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Abstract

A method to calculate the form factor for an external current with non-derivative coupling for

the three-body system in an effective field theory (EFT) of short-range interactions is shown.

Using this method the point charge radius of 3He is calculated to next-to-next-to-leading order

(NNLO) in pionless EFT (EFT(/π)), and the magnetic moment and magnetic radius of 3H and

3He are calculated to next-to-leading order (NLO). For the 3He charge and magnetic form factors

Coulomb interactions are ignored. The 3He point charge radius is given by 1.74(4) fm at NNLO.

This agrees well with the experimental 3He point charge radius of 1.7753(54) fm [1]. The 3H

(3He) magnetic moment in units of nuclear magnetons is found to be 2.92(35) (-2.08(25)) at NLO

in agreement with the experimental value of 2.979 (-2.127). For 3H (3He) the NLO magnetic

radius is 1.78(11) fm (1.85(11) fm) which agrees with the experimental value of 1.840(182) fm

(1.965(154) fm) [2]. The fitting of the low-energy constant L1 of the isovector two-body magnetic

current and the consequences of Wigner-SU(4) symmetry for the three-nucleon magnetic moments

are also discussed.
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I. INTRODUCTION

When systems are probed at length scales much larger than the scale of their underlying

interaction r then those interactions can be expanded in a series of contact interactions

known as short range effective field theory (srEFT). Systems with short range interactions

(i.e. cold atom systems, halo nuclei, and low energy few-nucleon systems) exhibit such

behavior at low energies. The applicability of srEFT to such a broad class of systems is

known as universality [3]. Importantly, srEFT possesses a power counting that allows for

systematically improvable calculations with error estimates. The power counting is in powers

of (Q/Λ)n, where Q is the typical momentum scale of particles in the system, Λ ∼ 1/r is the

breakdown scale of srEFT, and using naive dimensional analysis [4] low energy constants

(LECs) in the theory are assumed to scale dimensionally in powers of Λ. However, for

physical systems of interest it is observed that the scattering length a scales unnaturally

(r < a ∼ 1/Q). This leads to interactions in a being treated non-perturbatively at leading

order (LO) and the creation of relatively shallow two-body bound states [5, 6]. Higher order

range corrections are then added perturbatively in a series of r/a ∼ Q/Λ.

srEFT has been used successfully in the description of low-energy few-nucleon systems

through the use of pionless EFT (EFT(/π)), characterized by the breakdown scale Λ6π ∼ mπ

and valid for energies E < m2
π/MN . EFT(/π) has been used in the two-body sector to

calculate nucleon-nucleon (NN) scattering [7–10], neutron-proton (np) capture [7, 11, 12]

to (. 1%) [13], deuteron electromagnetic properties [11, 12], proton-proton fusion [14–

16], and neutrino-deuteron scattering [17]. In the three-body sector it has been used to

calculate neutron-deuteron (nd) scattering [18–24], proton-deuteron (pd) scattering [25–

30], 3H and 3He binding energies [19, 26, 31, 32], three-nucleon electromagnetic [33, 34] and

weak properties [35], and nd capture [36, 37].

Techniques to calculate nd scattering strictly perturbatively were introduced in Ref. [23].

Ref. [38] then extended this method to the calculation of perturbative corrections to three-

body bound states. Using these methods, Ref. [38] calculated the triton point charge radius

to next-to-next-to leading-order (NNLO) finding good agreement with experiment. This

paper builds upon this work by considering the electric and magnetic properties of three-

nucleon systems in the absence of Coulomb interactions. In fact the calculation of the general

three-nucleon form factor, resulting moments (value at Q2 = 0), and radii for any external
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current with non-derivative coupling is considered in this work. This is possible since the

form factors for such currents depend on the same integrals but with different constants in

front of them.

In EFT(/π) the charge form factor up to NNLO can be predicted using four two-body

LECs and two three-body LECs encoding interactions between nuclei. The two-body LECs

in this work are fit to the 3S1 and 1S0 poles for NN scattering and their associated residues,

while the three-body LECs are fit to the triton binding energy and the doublet S-wave

nd scattering length. In this work Coulomb interactions and isospin breaking from strong

interactions are ignored for 3He, therefore next-to leading order (NLO) and NNLO Coulomb

and isospin breaking corrections to the three-body force can be ignored [28]. The three-

nucleon EFT(/π) magnetic form factor to NLO requires the same LECs as the charge form

factor with the exception of the NNLO energy dependent three-body force. In addition

the NLO magnetic form factor will require an isoscalar and isovector two-body magnetic

current.

The three-nucleon charge form factors are reproduced well using potential model calcu-

lations (PMCs) [39, 40], whereas the magnetic form factor of 3H is reasonably reproduced,

but the 3He magnetic form factor poorly describes the first observed diffraction minimum

from experiment. Chiral EFT (χEFT) [41] reproduces the three-nucleon charge and mag-

netic form factors well for Q . 3 fm−1. The resulting charge radii, magnetic moments,

and magnetic radii from PMCs and χEFT agree reasonably well with experimental data.1

EFT(/π) is only valid for momentum transfers of Q . 0.7 fm−1 and thus cannot directly

address the issues observed in PMCs and χEFT for larger Q values. However, EFT(/π) can

garner insight into the importance of two- and three-body currents.

As shown in Ref. [42], going to the Wigner-SU(4) symmetric limit in which the NN

scattering lengths and effective ranges for the 3S1 and 1S0 channels are set equal reproduces

properties (e.g. bound state energy and charge radii) of the three-nucleon systems well

within expected errors. It was also shown that a dual perturbative expansion in EFT(/π)

and powers of a Wigner-SU(4) symmetry breaking parameter led to good convergence with

experimental data for three-nucleon systems. Expanding on this, the values of the three-

1 For a comparison between different methods, including EFT(/π), for calculating the triton charge radius

consult Ref. [38]. Also note that in principle both χEFT and EFT(/π) can be cast into a potential model.
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nucleon magnetic moments in the Wigner-SU(4) symmetric limit are calculated in this work.

