for the pion field operator and its
conjugate momentum,

πi(x) =
1√
2L3

∑
k

1√
ωk

[
aike

ik·x + a†ike
−ik·x

]
,

Πi(x) =
−i√
2L3

∑
k

√
ωk

[
aike

ik·x − a†ike−ik·x
]
. (14)

In order to implement this formalism in our quantum
Monte Carlo algorithm, it is convenient to rewrite the
sum of Eq. (9) in such a way that k is included and −k
is not. Specifically, if kz 6= 0 then kz > 0; if kz = 0 and
ky 6= 0 then ky > 0; and if kz = ky = 0 then kx ≥ 0. Let
us define for k 6= 0,

πcik =
1√
2

(πik + πi−k),

πsik =
i√
2

(πik − πi−k), (15)

while for k = 0 we have πci0 = πi0/
√

2 and πsi0 = 0. Em-
ploying analogous definitions for the conjugate momenta,
the Fourier expansion of Eq. (9) reads

πi(x) =

√
2

L3

∑
k

′
[πcik cos(k · x) + πsik sin(k · x)],

Πi(x) =

√
2

L3

∑
k

′
[Πc
ik cos(k · x) + Πs

ik sin(k · x)] , (16)

where hereafter we adopt the convention of a primed
sum to indicate that it is over the set of k described
above. The commutation rules for πc,sik and Πc,s

ik follow
from those of Eq. (10). The only non-vanishing ones,
valid also for k = 0, are

[πcik,Π
c
jk′ ] = iδijδkk′

[πsik,Π
s
jk′ ] = iδijδkk′ , (17)

where we dropped the contribution proportional to δk−k′ ,
as in the primed sums these cases are excluded.

The pion Hamiltonian of Eq. (11) becomes

Hππ =
∑
k

′∑
i

[
1

2
Πc 2
ik +

1

2
Πs 2
ik

+
1

2
(k2 +m2

π)(πc 2ik + πs 2ik )

]
. (18)

In our simulations, in exact analogy to working in the
position operator eigenstates of the usual harmonic oscil-
lator, we work in the eigenbasis of the mode amplitude
operators, πc,sik . Wave functions which are the overlaps of
our states with this basis, represent the states. The mo-
mentum operators conjugate to πc,sik are the generators
of translations of these amplitudes, and therefore when
operating on a state represented in this basis, they give
the derivative of the wave function in the usual way,

Πc,s
ik → −i

∂

∂πc,sik
. (19)

Using the latter relation, the free pion Hamiltonian op-
erating on the state becomes the differential operator

Hππ =
∑
k

′∑
i

[
−1

2

∂2

∂πc 2ik
− 1

2

∂2

∂πs 2ik

+
1

2
(k2 +m2

π)(πc 2ik + πs 2ik )

]
, (20)

operating on the wave function.
The ground-state wave function for the pion modes is

analogous to that describing the positions of a collection
of quantum harmonic oscillators,

Ψ0(πc,s) = exp

[
−
∑
k

′∑
i

ωk
2

(πc 2ik + πs 2ik )

]
. (21)

where we use the symbol πc,s to denote the full set of πcik
and πsik. When pion-nucleon interactions are accounted
for in the Hamiltonian, the solution of the Schrödinger
equation is no longer in closed form. We will employ
QMC methods to tackle this problem when one and two
nucleons are present in the system under study.

We define the Cartesian isospin field

ψi(x) ≡ 1√
L3

∑
k

aike
ik·x, (22)

which obeys the commutation relations[
ψi(x), ψ†j (x

′)
]

= δij
1

L3

∑
k

eik·(x−x
′). (23)

In the limit of infinite ultraviolet cutoff, the latter expres-
sion tends to δ(3)(x−x′), as prescribed by the canonical
commutation relations. For a finite cutoff kc, the delta
function will be smeared over a volume proportional to
k−3c . The corresponding Cartesian isospin component
pion density operator is defined as

ρi(x) = ψ†i (x)ψi(x). (24)

We can also define density operators associated to differ-
ent charge states

ρπ+(x) =

[
ψ†x(x)− iψ†y(x)√

2

] [
ψx(x) + iψy(x)√

2

]
,
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ρπ−(x) =

[
ψ†x(x) + iψ†y(x)√

2

][
ψx(x)− iψy(x)√

2

]
,

ρπ0(x) = ψ†z(x)ψz(x) . (25)

The densities are evaluated by using Eq. (12) and
Eq. (15) to transform the expressions above into a form
suitable to be evaluated with wave functions containing
the amplitudes of the pion modes.

Unlike standard Green’s function Monte Carlo
(GFMC) calculations [8, 23], the sum of the nucleon
charges in our QMC simulations,

QN =

A∑
i=1

(
1 + τ iz

)
2

, (26)

is not conserved configuration by configuration. This is
due to the fact that the total charge of the system in-
cludes that of the charged pions,

Q = QN +Qπ, (27)

with Qπ ≡ (N+ −N−). The charged pion number oper-
ators are defined as

N± =
∑
k

a†±ka±k, (28)

where the creation and annihilation operators – see Ap-
pendix A for our conventions on the fields associated with
charged pions – are given by

a†±k =
1√
2

[
a†xk ∓ ia

†
yk

]
,

a±k =
1√
2

[axk ± iayk] . (29)

while for the neutral pion,

a0k = azk . (30)

The pion-charge is evaluated expressing the Cartesian
isospin creation and annihilation operators in terms of
the modes of the pion field

It simplifies some expressions to combine the isospin
components into vectors in the usual way and define the
pion mode amplitudes and their conjugate momenta as
the isospin vectors,

Πc,s
k = Πc,s

xkx̂+ Πc,s
yk ŷ + Πc,s

zk ẑ,

πc,sk = πc,sxk x̂+ πc,syk ŷ + πc,szk ẑ. (31)

The pion charge operator becomes

Qπ = −ẑ ·
∑
k

′
[πck ×Πc

k + πsk ×Πs
k] , (32)

or as a differential operator on a wave function,

Qπ = i
∑
k

′
[
πcxk

∂

∂πcyk
− πcyk

∂

∂πcxk

+ πsxk
∂

∂πsyk
− πsyk

∂

∂πsxk

]
. (33)

III. QUANTUM MONTE CARLO

With our periodic box and the pion momentum cutoff,
we now have a finite number of degrees of freedom, and
can now use real-space quantum Monte Carlo methods to
solve for the ground and low lying excited state properties
of A nucleons. Our goal here is to be able to adapt vari-
ational Monte Carlo (VMC), GFMC, and Auxiliary field
diffusion Monte Carlo (AFDMC) [24] methods to include
the pion degrees of freedom. We therefore need to write
our Hamiltonian in the A nucleon sector along with the
pion fields, find good initial variational trial wave func-
tions, and describe how we include the additional terms
in the propagators. Note that, at variance with nuclear
lattice approaches [12], we adopt a continuum represen-
tation for the eigenstates of the position operator.