At LO in this limit the Schmidt-limit [43] is reproduced in which the magnetic moment of

the three nucleon system is given by the magnetic moment of the unpaired nucleon. It is

also demonstrated in the Wigner-SU(4) limit that the expressions for the NLO magnetic

moments can be written entirely in terms of LO three-nucleon vertex functions.

This paper is organized as follows. Section II gives the EFT(/π) Lagrangian and all

necessary two-body physics, while Sec. III reviews relevant properties of the three-body

system. In Sec. IV properties of the charge and magnetic form factor in EFT(/π) are derived,

and the consequences of Wigner-symmetry on the form factors discussed. Finally, in Sec. V

results are given and conclusions are given in Sec. VI.

II. LAGRANGIAN AND TWO-BODY SYSTEM

The two-body EFT(/π) Lagrangian is

L2 = N̂ †

(
iD0 +

~D2

2MN

)
N̂ + t̂†i

[
∆t − c0t

(
iD0 +

~D2

4MN

+
γ2
t

MN

)]
t̂i (1)

+ ŝ†a

[
∆s − c0s

(
iD0 +

~D2

4MN

+
γ2
s

MN

)]
ŝa

+ yt

[
t̂†iN̂

TPiN̂ + H.c.
]

+ ys

[
ŝ†aN̂

T P̄aN̂ + H.c.
]
,

where t̂i (ŝa) is the spin-triplet (spin-singlet) dibaryon field. Parameter yt (ys) sets the

interaction strength between the spin-triplet (spin-singlet) dibaryon and nucleons, while

Pi = 1√
8
σ2σiτ2 (P̄a = 1√

8
τ2τaσ2) projects out the spin-triplet iso-singlet (spin-singlet iso-

triplet) combination of nucleons. The covariant derivative is defined by

Dµ = ∂µ + iQÂµ, (2)

where Âµ is the photon field, and Q is the charge operator given by Q = (1 + τ3)/2, Q = 1,

and Q = (1 + T3) for the fields N̂ , t̂i, and ŝa respectively.2 i/∆t is the bare spin-triplet

dibaryon propagator which at LO is dressed by an infinite series of nucleon bubble diagrams

as shown in Fig. 1. This series, a geometric series, yields the LO spin-triplet dibaryon

2 T3 is the operator for the z-component of isospin.
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propagator, which receives range corrections from c0t at NLO and NNLO as shown in Fig. 1.

The resulting parameters of the spin-triplet dibaryon propagator are then fit to give the

deuteron pole at LO and its residue at higher orders. The same procedure can be carried

out for the spin-singlet dibaryon propagator with parameters fit to the 1S0 virtual bound

state pole at LO and to its residue at NLO. This fitting procedure is known as the Z-

parametrization [22, 44] and has the advantage of giving the correct residue about the poles

in the 3S1 and 1S0 channels at NLO instead of being approached perturbatively as in the

effective range expansion (ERE) parametrization. Using the Z-parametrization gives the

(LO)

(NLO) (NNLO)

FIG. 1: The top equation shows the LO dressed spin-triplet dibaryon propagator, which can be

solved analytically via a geometric series. Nucleons are single lines, solid lines are the bare spin-

triplet dibaryon propagator i/∆t, and the double line is the dressed spin-triplet dibaryon. The

cross represents a NLO order effective range insertion from c
(0)
0t and the star a NNLO correction

from c
(1)
0t .

coefficients [22]

y2
t =

4π

MN

, ∆t = γt − µ, c
(n)
0t = (−1)n(Zt − 1)n+1MN

2γt
, (3)

y2
s =

4π

MN

, ∆s = γs − µ, c
(n)
0s = (−1)n(Zs − 1)n+1MN

2γs
,

where γt = 45.7025 MeV is the deuteron binding momentum, Zt = 1.6908 is the residue

about the deuteron pole, γs = −7.890 MeV is the 1S0 virtual bound-state momentum,

and Zs = 0.9015 is the residue about the 1S0 pole [45]. The scale µ comes from using

dimensional regularization with the power-divergence subtraction scheme [5, 6], and all

physical observables do not depend on µ. Parameter c0t (c0s) is split up into contributions

c
(n)
0t (c

(n)
0s ) at each order to ensure the pole position is fixed and has the correct residue. The

resulting spin-triplet (spin-singlet) dibaryon in the Z-parametrization up to NNLO is given
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by

iDNNLO
{t,s} (p0, ~p) =

i

γ{t,s} −
√

~p2

4
−MNp0 − iε

(4)

×

 1︸︷︷︸
LO

+
Z{t,s} − 1

2γ{t,s}

(
γ{t,s} +

√
~p2

4
−MNp0 − iε

)
︸ ︷︷ ︸

NLO

+

(
Z{t,s} − 1

2γ{t,s}

)2(~p2

4
−MNp0 − γ2

{t,s}

)
︸ ︷︷ ︸

NNLO

+ · · ·

 .

LO interactions between nucleons and the magnetic field at the one-body level are given

by the Lagrangian

Lmag1,0 =
e

2MN

N̂ †(κ0 + κ1τ3)~σ ·BN̂ , (5)

where κ0 = 0.4399 is the isoscalar magnetic moment of the nucleon and κ1 = 2.3529 is the

isovector magnetic moment of the nucleon in nuclear magnetons. At NLO there are two

two-body magnetic currents, L1 [7, 46] and L2 [7, 47] given by the Lagrangian

Lmag2 =

(
e
L1

2
t̂j†ŝ3Bj + H.c.