A. The quantum Monte Carlo Hamiltonian

We write the pion operators using Eq. (31) and the
momentum operator conjugate to the particle position
operator, ri, as P i. Since the number of nucleons is con-
served, the Hamiltonian for the sector with A nucleons
and the pion field can be written down immediately,

H = HN +Hππ +HAV +HWT ,

HN =

A∑
i=1

[
P 2
i

2MP
+MP + βKP

2
i + δM

]

+

A∑
i<j

δkc(ri − rj)[CS + CTσi · σj ],

Hππ =
1

2

∑
k

′ [
|Πc

k|2 + ω2
k|πck|2 + |Πs

k|2 + ω2
k|πsk|2

]
,

HAV =

A∑
i=1

gA
2fπ

√
2

L3

∑
k

′
{σi · k [τ i · πsk cos(k · ri)

− τ i · πck sin(k · ri)]} ,

HWT =

A∑
i=1

1

2f2πL
3
τ i ·

[
∑
k

′
cos(k · ri)πck ×

∑
q

′
cos(q · ri)Πc

q

+
∑
k

′
cos(k · ri)πck ×

∑
q

′
sin(q · ri)Πs

q

+
∑
k

′
sin(k · ri)πsk ×

∑
q

′
cos(q · ri)Πc

q

+
∑
k

′
sin(k · ri)πsk ×

∑
q

′
sin(q · ri)Πs

q

]
, (34)

where the sums over i and j are over the nucleons, MP is
the physical nucleon mass, and δkc(ri − rj) is a smeared
out delta function for the contact term, which we take
to be consistent with the cutoff employed for the pion
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modes,

δkc(r) =
1

L3

(
1 + 2

∑
k

′
cos(k · r)

)
. (35)

Although we report the low-energy constants for this
choice of the smeared out delta function in Sec. IV D,
we also considered a different functional form, commonly
used in local chiral-EFT potentials [25], see Appendix C.
There are, of course, many other possible choices for the
functional form of the smeared out delta function. We
are aware that there might be shortcomings in employ-
ing Eq. (35) [26, 27], and the naive dimensional analy-
sis power counting that is behind them [17, 18]. How-
ever they are mitigated by the fact we focus on deuteron
properties, which has a relatively small d-wave compo-
nent, and we employ fixed pion masses. This regulator
choice will be thoroughly analyzed, and might be revis-
ited, for larger nuclei. The low-energy constants CS and
CT need to be adjusted to reproduce two-nucleon observ-
ables. We fit them using the deuteron and two neutrons
in Sec. IV D.

Notice that we have two distinct mass counter terms
in HN . We call βK the kinetic mass counter term and
δM the rest mass counter term. The values are not sim-
ply related because we are employing a cutoff on the
three-momentum of the pion modes that explicitly breaks
Lorentz invariance. The kinetic energy bare mass is given
by MP

1+2βKMP
, while the bare rest mass is MP + δM .

Our resulting field theory Hamiltonian is in the same
form as the Hamiltonian of a nonrelativistic many-body
quantum system, and all standard methods for such a
system can be applied.

In this work we will sometimes neglect the Weinberg-
Tomozawa HWT term in our initial QMC calculations.
In general we have found that it is small enough to be
included perturbatively. This term is known to be rel-
evant only in the isovector channel, and the s-wave πN
scattering length is relatively small [28, 29]. These as-
sumptions have to be carefully checked when studying
A > 3 systems, and most likely will not hold for p-shell
and larger nuclei.

B. Trial wave functions

Analogously to standard real-space QMC methods, we
first construct an accurate ground state trial wave func-
tion for the Hamiltonian. In GFMC or AFDMC meth-
ods, the trial function performs the dual role of lowering
the statistical errors and constraining the path integral
to control the fermion sign or phase problem. For small
numbers of nucleons where the fermion sign/phase prob-
lem is under control, our QMC methods will give exact
results within statistical errors independent of the trial
function. A good trial function in that case keeps the
statistical errors small.

Standard GFMC and AFDMC methods use the posi-
tion eigenbasis for the nucleons. Here we add to this nu-
cleon basis the eigenbasis of the pion mode amplitudes,
and write our trial wave functions to be

ΨT (R,S,Π) = 〈RSΠ|ΨT 〉, (36)

where R represents the 3A coordinates of the nucleons,
Π represents the 3Nk pion mode amplitudes, and S the
spin-isospin of the nucleons.

If we assume the pion motion is significantly faster
than the nucleons, then a Born-Oppenheimer approxi-
mation where we initially neglect the nucleon mass can
guide our construction of a trial wave function for the
full dynamical system. We therefore initially analyze
the problem without the nucleon kinetic energy and the
Weinberg-Tomozawa terms in the Hamiltonian, assuming
that they are smaller than the axial-vector pion-nucleon
terms. Defining

Bc
k ≡

√
2

L3

gA
fπ

A∑
i=1

τ i sin(k · ri)σi · k,

Bs
k ≡ −

√
2

L3

gA
fπ

A∑
i=1

τ i cos(k · ri)σi · k, (37)

allows us to complete the squares in these terms of the
Hamiltonian, yielding

Hππ +HAV =
1

2

∑
k

′ [
|Πc

k|2 + ω2
k|π̃ck|2 + |Πs

k|2 + ω2
k|π̃sk|2

− 1

4ω2
k

(
|Bc

k|2 + |Bs
k|2
)]

(38)

with π̃c,sk ≡ π
c,s
ik −B

c,s
k /2ω2

k.
The π̃c,sk operators do not commute because of the nu-

cleon spin-isospin operators contained in Bc,s
k . If instead

these spin-isospin operators were c-numbers, we could
immediately write the ground-state wave function for the
pions. This suggests taking the form for trial wave func-
tion to be

〈RSΠ|ΨT 〉 = 〈RSΠ| exp

[
−
∑
k

′ωk
2

(|π̃ck|2 + |π̃sk|2)

]
|Φ〉 .

(39)
where |Φ〉 is an A nucleon model state. Writing in terms
of the original pion coordinates, this wave function be-
comes

〈RSΠ|ΨT 〉 = 〈RSΠ| exp

−∑
k

′

ωk
2

(|πck|2 + |πsk|2)

− αk
2ωk

(πck ·Bc
k + πsk ·Bs

k)

+
1

4
ωkα

2
kG

2
k

A∑
i<j

τ i · τ jσi · kσj · k cos(k · rij)

 |Φ〉 .
(40)
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where rij = ri − rj ,

Gk =
1

ω2
k

gA
fπ

√
2

L3
, (41)

and we drop terms that only contribute to the overall
normalization. We have also introduced the variational
parameters αk, which rescale the coupling for different
momenta.

Eq. (40) is the standard form we will take for our
trial functions. The two-body terms do not contain pion
amplitudes; they look like two-body correlations typi-
cally included in variational calculations, and therefore
they could be replaced or modified with other correlation
forms that may be more convenient for calculations. The
pion-nucleon correlation terms look very much like the
AFDMC propagators, as it would be expected from the
fact that the auxiliary fields in AFDMC can be thought
of as replacing the real pion fields.

C. Nucleon model states

To complete our trial wave functions, we need to con-
struct good trial nuclear model states, |Φ〉 of Eq. (40).
We again are guided by previous experience with GFMC
and AFDMC calculations. The trial functions there are
typically built from operator correlated linear combi-
nations of antisymmetric products of single-particle or-
bitals. For example, in nuclear matter the trial function
is a Jastrow product of pair-wise operator correlations
operating on a Slater determinant of orbitals. Here we
will begin by assuming that the pion-nucleon correlations
and the associated terms in Eq. (40) will include the long-
range correlations.

Initially, we build our nuclear model state in the same
way. However, we include only short-range operator cor-
relations; the remaining terms in Eq. (40) will include
long-range correlations. For the calculations described
here, we need to construct model states for one- and two-
nucleon systems. Since a single nucleon only interacts
with the pion field, its model state |Φ〉 in Eq. (40) is a
spin-isospin state, i.e. proton up, proton down, neutron
up, neutron down, with no spatial dependence.

Two nucleons in our Hamiltonian interact via pion ex-
change and from the short range smeared-out contact
interactions. A reasonably good trial wave function for
s-shell nuclei that contains the major correlations can be
constructed with a Jastrow operator product multiplying
an antisymmetric product of spin-isospin states. The Jas-
trow factors go to zero exponentially to properly match
the separation energy of one nucleon. At short range, the
Jastrow factors solve the two-body Schrödinger equation.

Local chiral-EFT interactions [25, 30–32] at LO are
usually written in the form

VNN (rij) =

6∑
p=1

vp(rij)O
p
ij , (42)

where the radial functions vp(rij) are fully specified in
Ref. [25]. The six operators Opij are 1, σi · σj , Sij =

3(σi · r̂ij)(σj · r̂ij)−σi ·σj and each of those multiplied
by τ i · τ j . We solve the two-body Schrödinger equation
for the Jastrow factors with this form of the interaction.

To fit the low-energy constants, we calculate in the
two attractive channels, the deuteron channel with total
isospin T = 0, total spin S = 1, total angular momentum-
parity Jπ = 1+, with deuteron binding energy E = 2.225
MeV, and the S = 0, T = 1, s-wave neutron-neutron
channel.

The deuteron state can be written as

|Φ〉d =

(
fd0 (r12) +

1√
8
fd2 (r12)S12

)
|0〉d, (43)

where fdl are radial functions, and |0〉d is a spin triplet,
isospin singlet state. The deuteron Hamiltonian is

Hd = −∇
2
r12

2µ
+ ṽdc (r12) + ṽdt (r12)S12, (44)

where µ is the reduced mass and

ṽdc (r12) = v1(r12) + v3(r12)− 3v4(r12),

ṽdt (r12) = v5(r12)− 3v6(r12). (45)

which leads to the Schrödinger equation for F dl (r12) ≡
r12f

d
l (r12),

−F
d
0
′′

2µ
+ ṽdcF

d
0 +
√

8ṽdt F
d
2 = EF d0 ,

−F
d
2
′′

2µ
+

3F d2
µr212

+ (ṽdc − 2ṽdt )F d2 +
√

8ṽdt F
d
0 = EF d2 , (46)

which can be readily integrated.
For the two-neutron case we have a T = 1, S = 0

spin-isospin state for |0〉nn,

ṽnnc (r12) = v1(r12) + v2(r12)− 3v3(r12)− 3v4(r12), (47)

and we solve

−F
n
0
′′

2µ
+ ṽnnc Fnn0 = EFnn0 , (48)

where Fnnl (r12) ≡ r12fnnl (r12).
For the short range interaction here, we use

H2N
NN =

2∑
i=1

[
P 2
i

2MP
+MP + βKP

2
i + δM

]
+ CSδkc(r12) + CT δkc(r12)σ12 (49)

and we take CS and CT to be tunable constants.
The wave function for the deuteron and for two neu-

trons is Eq. (40) using the model state |Φ〉 given by
|ψ〉d,nn. When solving the corresponding differential Eqs.
(46) and (48), we only retain the contact contributions
of the leading-order local chiral potential of Ref. [25].
The correlations arising from the one-pion exchange term
are dynamically generated when summing over the pion
modes.
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D. Quantum Monte Carlo implementation

The variational Monte Carlo (VMC) algorithm ex-
ploits the stochastic Metropolis algorithm to evaluate the
expectation value of a given many-body operator using a
suitably parametrized trial wave function, ΨT (R), where
we write R as an abbreviation for RSΠ of Eq. (36). An
integration over an R variable stands for integration over
the nuclear coordinates and pion field amplitudes and a
summation over the spin-isospin states.

The variational parameters of the trial wave function
are found minimizing the the expectation value of the
Hamiltonian,

EV =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

. (50)

To this aim, in this work we employed the linear method,
introduced in Ref. [33] that consists of diagonalizing a
non-symmetric estimator of the Hamiltonian matrix in
the basis of the wave function and its derivatives with
respect to the parameters. We have also adopted the
heuristic procedure of Ref. [34], which suppresses insta-
bilities that arise from the non-linear dependence of the
wave function on the variational parameters.

The Green’s function Monte Carlo method projects out
of a trial wave function the lowest eigenstate |Ψ0〉 of the
Hamiltonian H with non-zero overlap with |ΨT 〉,

|Ψ0〉 ∝ lim
τ→∞

exp [−(H − ET )τ ] |ΨT 〉, (51)

where ET controls the normalization. In most cases the
propagator exp [−(H − ET )τ ] cannot be calculated ana-
lytically. A repeated application of a short-time propaga-
tor can instead be used. This can be shown by inserting
a sequence of completeness relations between each short-
time propagator,

Ψ0(R) ≡ 〈RN |Ψ0〉 =

∫
dR1 · · · dRN−1(

N−1∏
i=0

〈Ri+1| exp [−(H − ET )δτ ] |Ri〉
)
〈R0|ΨT 〉 . (52)

Monte Carlo techniques are used to sample the Ri in the
propagation at each imaginary time-step. For a detailed
description of the algorithm, the reader is referred to the
review of Ref. [35] and references therein.