)
− eL2

2
iεijk t̂†i t̂jBk. (6)

In the three-body system there will be a LO three-body force [19] with non-derivative

coupling, which receives corrections at higher orders to avoid refitting. At NNLO a new

energy dependent three-body force is required in EFT(/π) [21]. These three-body forces are

easily represented by the introduction of an interaction between ψ̂ [21, 38], dibaryons, and

nucleons via the Lagrangian

L3 =ψ̂†

[
Ω− h2(Λ)

(
iD0 +

~D2

6MN

+
γ2
t

MN

)]
ψ̂ +

∞∑
n=0

[
ω

(n)
t0 ψ̂

†σiN̂ t̂i − ω(n)
s0 ψ̂

†τaN̂ ŝa

]
(7)

+ H.c.,

where ψ̂ is a three-nucleon iso-doublet field containing 3H and 3He. The NNLO energy

dependent three-body force term is given by

Ĥ2 = −3(ω
(0)
t0 )2

πΩ2MN

h2(Λ) = −3(ω
(0)
s0 )2

πΩ2MN

h2(Λ) = −3ω
(0)
t0 ω

(0)
s0

πΩ2MN

h2(Λ). (8)

For further details of three-body forces and how they are fit consult Ref. [38].
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III. THREE-BODY SYSTEM

Detailed methods for calculating the three-nucleon vertex function can be found in

Ref. [38] and a brief review of them, in order that this work is relatively self contained,

is given below. The LO three-nucleon vertex function is the solution of an integral equa-

tion represented by the diagrams of Fig. 2. Double dashed lines are spin-singlet dibaryons

FIG. 2: The coupled-channel integral equations for the LO three-nucleon vertex function, where

the triple line is the three-nucleon system, and the filled circle is the LO three-nucleon vertex

function.

and the triple lines three-nucleon fields. In cluster-configuration (c.c.) space [22] the LO

three-nucleon vertex function is given by the integral equation

G0(E, p) = B̃0 + K0(q, p, E)⊗ G0(E, q), (9)

where G0(E, p) is a c.c. space vector given by

G0(E, p) =

 G0,ψ→Nt(E, p)

G0,ψ→Ns(E, p)

 , (10)

and the inhomogeneous term B̃0 is a c.c. space vector given by

B̃0 =

(
1

−1

)
. (11)

G0,ψ→Nt(E, p) (G0,ψ→Ns(E, p)) is the three-nucleon vertex function for a three-nucleon system

going to a nucleon and deuteron (nucleon and spin-singlet dibaryon). The kernel of Eq. (9)

is a c.c. space matrix given by

K0(q, p, E) = R0(q, p, E) D(0)

(
E − q2

2MN

, ~q

)
, (12)

where

R0(q, p, E) = −2π

qp
Q0

(
q2 + p2 −MNE − iε

qp

) 1 −3

−3 1

 , (13)
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matrix multiplies

D(0)(E,~q) =

 D
(0)
t (E,~q) 0

0 D
(0)
s (E,~q)

 , (14)

which is a matrix of LO dibaryon propagators. Q0(a) is a Legendre function of the second

kind defined as

Q0(a) =
1

2
ln

(
1 + a

1− a

)
, (15)

and the “⊗” notation is defined by

A(q)⊗B(q) =
1

2π2

∫ Λ

0

dqq2A(q)B(q).

The NLO and NNLO three-nucleon vertex functions are given by integral equations rep-

resented in Figs. 3 and 4 respectively. In c.c. space the NLO three-nucleon vertex function

1

1

1

1 1

1

FIG. 3: The coupled-channel integral equations for the NLO correction to the three-nucleon vertex

function.

12

2 1 2

2

2

2

FIG. 4: The coupled-channel integral equations for the NNLO correction to the three-nucleon

vertex function.

is

G1(E, p) = R1

(
E −

~p2

2MN

, ~p

)
G0(E, p) + K0(q, p, E)⊗ G1(E, q), (16)

where R1(p0, ~p) is a c.c. space matrix defined by

R1(p0, ~p) =

 Zt−1
2γt

(
γt +

√
1
4
~p2 −MNp0 − iε

)
0

0 Zs−1
2γs

(
γs +

√
1
4
~p2 −MNp0 − iε

)
 . (17)
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In c.c. space the NNLO three-nucleon vertex function is given by

G2(E, p) = R1

(
E −

~p2

2MN

, ~p

)[
G1(E, p)− c1G0(E, p)

]
+ K0(q, p, E)⊗ G2(E, q), (18)

where

c1 =

 Zt − 1 0

0 Zs − 1

 , (19)

is a c.c. space matrix.

To properly normalize the three-nucleon vertex function the three-nucleon wavefunction

renormalization is needed, which is obtained by calculating the residue about the three-

nucleon propagator pole. This pole is fixed to the triton binding energy B = E3H, E3H =

−8.48 MeV [48], by appropriate tuning of three-body forces. Further details of how this is

done can be seen in Ref. [38]. The resulting three-nucleon wavefunction renormalization up

to and including NNLO is given by

Zψ =
π

Σ′0(B)

 1︸︷︷︸
LO

− Σ′1(B)

Σ′0(B)︸ ︷︷ ︸
NLO

(20)

−

{
Σ′2(B)

Σ′0(B)
−
(

Σ′1(B)

Σ′0(B)

)2

+
4

3
MNĤ2Σ0(B)

(
Σ0(B)

Σ′0(B)
−B − γ2

t

MN

)}
︸ ︷︷ ︸

NNLO

+ · · ·

 ,
where the Σn(E) functions are defined by

Σn(E) = −πTr

[
D(0)

(
E − q2

2MN

, q

)
⊗ Gn(E, q)

]
, (21)

and Ĥ2 is the energy dependent NNLO three-body force [21, 38] from Eq. (8). Taking

the square root of Zψ and expanding, the properly renormalized LO three-nucleon vertex

function is given by

Γ0(p) =
√
ZLO
ψ G0(B, p), (22)

the properly renormalized NLO correction to the three-nucleon vertex function by

Γ1(p) =
√
ZLO
ψ

[
G1(B, p)− 1

2

Σ′1(B)

Σ′0(B)
G0(B, p)

]
, (23)
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and the properly renormalized NNLO correction to the three-nucleon vertex function by

Γ2(p) =
√
ZLO
ψ

[
G2(B, p)− 1

2

Σ′1(B)

Σ′0(B)
G1(B, p) (24)

+

{
3

8

(
Σ′1(B)

Σ′0(B)

)2

− 1

2

Σ′2(B)

Σ′0(B)
− 2

3
MNĤ2

Σ2
0(B)

Σ′0(B)

}
G0(B, p)

]
,

where

ZLO
ψ =

π

Σ′0(B)
. (25)

IV. CHARGE AND MAGNETIC FORM FACTORS

A. Charge and Magnetic Moments

In Ref. [38] the charge form factor of the triton was calculated to NNLO in EFT(/π).

Calculating the 3He charge form factor, 3H magnetic form factor, and the 3He magnetic

form factor in the absence of Coulomb interactions is essentially the same calculation as the

3H charge form factor. The only difference between these calculations are the coefficients

that appear in front of the same integrals. Both charge and magnetic form factors at LO

are given by the sum of diagrams in Fig. 5, where all photons are either minimally coupled

Â0 photons or magnetically coupled from Eq. (5). Form factors are calculated in the Breit

(a) (b) (c)

FIG. 5: Diagrams for the LO three-nucleon charge and magnetic form factor. All wavy green

lines represent either a magnetic or Â0 photon and the black dot their respective coupling to the

nucleons.

frame in which the photon only imparts momentum ~Q but no energy on the three-nucleon

system, and all form factors are only functions of Q2. Using the work of Ref. [38] the LO
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Form factor a11 a22 b11 b12 b21 b22 c11 c12 c21 c22

F
3H
C (Q2) 0 2

3 -1 1 1 1
3 1 0 0 1

3

F
3He
C (Q2) 1 1

3 0 2 2 -4
3 1 0 0 5

3

F
3H
M (Q2) κ1−κ0

3 κ0+ 1
3κ1 −5(κ0+κ1)

3 κ0 − 1
3κ1 κ0 − 1

3κ1 κ0 − 5
3κ1

4
3κ0 −2

3κ1 −2
3κ1 0

F
3He
M (Q2) −κ0+κ1

3 κ0− 1
3κ1 −5(κ0−κ1)

3 κ0 + 1
3κ1 κ0 + 1

3κ1 κ0 + 5
3κ1

4
3κ0

2
3κ1

2
3κ1 0

TABLE I: Values of coefficients for the LO 3H and 3He magnetic and charge form factors. Note

factors of e
2MN

have been removed from the magnetic coefficients since the magnetic moments are

given in units of nuclear magnetons.

“generic” form factor in the limit Q2 = 0 is given by

F0(0) = 2πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB

 c11 + a11 c12

c21 c22 + a22

 (26)

+
1

q2`2 − (q2 + `2 −MNB)2

 b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

⊗ Γ̃0(`),

where the c.c. space vector function Γ̃n(q) is

Γ̃n(q) = D(0)

(
B − q2

2MN

, ~q

)
Γn(q), (27)

and n = 0, 1, 2, · · · . The coefficients a11 and a22 come from the c.c. space matrix of diagram

Fig. 5(a), the coefficients b11, b12, b21, and b22 from the c.c. space matrix of diagram Fig. 5(b),

and the coefficients c11, c12, c21, and c22 from the c.c. space matrix of diagram Fig. 5(c). The

only difference between the LO magnetic and charge form factors for 3H and 3He are the

values of these coefficients shown in Table I for each. Further details of how these coefficients

are obtained are given in Appendix A.

Choosing the coefficients for the triton charge form factor gives

F0(0) = 2πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB

 1 0

0 1

 (28)

− 1

q2`2 − (q2 + `2 −MNB)2

 1 −3

−3 1

⊗ Γ̃0(`).

This expression is the same as the normalization condition in Ref. [26], and therefore it

follows automatically that F0(0) = 1 for the triton charge form factor. Plugging in the 3He
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charge form factor coefficients gives two times Eq. (28), and hence F0(0) = 2 for the 3He

charge form factor.3

The NLO correction to the charge and magnetic form factors is given by the diagrams in

Fig. 6. Diagram-(d) for charge form factors comes from gauging the dibaryon kinetic term

(a) (b) (c)

1 1 1

(d) (e)

FIG. 6: Diagrams for the NLO correction to the three-nucleon charge and magnetic form factors.

The boxed diagram is subtracted to avoid double counting. For the charge form factor diagram (d)

comes from gauging the dibaryon kinetic term and for the magnetic form factor from the L1 and

L2 contact terms given in Eq. (6). Diagrams related by time reversal symmetry are not shown.

and for the magnetic form factor comes from the L1 and L2 term of Eq. (6). Not shown in

Fig. 6 are diagrams related by time reversal symmetry. Diagram-(e) in the dashed box is

subtracted from the other diagrams to avoid double counting from diagram-(a) and its time

3 Conventionally charge form factors are defined such that F (Q2 = 0) = 1.
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Form factor d11 d12 d21 d22

F
3H
C (Q2) c

(0)
0t /MN 0 0 1

3c
(0)
0s /MN

F
3He
C (Q2) c

(0)
0t /MN 0 0 5

3c
(0)
0s /MN

F
3H
M (Q2) −2

3L2
1
3L1

1
3L1 0

F
3He
M (Q2) −2

3L2 −1
3L1 −1

3L1 0

TABLE II: Values of coefficients for the NLO corrections to (d)-type diagrams for the 3H and 3He

magnetic and charge form factors. Note factors of e
2MN

have been removed from the magnetic

coefficients since the magnetic moments are given in units of nuclear magnetons.

reversed version. The NLO correction to the “generic” form factor in the limit Q2 = 0 is

F1(0) = 2πMN

(
Γ̃1(q)

)T
⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB0

 c11 + a11 c12

c21 c22 + a22

 (29)

+
1

q2`2 − (q2 + `2 −MNB0)2

 b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

⊗ Γ̃0(`)

+ 2πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB0

 c11 + a11 c12

c21 c22 + a22


+

1

q2`2 − (q2 + `2 −MNB0)2

 b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

⊗ Γ̃1(`)

− 4πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)q2

 c
(0)
0t

MN
a11 + d11 d12

d21
c
(0)
0s

MN
a22 + d22

⊗ Γ̃0(`),

where the coefficients d11,d12,d21, and d22 are from the NLO c.c. space matrix for diagram

Fig. 6(d) and are shown in Table II. Again the derivation of these coefficients is given in

Appendix A. For F1(0) the first two terms simply come from replacing Γ̃0(q) by Γ̃1(q) in

Eq. (26). The last term of F1(0) has NLO corrections from diagrams (a),(d), and (e) of Fig. 6.