Both the one- and two-nucleon Hamiltonians are a sum
of operators that in general do not commute. The short-
time propagators of Eq. (52),

G(R′,R) = 〈R′| exp [−(H − ET )δτ ] |R〉, (53)

can be split into kinetic and potential pieces using the
Trotter breakup formula. Since we consider two ver-
sions of the Hamiltonian (including and omitting the
Weinberg-Tomozawa term), we need to consider two dis-
tinct versions of the propagator,

GAV(R′,R) = exp [δτET ] 〈R′| exp [−δτHAV /2]

× exp [−δτHππ] exp [−δτT ] exp[−δτVNN ]

exp [−δτHAV /2] |R〉 (54)

and

GWT(R′,R) = exp [δτET ] 〈R′| (1− δτHWT )

× exp [−δτHAV /2] exp [−δτHππ] exp [−δτT ]

× exp[−δτVNN ] exp [−δτHAV /2] |R〉, (55)

with VNN = 0 in the one-nucleon case, and VNN =
CSδkc(r12) + CT δkc(r12)σ12 for the two-nucleon system.

The Euclidean time propagator associated with the
nonrelativistic kinetic energy of the nucleons T gives rise
to a free diffusion process described by the propagator:

GT (R′,R) = 〈R′| exp [−Tδτ ] |R〉

=

[
1

λ3π3/2

]A
exp

[
− (R−R′)2

λ2

]
, (56)

with λ =
√

2δτ/M .
The free propagator of the pion modes is the product of

one-dimensional harmonic-oscillator Green’s functions,

Gππ(R′,R) = 〈R′| exp [−Hππδτ ] |R〉
=
∏
k

′∏
i

GHO(πc ′ik, π
c
ik)GHO(πs ′ik, π

s
ik), (57)

where

GHO(πc,s ′ik , πc,sik ) =

(
ωk

2π sinh(ωkδτ)

)1/2

exp

[
− ωk

2 sinh(ωkδτ)

[
(πc,s ′ 2ik + πc,s 2ik ) cosh(ωkδτ)

−2πc,s ′ik πc,sik
] ]
. (58)

The importance sampled version of this Green’s function
is [36]

G̃HO(πc,s ′ik , πc,sik ) =
φ0(πc,s ′ik )

φ0(πc,sik )
exp

[
ωkδτ

2

]
×GHO(πc,s ′ik , πc,sik ) , (59)

where φ0 is the ground-state wave function of the har-
monic oscillator with energy ωk/2. The above equation
can be cast in the form

G̃HO(πc,s ′ik , πc,sik ) =

(
ωk

π(1− e−2ωkδτ )

)1/2

× exp

[
−ωk(πc,s ′ik − e−ωδτπc,sik )2

1− e−2ωkδτ

]
, (60)

which is a Gaussian centered at e−ωkδτπc,sik with vari-

ance (1 − e−2ωkδτ )/(2ωk). Notice that for δτ → ∞ we

have G̃HO(πc,s ′ik , πc,sik ) → φ20(πc,s ′ik ), and for δτ → 0 we
recover the free particle propagator. The propagator
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of Eq. (55) contains pion derivatives. As a first-order
approximation, we act with the pion derivatives present
in HWT on the propagator for the harmonic oscillators
G̃HO. This procedure omits possible terms rising from
the commutators, and it is analogous to the one used to
implement spin-orbit propagator used in other quantum
Monte Carlo methods for many-nucleon systems [37].

The direct calculation of the expectation value of an
operator O other than the Hamiltonian, and that does
not commute with H, corresponds to a matrix element
which is usually called a “mixed estimator”,

〈O〉m =
〈ΨT |O|Ψ0〉
〈ΨT |Ψ0〉

. (61)

The “extrapolation method”, which combines results of
diffusion and variational simulations, is one of the most
used to compute mixed estimators. However, its accu-
racy relies on the quality of the trial wave function and,
even in the case of accurate trial wave functions, the bias
of the extrapolated estimator is difficult to assess. For
these reasons, we use the “forward walking method”, dis-
cussed in detail in Ref. [38], to evaluate the pion density.
This method relies on the calculation of the asymptotic
offspring of walkers coming from the branching term to
compute the exact estimator,

〈O〉e =
〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

. (62)

IV. RESULTS

All the results are obtained considering a cell in mo-
mentum space, in which the sums over the k wave vec-
tors are limited by the spherical cutoff ωsc =

√
k2c +m2

π,
where

4πk3c
3

=

(
2π

L

)3

Nk, (63)

Nk being the number of k vectors in the unprimed sums.
The number of wave vectors, in the primed sums, in each
of the first 10 shells is (1,3,6,4,3,12,12,6,15,12,12). When
k has no zero components there are 6 pion coordinates as-
sociated with each k, corresponding to the sine and cosine
components of the three Cartesian isospin coordinates.
We set the pion mass to the average of the masses of the
neutral and charged pions, mπ = (mπ0 + 2mπ±)/3 =
138.04 MeV. For the nucleon physical mass we used
MP = 2µ = 938.92 MeV, where µ is the reduced mass
given by 1/µ = 1/Mproton + 1/Mneutron.

It is worth noting that for one nucleon there is no node-
crossing, because no fermion exchange occurs with only
one fermion. For the two nucleon case the node-crossing
is also zero. We expect s-shell nuclei to have a mild
fermion sign or phase problem, as occurs in potential
models. Whenever energies are computed, both the full
propagator and the propagator omitting the Weinberg-
Tomozawa term are used. For all other estimators we
have limited ourselves to the latter case only.

A. Mass renormalization

Since our choice for the momentum cutoff is not
Lorentz invariant, the two mass counter terms appear-
ing in the Hamiltonians, βK and δM , are not simply
related. The kinetic mass counter term coefficient βK is
determined by requiring that the nucleon diffuses with
the physical mass MP = 938.92 MeV for long imaginary-
times, and δM is set so that the ground state energy of
one nucleon is also the physical mass MP .

In order to determine βK , let us consider the diffu-
sion of (classical) particles that are initially at the origin,
C(r = 0, τ = 0) = δ(3)(r). The solution for the diffusion
equation

∂C(r, τ)

∂τ
=
∇2

2MK
C(r, τ) (64)

is a Gaussian centered at the origin and with variance
τ/MK . Multiplying the diffusion equation by r2 and in-
tegrating over r, we get for the mean square displacement
〈r2(τ)〉 = 3τ/MK and the kinetic mass of the nucleon can
be computed from the slope of 〈r2(τ)〉.