For the three-nucleon charge form factor F1(0) = 0 as a consequence of gauge symmetry.

B. Charge and Magnetic Radius

In general the form factor can be expanded in powers of Q2 yielding

F
AZ
X (Q2) = f

AZ
X

(
1− 1

6

〈
δr2
X

〉AZ
Q2 + · · ·

)
, (30)
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where X = C (X = M) for the charge (magnetic) form factor, and AZ = 3H or 3He. f
AZ
C

(f
AZ
M ) is the charge (magnetic moment) of the three-nucleon system, and 〈δr2

C〉
AZ

(〈δr2
M〉

AZ
)

is the point charge (magnetic) radius of the three-nucleon system. Higher order terms in

Q2 are not considered in this work, because for values of Q2 for which EFT(/π) is valid form

factors are dominated by the constant and Q2 pieces. Methods for calculating the form

factor with all powers of Q2 can be seen in Refs. [38, 49].

The coefficient of the Q2 contribution to the “generic” form factor to any order up to

NNLO from type (a) diagrams is given by

1

2

∂2

∂Q2
F (a)
n (Q2)

∣∣∣
Q2=0

= ZLO
ψ

i+j≤n∑
i,j=0

{
G̃
T

i (p)⊗An−i−j(p, k)⊗ G̃j(k) (31)

+2G̃
T

i (p)⊗An−i(p)δj0 +Anδi0δj0
}
,

where the subscripts denote the order of the term in EFT(/π). An(p, k) is a c.c. space matrix,

An(p) is a c.c. space vector, andAn is a c.c. space scalar. The detailed form of these functions

is given in Appendix B and they all depend on the coefficients a11 and a22. Note that the

NLO diagram-(e) of Fig. 6 is absorbed into the NLO expression for diagram-(a) [38]. The

c.c. space vector G̃n(p) is defined by

G̃n(p) = D(0)

(
B − p2

2MN

, ~p

)
Gn(B, p). (32)

Type-(b) diagrams to any order up to NNLO give a Q2 contribution of

1

2

∂2

∂Q2
F (b)
n (Q2)

∣∣∣
Q2=0

= ZLO
ψ

n∑
i=0

G̃
T

i (p)⊗B0(p, k)⊗ G̃n−i(k), (33)

where B0(p, k) is a c.c. space matrix given in Appendix B. Functions Bn(p, k) for n ≥ 1 do

not exist. The Q2 contribution from type-(c) diagrams to any order up to NNLO gives

1

2

∂2

∂Q2
F (c)
n (Q2)

∣∣∣
Q2=0

= ZLO
ψ

i+j≤n∑
i,j=0

{
G̃
T

i (p)⊗ Cn−i−j(p, k)⊗ G̃j(k) + Cn−i(k)⊗ G̃i(k)δj0

}
,

(34)

where Cn(p, k) is c.c. space matrix and Cn(k) is a c.c. space vector both given in Appendix B.

Finally, the Q2 contribution from type-(d) diagrams to any order up to NNLO gives

1

2

∂2

∂Q2
F (d)
n (Q2)

∣∣∣
Q2=0

= ZLO
ψ

i+j≤n−1∑
i,j=0

{
G̃
T

i (p)⊗Dn−i−j(p, k)⊗ G̃j(k) + Dn−i(k)⊗ G̃i(k)δj0

}
,

(35)
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with Dn(p, k) a c.c. space matrix and Dn(k) a c.c. space vector both given in Appendix B.

Summing the contribution from all LO diagrams the Q2 part of the “generic” LO form

factor is given by

1

2

∂2

∂Q2
F0(Q2)

∣∣∣
Q2=0

=
1

2

∂2

∂Q2

(
F

(a)
0 (Q2) + F

(b)
0 (Q2) + F

(c)
0 (Q2)

) ∣∣∣
Q2=0

. (36)

The NLO correction to the Q2 part of the “generic” form factor is

1

2

∂2

∂Q2
F1(Q2)

∣∣∣
Q2=0

=
1

2

∂2

∂Q2

(
F

(a)
1 (Q2) + F

(b)
1 (Q2) + F

(c)
1 (Q2) + F

(d)
1 (Q2)

) ∣∣∣
Q2=0

(37)

− Σ′1(B)

Σ′0(B)

1

2

∂2

∂Q2
F0(Q2)

∣∣∣
Q2=0

,

where the NLO diagrams are summed together and the LO contribution is multiplied by the

NLO three-nucleon wavefunction renormalization. Finally, including all NNLO contributions

and multiplying the NLO term by the NLO three-nucleon wavefunction renormalization and

the LO contribution by the NNLO three-nucleon wavefunction renormalization gives

1

2

∂2

∂Q2
F2(Q2)

∣∣∣
Q2=0

=
1

2

∂2

∂Q2

(
F

(a)
2 (Q2) + F

(b)
2 (Q2) + F

(c)
2 (Q2) + F

(d)
2 (Q2)

) ∣∣∣
Q2=0

(38)

− Σ′1(B)

Σ′0(B)

1

2

∂2

∂Q2
F1(Q2)

∣∣∣
Q2=0

−
(

Σ′2(B)

Σ′0(B)
+

4

3
MNĤ2

Σ2
0(B)

Σ′0(B)

)
1

2

∂2

∂Q2
F0(Q2)

∣∣∣
Q2=0

,

for the NNLO correction to the Q2 part of the “generic” form factor.