In Fig. 1 we plot the mean square displacement as a
function of the imaginary time for a cutoff of ωsc ' 449
MeV, and also the curve we would expect from a diffusion
given by Eq. (56) with the physical mass MP . A linear
fit to the functional form we propose yields masses that
differ by ∼ 2 MeV at most from the physical mass, for
every cutoff we considered. Thus, in our simulations we
set the kinetic mass counter term to zero βK = 0, in
agreement with our nonrelativistic calculation reported
in Appendix B which shows this correction is small.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.000 0.005 0.010

<
r2

>
 [
fm

2
]

τ [MeV
-1

]

GFMC

Diffusion with βK=0

FIG. 1. (Color online) Mean square displacement 〈r2〉 as a
function of the imaginary-time τ . The (blue) curve stands for
a particle diffusing according to Eq. (56) with the mass set as
the physical mass, M = MP . The (red) circles are the GFMC
results for ωs

c ' 449 MeV.

Another way of verifying that we can set βK = 0 is to
calculate the Euclidean time density correlation function
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[39], defined as

D(r) =
〈ΨT |ρ(r)e−(H−ET )δτρ(0)|Ψ0〉

〈ΨT |Ψ0〉
, (65)

which accounts for the nucleon displacement in between
diffusion steps. In Fig. 2 we compare our results with
the free-particle propagator of Eq. (56), where we set
M = MP , with those obtained from D(r), assuming that
the latter is a function of only r = |r|, which is true
for large enough systems. The fact that in the short-
time limit the nucleon is diffusing with a constant related
to MP is consistent with our GFMC and perturbation
theory results.

 0

 5

 10

 15

 20

 25

 0  0.005  0.01  0.015  0.02  0.025

D
(r

) 
(1

0
4
 f

m
-3

)

r (fm)

Diffusion with βK=0

GFMC

FIG. 2. (Color online) Euclidean time density correlation as a
function of the displacement for a cutoff ωs

c ' 449 MeV. The
red circles correspond to the GFMC results, while the blue
curve stands for Eq. (56) evaluated at M = MP .

The rest mass counter term δM is calculated by requir-
ing that the total energy of a single nucleon interacting
with the pion field is equal to the physical mass of the
nucleon. We investigated the full single-nucleon Hamilto-
nian and the one without the Weinberg-Tomozawa term,
using the corresponding propagators. We summarize our
results in Fig. 3 that are obtained for L = 10 fm. The
difference between the mass counter terms is ' 4.7 MeV
for the largest cutoff considered, order 0.5% of the total
rest mass. Given the simplification in the computational
procedures, such small energy difference suggests that it
is quite safe to propagate the configurations using the
axial-vector coupling only and computing the Weinberg-
Tomozawa contribution to the energy as a first-order per-
turbation.

We also investigated the dependence of our results on
the simulation box size. We varied the side of the box
L = 5, 10, 15 fm, and we compared the results for the rest
mass counter term, neglecting the Weinberg-Tomozawa
term H1N

WT. In Fig. 4 it is possible to see that the counter
term calculated with L = 5 fm deviates from the other
values for the smallest cutoff considered. However, the
difference between the results obtained with L = 10 and

 10

 20

 30

 40

 50

 60

 70

 320  340  360  380  400  420  440  460

δ
M

 [
M

e
V

]

ω
s
c [MeV]

Axial-vector coupling

Full coupling

FIG. 3. (Color online) Rest mass counter term as a function of
the cutoff ωs

c . The (blue) open circles are the results with the
full one-nucleon Hamiltonian Eq. (34). The (red) closed cir-
cles are the results neglecting the Weinberg-Tomozawa terms
HWT .

15 fm is ' 0.5% of MP at most. Therefore, in order to
speed up the calculations, we chose L = 10 fm for all the
calculations presented in the remainder of this work. As
an example, for ωsc ∼ 449 MeV, the box with L = 15
fm requires more than 3 times the number of k vectors.
In Fig. 4 we also show our lowest order nonrelativistic
results for the rest mass counter term, described in Ap-
pendix B. The results differ, at most, by 0.4% of MP .
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FIG. 4. (Color online) The rest mass counter term as a func-
tion of the cutoff for L = 5, 10, 15 fm, (blue) triangles, (green)
circles, (red) squares, respectively. The closed symbols rep-
resent GFMC results obtained discarding HWT in Eq. (34)
in the one-nucleon Hamiltonian. The open symbols stand
for the lowest-order nonrelativistic rest mass calculated with
Eq. (B8).



11

B. The pion cloud

One of the most interesting properties that can be com-
puted within the formalism presented in this paper are
those of the virtual pions surrounding the nucleons. Al-
though this might in principle contain some dynamical in-
formation, at present we limit ourselves to analyze static
properties. This calculation is not intended to be a rigor-
ous study of the pion cloud or nucleon form factors. In-
stead, we evaluate properties that demonstrate that our
formalism can compute correlations with explicit pion
dependence.

An interesting quantity to analyze is the ground-state
momentum distribution of the pion cloud for the differ-
ent charged states nα(k). Since the sums of Eq. (9) are
written in such a way that k is included and −k is not,
this is best represented by the expectation value of

Nik = a†αkaαk + a†α−kaα−k, (66)

with the creation and annihilation operators for a pion in
a given charge state are given in Eqs. (29–30). We com-
puted the momentum distributions and radial densities
of the pion cloud using the forward walking procedure
described in Sec. III D in order to avoid the bias due to
the trial wave function. We considered a box with L=10
fm, and the model state |Φ〉 of Eq. (40) corresponding to
a spin-up proton.

In the limit L → ∞, nα(k) should be a function of
k = |k| alone. Already for L=10 fm we found minimal
differences among the modes with the same k, hence in
Fig. 5 we show the pion momentum distribution as a
function of k, only. The normalization is chosen such
that Nα = L3

∑
i nα(ki)gi, where Nα is the total number

of pions of charge α, and gi is the multiplicity of the i-th
shell. An interesting feature is that the distribution of π+
is approximately twice the one of π0. This follows from
the structure of the axial-vector coupling, which involves

τiπi =
1

2
τ+(πx − iπy) +

1

2
τ−(πx + iπy) + τzπ0, (67)

with τ± = (τx ± iτy) being the isospin raising and low-
ering operators, and π0 = πz. If we suppose that the
cartesian πi are produced in the same amount, then we
expect twice as many π0 than π+. Since we are look-
ing at a one proton state, the production of π− is much
smaller compared to that of π+ and π0. Conversely, if
the baryon is a neutron, we get analogous results with
the distributions of π+ and π− interchanged. Although
increasing the cutoff increases the total pion production,
the number of pions at low-momenta appears to be cutoff
independent.

The pion densities, whose off-diagonal components are
related to the momentum distributions through a Fourier
transform, can also be resolved for different charge states,
as in Eq. (25). The results for the density are displayed
in Fig. (6) for a spin-up proton as model state – we did
not plot the n = 5 density for π− because it is negligible
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FIG. 5. (Color online) Momentum distribution for the dif-
ferent charge states, for systems with different shell numbers,
n = 5 corresponds to a cutoff ωs

c ' 327 MeV, and n = 10
to ωs

c ' 449 MeV. The different symbols correspond to π+,
π0, and π− for n = 5, (purple) open circles, (cyan) triangles,
and (black) open squares, respectively; and π+, π0, and π−
for n = 10, (red) crosses, (green) solid squares, and (blue)
pluses, respectively. The y-axis extends a little lower than
zero (dotted line) only to allow a clear picture for the π−
distributions, the distributions are never negative.

in the scale of the Figure. In analogy to nα(k), the pro-
duction of π− is heavily suppressed. If the model state
is a neutron, we, of course, get identical results with the
densities of π+ and π− interchanged.
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FIG. 6. (Color online) Pion density for the different charge
states as a function of x coordinate of the box. We plot the
density for two systems with different shell numbers, n = 5
corresponds to a cutoff ωs

c ' 327 MeV, and n = 10 to ωs
c '

449 MeV. The different curves correspond to π+, π0, and π−
for n = 10, red long-dash, green dot dash, and solid (blue),
respectively; and π+, π0 for n = 5, purple dot short-dash, and
cyan double-dot dash, respectively.
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C. One pion exchange

As mentioned above, the long-range behavior of the
nuclear force is due to the one-pion exchange. It arises
from tree-level diagrams with four external nucleons and
an off-shell pion. At lowest order in perturbation theory,
the potential arising from two static nucleons is

VOPE(q) = −
(
gA
2fπ

)2
(σ1 · q)(σ2 · q)

q2 +m2
π

τ 1 · τ 2, (68)

where q is the transferred momentum. The coordinate-
space potential is recovered from VOPE(q) via a Fourier
transform. In order to make a meaningful comparison we
need to compute the one-pion exchange potential keeping
into account the geometry and the cutoff of the simula-
tion cell we use.

In Eq. (38) last term on the RHS of the fixed nucleon
Hamiltonian contains contributions of the self-energy of
the nucleons and the one-pion exchange potential, in
which we are interested. Keeping only terms that involve
the coupling between the two nucleons,

VOPE(r) = − 1

L3

g2A
2f2π

τ 1 · τ 2

∑
k

′
(σ1 · k)(σ2 · k)

× cos(k · r)

ω2
k

, (69)

which is consistent with Eq. (68).

The instantaneous one-pion exchange potential ne-
glects terms where two or more pions are exchanged and
the vertices are in different time orders. These commu-
tator terms contribute even for fixed nucleons. However
they become unimportant for large nucleon separations.
We studied the interaction between two fixed nucleons as
a function of the inter-particle distance r in the T = 1
and S = 0 and T = 0 and S = 1 channels. We used VMC
calculations and checked that they were accurate by per-
forming GFMC calculations at a few separations. Our
VMC results, represented by the points in Fig. 7, are ob-
tained by subtracting the nucleon self-interaction terms
from the ground-state expectation value of Hππ + HAV

for two different spherical cutoffs. For comparison, we
also show the curves corresponding to the one-pion ex-
change potential of Eq. (69) for the same cutoff employed
in the VMC calculations. As expected, the VMC results
agree with the one-pion exchange potential at sufficiently
large distances, r & 3.0 fm. The differences at smaller
distances come from the fact that we are solving for a
Hamiltonian that contains terms other than the one-pion
exchange. This is one of the key features of explicitly in-
cluding the modes of the pion field, which is absent in
potential models, in which multiple pion-exchange po-
tentials have to be explicitly devised.
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FIG. 7. (Color online) One-pion exchange potential for two
nucleons a distance r apart along the x-axis in the T = 1
and S = 0 channel (upper panel) and T = 0 and S = 1
channel (lower panel). The points (VMC) correspond to our
variational results, where the full (red) circles denote n = 5
(ωs

c ' 327 MeV) and open (blue) circles stand for n = 10
(ωs

c ' 449 MeV). The curves (OPE) correspond to the one-
pion exchange potential of Eq. (69) with the same cutoff as
the VMC calculations.

D. Two nucleons

We need to fix the low-energy constants CS and CT
associated to the contact terms enteringH2N

NN of Eq. (49).
These should be either fitted to experiment or to QCD.
Instead of fitting to experiment, we take the expedient
step of fitting to results of a potential model that has
been fit to experiments. Since our calculations rely on a
periodic box, we fit CS and CT to reproduce the ground
state results of the Argonne v′6 (AV6P) potential[40] for
the deuteron and two-neutrons in a periodic box.

Note that a possible way to directly fit experiments
would involve the Lüscher method [41]. The energy spec-
trum of a system of two particles in a box with periodic
boundary conditions, for box sizes greater than the inter-
action range, and for energies below the inelastic thresh-
old, is determined by the scattering phases at these en-
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ergies. The Lüscher method can be used to compute the
energy levels given the scattering phases or, conversely,
to calculate the scattering phases if the energy spectrum
is known. For larger systems (A > 3) the concepts and
ideas concerning finite-volume corrections to the binding
energy of an A-particle bound-state in a periodic box,
developed in Ref. [42], might be useful.

As a first step, we developed a numerically stable ver-
sion of the Lanczos algorithm [43] to solve for the energy
of the deuteron and two neutrons in a periodic box using
the AV6P potential and a plane wave basis. By imposing
periodic boundary conditions, the continuum version of
the AV6P potential, which has the operator structure of
Eq. (42), is modified to include periodic images from the
surrounding boxes,

VNN (r12)→
∑
n

V (r12 + Ln), (70)

where n = (nx, ny, nz) with ni integers numbers. The
self potential energy term of the periodic images is in-
cluded. We showed that for L > 10 fm one image in each
direction is sufficient to obtain periodic solutions since
the AV6P interaction is at most of pion range. In panel
(a) and (b) of Fig. 8 we plot the binding energy of the
deuteron and two neutrons, respectively as a function of
the box side. For L 6 25 fm, the deuteron energies are
much lower than the value for the system in free space.
However, for L > 25 fm the agreement between finite pe-
riodic box results and the continuum is remarkably good.