C. Wigner-Symmetry: Consequences

Additional information can be gleaned by going to the Wigner basis which is defined by

Γ(−)
n (q) = Γn,ψ→Nt(q)− Γn,ψ→Ns(q) , Γ(+)

n (q) = Γn,ψ→Nt(q) + Γn,ψ→Ns(q). (39)

At LO in the Wigner-SU(4) limit (γt = γs) [19, 42, 50] the component Γ
(+)
n (q) = 0 and the

LO triton charge form factor only depends on Γ
(−)
n (q) giving the condition4

1 = 2πMNΓ
(−)
0 (q)⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB0

− 4

q2`2 − (q2 + `2 −MNB0)2

⊗ Γ
(−)
0 (`), (40)

4 Since the spin-singlet dibaryon is unphysical the Γn,ψ→Ns(q) vertex function can take an arbitrary phase.

Thus for some authors the roles of Γ
(+)
n (q) and Γ

(−)
n (q) are switched from the conventions of this work.
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from Eq. (28). Using this relationship and going to the Wigner-SU(4) limit for 3H and 3He

magnetic form factors gives the exact identities

F
3He
M (0) = (κ0 − κ1) = µn , F

3H
M (0) = (κ0 + κ1) = µp, (41)

for the LO three-nucleon magnetic form factors at Q2 = 0. In this work the magnetic form

factors are normalized such that they give the three-nucleon magnetic moments in nuclear

magnetons at Q2 = 0. The three-body wavefunction is spatially symmetric under the change

of spatial coordinates of any two nucleons in the Wigner-SU(4) limit and nucleons of the

same isospin state have opposite spin: as a result their magnetic moments cancel leaving

the three-nucleon magnetic moment to be solely determined by the remaining unpaired

nucleon, which is also known as the Schmidt-limit [43]. Thus deviation from the Wigner-

SU(4) limit is a measure of the “asymmetry” of the spatial wavefunction, isospin breaking,

and higher order two- and three-body currents. Once Wigner-SU(4) symmetry is broken

a small mixed symmetry S ′-state is induced, which is not symmetric under the change of

spatial coordinates of any two nucleons [51]. The proton and neutron magnetic moments

in nuclear magnetons are found to be µp = 2.793 and µn = −1.913 respectively, while the

three-nucleon magnetic moments are µ3H = 2.979 and µ3He = −2.127. Thus µp is about 7%

away from µ3H and µn is about 11% away from µ3He. This implies that the Wigner-SU(4)

limit is a good starting point to describe the three-nucleon system and a dual expansion

in a Wigner-SU(4) symmetry breaking parameter and EFT(/π) should yield order-by-order

improvements [42]. A simple proof that Eq. (41) follows as a consequence of Wigner-SU(4)

symmetry is given in Appendix C.

Going to the Wigner-SU(4) limit the NLO 3H and 3He charge form factor at Q2 = 0,

Eq. (29), gives

0 = 2πMNΓ
(−)
1 (q)⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB0

− 4

q2`2 − (q2 + `2 −MNB0)2

⊗ Γ
(−)
0 (`) (42)

+ 2πMNΓ
(−)
0 (q)⊗

π2 δ(q − `)

q2

√
3
4
q2 −MNB0

− 4

q2`2 − (q2 + `2 −MNB0)2

⊗ Γ
(−)
1 (`)

− 4πcWΓ
(−)
0 (q)⊗

{
π

2

δ(q − `)
q2

}
⊗ Γ

(−)
0 (`),

where in addition to the limit γt = γs the limit cW = c
(0)
0t = c

(0)
0s is taken. Using Eq. (42) the
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NLO correction at Q2 = 0 to the 3H magnetic form factor in the Wigner-SU(4) limit is

F
3H
M,1(0) = 4πMN

(
2

3

cW
MN

(κ0 + κ1) +
1

3
L2 +

1

3
L1

)
Γ

(−)
0 (q)⊗

{
π

2

δ(q − `)
q2

}
⊗ Γ

(−)
0 (`), (43)

and for the 3He magnetic form factor is

F
3He
M,1(0) = 4πMN

(
2

3

cW
MN

(κ0 − κ1) +
1

3
L2 −

1

3
L1

)
Γ

(−)
0 (q)⊗

{
π

2

δ(q − `)
q2

}
⊗ Γ

(−)
0 (`). (44)

Thus the NLO correction to the magnetic form factors in the Wigner-SU(4) limit at Q2 = 0

can be entirely rewritten in terms of LO three-nucleon vertex functions.

V. RESULTS

A. Fitting L1 and L2

To calculate the three-nucleon magnetic moments to NLO the LEC L1 (L2) of the isovec-

tor (isoscalar) two-body magnetic current term in Eq. (6) must be determined. Typically,

L1 is fit to the cold np capture cross-section (σnp), which near threshold is given by [7, 52]

σnp =
2αγ6

t

|~vrel|M3
N

[
|YLO|2 + 2Re[Y ∗LOYNLO]

]
, (45)

where YLO (YNLO) is the LO (NLO correction to the) isovector magnetic dipole moment,

and ~vrel is the relative velocity between the neutron and proton. YLO at threshold in the

Z-parametrization is given by [23]

YLO =
2κ1

MNγ2
t

√
γtπ

(
1− γt

γs

)
, (46)

and its NLO correction depending on L1 by

YNLO =
2κ1

MNγ2
t

√
γtπ

1

2

(
(Zt − 1)− γt

γs
[(Zt − 1) + (Zs − 1)]

)
(47)

− L1

MNγs

√
γtπ.

Ensuring reproduction of the experimental cold np capture cross-section of σnp =

334.2(5) mb [53] at a neutron velocity of vrel = 2200 m/s yields L1 = −6.90 fm.

The value for L2 is typically fit to the deuteron magnetic moment [7] which to NLO in

the Z-parametrization in units of nuclear magnetons is given by [23]5

µd = (2Ztκ0 + 2L2γt) . (48)

5 For similar expressions using different treatments of the LECs consult Refs. [7, 46]
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Fitting to the experimental deuteron magnetic moment µd = 0.85741 e
2MN

yields L2 =

−1.36 fm. By naturalness arguments the size of L2 and L1 should be approximately

1/mπ ∼ 1.4 fm. Although L2 is rather close to this value L1 is significantly bigger. However,

since L1 (L2) is driven by κ1 (κ0) it should be divided by this scale. Dividing L1 by 2κ1

and L2 by 2κ0 gives the values -1.47 fm and -1.55 fm respectively, which are in line with

naturalness expectations.