We then tune CS and CT in the GFMC simulations
with explicit pions to reproduce the energies of both
two nucleon systems. We do not include the Weinberg-
Tomozawa term, as the one-nucleon results suggest it will
provide a small contribution for the momentum cutoffs
we employed. Based on the results of Fig. 8, we per-
formed the explicit-pion calculations only for 25 6 L 6
35 fm. The pion nucleon axial-vector coupling in our for-
malism is already periodic, and so are the contact terms
using Eq. (35), hence we do not need to modify them
with Eq. (70).

The fitted values of CS and CT for different box sizes
and cutoffs are shown in Fig. 9 and reported in Tab. I. We
are aware that the cutoffs we used are very low compared
to those typically used in other chiral EFT formulations.
This choice is by no means due to an intrinsic limitation
of the method, but to the extent of the computational
effort that we deemed reasonable to obtain these demon-
strative results. In Appendix C we report values of these
LECs for a different choice of the contact interaction.

V. SUMMARY AND OUTLOOK

In this paper we describe a promising scheme to ex-
plicitly include pion fields in a Quantum Monte Carlo
calculation of a one- and two-nucleon systems. This ap-
proach can be readily extended to larger nuclei, consis-
tently with the limits of application of the underlying
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FIG. 8. Binding energy of the deuteron (upper panel) and
two neutrons (lower panel) in a box. The symbols correspond
to the energy calculated using the Lanczos algorithm with the
AV6’ potential. The dashed line corresponds to the binding
energy of the deuteron in free space using the AV6’ potential.

GFMC (or AFDMC) techniques. One important remark
to be made is that, since pion fields are bosonic, no fur-
ther contribution to the fermion sign/phase problem is
introduced.

The first application to the one-nucleon system is
meant to verify the consistency of the method itself. In
particular we analyzed finite-size effects, and the extent
of the differences due to the choice of the initial La-
grangian. We first studied the renormalization of the
nucleon mass with a Hamiltonian in which the coupling
between the nucleons and the pion fields is described by
an axial-vector interaction. A consistency check against
first-order diagrammatic calculation of the self-energy
of the nucleon has been successfully carried out. We
tried to assess the importance of including the Weinberg-
Tomozawa coupling in the interaction. Although this
term appears at leading order in the chiral expansion,
we showed that its effect in the renormalization of the
nucleon mass is much smaller than that of the axial-
vector coupling. One interesting possibility opened by
our method is the direct study of the pion distribution.
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TABLE I. Contact parameters for different box sizes, L=25, 30, and 35 fm, as a function of the cutoff ωs
c . The ωs

c are given
in MeV, while CS and CT are in fm2.

L= 25 fm L= 30 fm L= 35 fm
n ωs

c CS CT ωs
c CS CT ωs

c CS CT

1 150.06 -53.35 -14.02 146.49 -80.09 -22.48 144.30 -114.46 -33.78
2 160.61 -28.56 -6.29 154.06 -41.11 -9.46 149.98 -56.41 -13.76
3 166.05 -22.99 -4.95 158.02 -32.34 -7.55 152.97 -43.82 -10.93
4 169.68 -20.73 -4.32 160.67 -28.95 -6.47 154.99 -38.99 -9.28
5 181.85 -15.68 -2.75 169.67 -21.25 -4.20 161.88 -27.96 -6.06
6 177.08 -16.99 -3.35 167.61 -22.14 -4.71
7 180.40 -15.72 -3.11 170.19 -20.44 -4.38
8 176.06 -17.51 -3.59
9 180.28 -15.70 -3.26
10 184.20 -14.54 -2.90
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FIG. 9. (Color online) Low-energy constants CS (upper
panel) and CT (lower panel) as a function of the cutoff ωs

c

for L = 25, 30, and 35 fm, (red) squares, (green) circles,
and (blue) triangles, respectively. The values are reported in
Tab. I.

In the one-nucleon sector, we analyzed the momentum
and density distributions of the pion cloud surrounding
the nucleon. Although many details are still missing,
this can be thought of as a first step towards the calcula-
tion of the single-nucleon electroweak form factors. Stan-

dard chiral-EFT calculations fail to describe the proton
and nucleon form factors for momentum transfers beyond
Q2 ∼ 0.1 GeV2 [44]. The inclusion of vector mesons sen-
sibly improve the agreement with data [22]. Within our
explicit-pion QMC framework, we plan to assess whether
the resummation of important higher-order contributions
can mimic their inclusion.

Turning to the two-body problem, the correct asymp-
totic behavior of the potential between two static nucle-
ons was verified. As expected, the short/intermediate
range part of the potential differs from the OPE expres-
sion, due to multiple-pion exchange, automatically in-
cluded in our formalism. The low-energy constants of
the contact terms in the Hamiltonian were determined
by fitting exact diagonalization results on the binding
energy of the two-body problem (pn and nn) in a finite
box. This is a necessary step towards the simulations of
light nuclei within the explicit-pion formalism. In this
paper we employed a sharp spherical momentum cutoff.
The dependence of results on the specific choice of the
regularization will be explored in future works.

The validity of instantaneous pion interaction approx-
imations in potential models can be tested by computing
properties of light-nuclei using our formalism. As pre-
viously mentioned, the extension of the calculations to
larger systems (and in particular A=3 and 4 nuclei) is
straightforward, aside for the larger computational cost,
and it is currently in progress. For Nπ pion modes and
A nucleons, the propagation of the pions costs O(Nπ),
while the axial-vector and Weinberg-Tomozawa interac-
tions cost O(ANπ). In principle, since these interac-
tions are local in real space, they can be written using
a fast Fourier transform to be O(Nπ lnNπ) + O(A), but
we expect A 6 lnNπ for most systems. Much of the
computational cost of the algorithm presented here has
to be ascribed to the explicit sum over the many-body
spin/isospin states that we perform in the imaginary-
time propagations of the nucleons. This part of our al-
gorithm scales exponentially and costs O(4A). GFMC
calculations scale slightly better since they conserve nu-
clear charge (and sometimes isospin) – for example, in-
stead of 4A spin/isospin states, a nucleus with good
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charge Z = A/2 has A!
(A/2)!2 2A ' 4A

√
2
πA spin/isospin

states. To go beyond light nuclei, we plan to implement
a spin-isospin sampling algorithm, analogous to that of
AFDMC. The latter includes all charge states in its ba-
sis, and its computational cost scales polynomially with
the number of nucleons O(A3) for evaluating simple trial
wave functions. For the small systems used here, GFMC
methods give lower variance for the same computational
time.