B. Charge Radii of Three-Nucleon Systems

The triton point charge radius has been calculated previously in EFT(/π) [33, 42, 54] up

to NNLO [38]. Here the results of Ref. [38] are reviewed and the 3He point charge radius to

NNLO in the absence of Coulomb interactions is given. The point charge radius squared is

given by 〈
δr2
C

〉AZ
n

= − 6

ZAZ

(
1

2

∂2

∂Q2
F

AZ
C,n(Q2)

∣∣∣
Q=0

)
, (49)

where Z
AZ is the number of protons in the nucleus, n = 0 is the LO term, n = 1 is the

NLO correction, and n = 2 is the NNLO correction. Taking the square root yields the

three-nucleon point charge radius, which up to to NNLO is

δr
AZ
C =

√
〈δr2

C〉
AZ
0

 1︸︷︷︸
LO

+
1

2

〈δr2
C〉

AZ
1

〈δr2
C〉

AZ
0︸ ︷︷ ︸

NLO

+
1

2

〈δr2
C〉

AZ
2

〈δr2
C〉

AZ
0

− 1

8

(
〈δr2

C〉
AZ
1

〈δr2
C〉

AZ
0

)2

︸ ︷︷ ︸
NNLO

+ · · ·

 . (50)

The three-nucleon charge radius r
AZ
C is related to the three-nucleon point charge radius

δr
AZ
C by 〈(

δr
AZ
C

)2
〉

=

〈(
r
AZ
C

)2
〉
−
〈
r2
p

〉
− N

AZ

ZAZ

〈
r2
n

〉
, (51)

where N
AZ is the number of neutrons in the nucleus, rp = 0.8783 ± 0.0086 fm [1] is the

proton charge radius, r2
n = −0.1149 ± 0.0027 fm2 [1] is the neutron charge radius squared,

and r
AZ
C is the three-nucleon charge radius. For 3H (3He) the experimental charge radius

is r
3H
C = 1.7591(363) fm (r

3He
C = 1.9961(30) fm) [1] and the resulting point charge radius is

δr
3H
C = 1.5978(40) fm (δr

3He
C = 1.77527(540) fm). The point charge radius of 3H and 3He up

to NNLO are compared with experiment in Table III. Overlap within errors between theory

and experiment is seen at NLO and NNLO for the 3H and 3He point charge radius. The
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δr
3H
C fm δr

3He
C fm

LO 1.14(20) 1.26(22)

NLO 1.59(9) 1.72(10)

NNLO 1.62(4) 1.74(4)

Exp 1.5978(40) 1.77527(540)

TABLE III: 3H and 3He point charge radius up to NNLO compared to experimental data [1].

LO point charge radius for 3H and 3He under-predict the experimental values. However, as

noted in Ref. [38] the correct value for the LO point charge radius is obtained in the unitary

limit. Thus, even though the LO values seem too small they are reasonable.

The error estimate for amplitudes in EFT(/π) follows from the expansion parameter

1
2
(Zt − 1) = 0.345 leading to a 35% error estimate at LO, a 12% error estimate at NLO,

and a 4% error estimate at NNLO.6 Error estimates for charge and magnetic radii are half

of these values since it is given by the square root of an amplitude. Likewise, the error

estimate for cross-sections is doubled since it is obtained from squaring an amplitude. The

error for the NNLO three-nucleon charge radii comes from a ∼1% error from cutoff variation

and a ∼2% error from the EFT(/π) expansion. This slight cutoff variation is due to either

a slow divergence or convergence of the NNLO three-nucleon point charge radii. To answer

this conclusively either a detailed asymptotic analysis must be performed or a calculation

to higher cutoffs. However, for cutoffs Λ > 106 MeV numerical issues are currently encoun-

tered and reliable calculations cannot be performed. To go to higher cutoffs new numerical

techniques will be required.

Despite the absence of Coulomb interactions in these calculations good agreement is found

between theory and experiment for the 3He point charge radius. Errors due to excluding

Coulomb corrections are roughly of the size αMn/(2p
∗
3He) ∼ 4%, where p∗3He =

√
MNE3He

is the binding momentum of 3He, for the 3He binding energy E3He = 7.718 MeV [48], and

the factor of two comes from taking the square root of the amplitude for the charge radius.

Kirscher et al. [34] find LO three-nucleon charge radii very similar to those of this work.

They also find that Coulomb corrections to the 3He charge radius are small and within the

6 Note, this error estimate is more conservative than that used in Ref. [38], which calculated the 3H charge

radius to NNLO.
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Method B3H [MeV] B3He [MeV] δr
3H
C [fm] δr

3He
C [fm]

AV18/UIX [58] 8.473 7.740 1.593 1.777

χEFT [58] 8.478 7.735 1.617 1.800

AV18/UIX HH [61] 8.479 7.750 1.582 1.771

AV18/IL7 GFMC[62] 8.50(1) -7.73(1) 1.58 1.80

χEFT N3LO/N2LO [41] – 1.594(14) 1.770(10)

EFT(/π) (LO) [33] – 2.1(6) –

EFT(/π) (LO) [34] – 1.16(23) 1.30(28)

EFT(/π) (NLO) [54] – 1.6(2) –

EFT(/π) (NNLO) – 1.62(4) 1.74(4)

Experiment: 8.4818 7.7180

Experiment: e− 1.5978(40) [1] 1.7753(54) [1]

Experiment: µ− 1.6178(40) [1, 63]

TABLE IV: Different theoretical predictions for the 3H and 3He point charge radii and binding

energies. All EFT calculations fit to the experimental three-nucleon binding energies, with the

exception of the χEFT calculation of Ref. [58]. The error for the three-nucleon binding energies for

the GFMC results comes from statistical errors in Monte Carlo calculations. All other errors are

estimates from EFT or experimental errors. The error for the χEFT values comes from varying the

cutoff of the calculation [41]. Experimental numbers for the three-nucleon charge radii are given

using both the proton charge radius from electron scattering data and muonic hydrogen data.

4% error estimate.