In analogy to other quantum Monte Carlo other meth-
ods, computing complicated operator expectations is
likely to be computationally more intensive. For ex-
ample, the pion distributions as computed here require
mixed derivatives with respect to the pion coordinates,
and these scale as O(N2

π). This behavior is ameliorated
by the fact that these calculations are only carried out
on uncorrelated samples, not at every step.
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Appendix A: Conventions

We use units such that ~ = c = 1. The contravari-
ant space-time and momentum four-vectors are given
by xµ = (t,x) and pµ = (E,p). Greek indices µ, ν, ...
run over the four space-time coordinate labels 0, 1, 2, 3,
with x0 = t being the time coordinate. Latin indices
i, j, k, and so on run over the three space coordinate
labels 1, 2, 3. The metric is given by gµν = gµν with
g00 = 1, gii = −1. The covariant versions of the
above-mentioned vectors are xµ = gµνx

ν = (t,−x) and
pµ = gµνp

ν = (E,−p). While for an ordinary three-
vector we have x = (x1, x2, x3), the three-dimensional
gradient operator is defined to be

∇ = (∂1, ∂2, ∂3) (A1)

with

∂i =
∂

∂xi
= − ∂

∂xi
= −∂i. (A2)

The Levi-Civita tensor is defined as εijk = 1 if (i, j, k) is
an even permutation of (1, 2, 3), εijk = −1 if it is an odd
permutation and εijk = 0 otherwise.

The spin 1/2 and isospin 1/2 operators of the nucleons
are defined as s = σ/2 and t = τ/2, where σ and τ are
the Pauli matrices operating in spin and isospin space,
respectively. The Pauli matrices are

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (A3)

We write the amplitudes of a state |φ〉 as a column vector
(〈p|φ〉, 〈n|φ〉)T , so that a proton corresponds to (1, 0)T ,
and a neutron (0, 1)T . The inspection of the operator
τ · π, given in Eq. (67), leads to the identification of

(πx− iπy)/
√

2 with the annihilation of a π+ (or with the

creation of a π−) and (πx+iπy)/
√

2 with the annihilation
of a π− (or with the creation of a π+).

Appendix B: Lowest order self-energy from the
nonrelativistic pion-nucleon Hamiltonian

In this calculation we consider only the lowest order
interaction term, represented by the diagram of Fig. 10.

p

q

pp − q

1

FIG. 10. Diagram for the lowest order self-energy Σ(E,p).

The nonrelativistic propagator for a free nucleon in-
cluding the mass counter terms is

G(x− x′, t− t′) =

= −iθ(t− t′)〈0|N(x)e−iH(t−t′)N†(x′)|0〉

= −iθ(t− t′) 1

L3

∑
p

e−ip·(x−x
′)e
−i

(
p2

2MP
+βKp

2+MP+δM
)
(t−t′)

=
1

L3

∑
p

eip·(x−x
′)

∫
dω

2π
e−iω(t−t

′)G(p, ω) . (B1)

In the last line we introduced the Fourier transform,

G(p, ω) = −i
∫ ∞
−∞

dtθ(t)e
i
(
ω− p2

2MK
+βKp

2−M−δM
)
t−ηt

=
1

ω − p2

2MK
− βKp2 −MP − δM + iη

, (B2)

where η is a positive infinitesimal, which was added to
make the integral at the upper limit converges.

The free pion propagator corresponds to that of a free
harmonic oscillator with frequency ωq =

√
q2 +m2

π,

GHO(ω) =
1

ω2 − ω2
q + iη

. (B3)
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Equations (B2) and (B3), together with standard
Feynman diagram rules [39], provide an expression for
the self-energy,

Σ(E,p) = 3i

(
gA
2fπ

)2
1

L3

∑
q

∫ ∞
−∞

dω

2π

1

ω2 − ω2
q + iη

× q2

E − ω −
(

1
2MP

+ βK

)
|p− q|2 −MP − δM + iη

,

(B4)

where the factor of 3 comes from τ · τ (or the 3 types of
hermitian pions). Performing the integral over ω yields

Σ(E,p) =
3

2

(
gA
2fπ

)2
1

L3

∑
q

1

ωq

× q2

E −
(

1
2MP

+ βK

)
|p− q|2 −MP − δM − ωq

.

(B5)

The single-nucleon spectrum is dictated by the pole of
the Green’s function,

E =

(
1

2MP
+ βK

)
p2 +Mp + δM + Σ(E,p) . (B6)

We must adjust βK and δM so that at small momentum,

E = MP + p2

2MP
, or

βKp
2 + δM + Σ

(
MP +

p2

2MP
,p

)
= 0 . (B7)

Expanding in powers of p, we find,

0 = δM − 3

2

(
gA
2fπ

)2
1

L3

∑
q

q2

ωqDq

0 = βK + βK
3

2

(
gA
2fπ

)2
1

L3

∑
q

q2

ωqD2
q

−
(

1

MP
+ 2βK

)2
1

2

(
gA
2fπ

)2
1

L3

∑
q

q4

ωqD3
q

,

(B8)

where

Dq = δM +

(
1

2MP
+ βK

)
q2 + ωq . (B9)

Solving these self consistently gives the lowest order val-
ues of δM and βK . We see from the form above, that the
kinetic mass renormalization is small.

Appendix C: Another choice of the contact
interaction

We also considered a different functional form for the
contact interactions present in Eq. (34), the same form
as the one used in local chiral EFT potentials [25],

δR0(r) =
1

πΓ(3/4)R3
0

exp
[
−(|r|/R0)4

]
, (C1)

where Γ is the gamma function, and R0 = 1.2 fm. We be-
lieve that the smeared out function of Eq. (35) is the most
appropriate choice for our simulations because it has the
same cutoff as the pion modes, otherwise our results
would depend on multiple cutoffs. However, to demon-
strate that our fitting procedure is compatible with other
QMC simulations, we also fitted the low-energy con-
stants using Eq. (C1) for the delta function in the contact
terms. This function should, in principle, be modified as
in Eq. (70). However, since it is short-ranged compared
to the one-pion exchange potential, for 25 6 L 6 35 fm
we find that we do not require the potential from the
surrounding boxes. We present our results in Tab. II.

It is worth mentioning that the chiral potential of
Ref. [25] at LO gives a deuteron binding energy of Ed =
−2.02 MeV, which considerably differs from the experi-
mental value −2.23 MeV. Hence, we found different val-
ues of CS and CT than those reported in [25] for the LO
potential. Additional reasons for this difference are the
finite volume of the box, and the momentum cutoff that
we employ. Finally, subleading multiple pion-exchange
contributions, fully accounted for in our calculations, ap-
pear at NLO in the standard power counting of the chiral
interaction.
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