A comparison of various theoretical calculations for the 3H and 3He point charge radii

is given in Table IV. Using the Lanzcos sum rule method [55] and the effective interactions

hypspherical harmonics (EIHH) [56, 57] method Ref. [58] calculated a 3H (3He) point charge

radius of 1.593 fm (1.777 fm) using the Argonne-v18 [59] two-body and Urbana IX [60] three-

body (AV18/UIX) nuclear potential and a point charge radius of 1.617 fm (1.800 fm) using a

χEFT based potential. Ref. [61] obtained a value of 1.582 fm (1.711 fm) using the AV18/UIX

potetnial with the hyperspherical harmonics (HH) method. Utilizing Green’s function Monte

Carlo (GFMC) and a hybrid approach mixing χEFT for the current operators and the AV18

and Illinois-7 [64] three-body (AV18/IL7) potential for the wavefunctions, Ref. [62] found a
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value of 1.58 fm (1.80 fm). In Ref. [41] χEFT was used to calculate both the current operators

and wavefunctions using the HH method yielding a prediction of 1.594(14) fm (1.770(10) fm).

Finally, the 3H (3He) charge radius has been calculated previously in EFT(/π) yielding the LO

predictions of 2.1± 0.6 fm [33] and 1.16(23) fm (1.30(28) fm) [34], and the NLO prediction

1.6± 0.2 fm [54]. The LO 2.1± 0.6 fm result used wavefunction techniques while the other

two predictions used position space techniques. Error estimates for the χEFT and EFT(/π)

calculation of Ref. [34] are obtained via variation of the cutoff. However, estimating errors

using cutoff variation should be done with caution [65].

The “experimental” three-nucleon point charge radii are given by subtracting the proton

charge radius form the thee-nucleon charge radius. However, the average of measurements of

the proton charge radius from electron scattering and electronic Hydrogen spectroscopy [66]

disagree with measurements from muonic Hydrogen spectroscopy (0.84087(39) [63]) by seven

standard deviations. This discrepancy is known as the “proton radius puzzle” [67]. In Ta-

ble IV the “experimental” three-nucleon point charge radii are given for the proton radius

determined from muonic Hydrogen spectroscopy and determined from electronic Hydrogen

spectroscopy and electron scattering data. The difference in the three-nucleon point charge

radii using different proton charge radii is approximately 1%, and therefore a N3LO calcu-

lation in EFT(/π) would be able to distinguish them.

C. Observables from The Magnetic Form Factor

The three-nucleon magnetic form factor given in Eq. (30) when X = M can be expanded

perturbatively as

F
AZ
M (Q2) = F

AZ
M,0(Q2) + F

AZ
M,1(Q2) + · · · , (52)

the three-nucleon magnetic moment can be expanded perturbatively giving

µAZ = µ
AZ
0 + µ

AZ
1 + · · · , (53)

and the three-nucleon point magnetic radius squared can be expanded perturbatively yield-

ing 〈
δr2
M

〉AZ
=
〈
δr2
M

〉AZ
0

+
〈
δr2
M

〉AZ
1

+ · · · , (54)
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where the terms with subscript “0” (“1”) are the LO contribution (NLO correction). Using

this perturbative expansion the LO three-nucleon magnetic moment is

µ
AZ
0 = F

AZ
M,0(0), (55)

and it NLO correction

µ
AZ
1 = F

AZ
M,1(0). (56)

The LO three-nucleon point magnetic radius squared is given by

〈
δr2
M

〉AZ
0

= − 6

µ
AZ
0

(
1

2

∂2

∂Q2
F

AZ
M,0(Q2)

∣∣∣
Q=0

)
, (57)

and its NLO correction by

〈
δr2
M

〉AZ
1

= − 6

µ
AZ
0

(
1

2

∂2

∂Q2
F

AZ
M,1(Q2)

∣∣∣
Q=0

)
− µ

AZ
1

µ
AZ
0

〈
δr2
M

〉AZ
0
. (58)

Finally, the resulting NLO three-nucleon point magnetic radius is given by

δr
AZ
M =

√
〈δr2

M〉
AZ
0

 1︸︷︷︸
LO

+
1

2

〈δr2
M〉

AZ
1

〈δr2
M〉

AZ
0︸ ︷︷ ︸

NLO

+ · · ·

 . (59)

From the 3H and 3He magnetic moments the isoscalar and isovector magnetic moment

can be defined as

µs =
1

2
(µ3He + µ3H) , (60)

and

µv =
1

2
(µ3He − µ3H) , (61)

respectively. The isoscalar magnetic moment only depends on L2 and κ0 up to NLO, while

the isovector magnetic moment only depends on L1 and κ1 up to NLO. At LO the isoscalar

magnetic moment in nuclear magnetons is given by µs = 0.440(152) and fitting L2 to the

deuteron magnetic moment gives the NLO value µs = 0.421(50). This agrees well with the

experimental value of µs = 0.426. µv is compared with experiment in Table V. The first

NLO row is for L1 fit to σnp and it is observed that µv is slightly under-predicted at NLO.

In the second NLO row L1 = −5.62 fm is fit to the experimental 3H magnetic moment.

The last NLO row is given by L1 = −5.83 fm which is a best fit to both σnp and µ3H,

where the relative error for σnp and µ3H between theory and experiment is minimized. For
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µv L1 fit

LO -2.31(80) N/A

NLO -2.20(26) σnp

NLO -2.56(31) µ3H

NLO -2.50(30) σnp and µ3H

Exp -2.55 N/A

TABLE V: Table of three-nucleon isovector magnetic moments in nuclear magnetons compared to

experiment. The first NLO row is for L1 fit to σnp, the second NLO row is for L1 fit to µ3H, and

the final NLO row is L1 fit to both σnp and µ3H.

both of these choices of L1 agreement is found between theory at NLO and experiment for

µv. The value for L1 fit to σnp and µ3H simultaneously with its associated EFT(/π) error is

L1 = −5.83±2.01 fm. Values for L1 fit to just σnp or µ3H are encompassed within this error.

D. Magnetic Moments and Radii of Three-Nucleon Systems

The LO and NLO calculation of the three-nucleon magnetic radii in EFT(/π) treat nu-

cleons as point particles and hence the resulting values are called the point magnetic radii.

Contributions from the nucleon magnetic radii occur at NNLO in EFT(/π) and are given by

the Lagrangian

Lmag1,2 = −1

6

〈
r2
M

〉
p
µpN̂

†
(

1 + τ3

2

)
~σ · ~∇2BN̂ +−1

6

〈
r2
M

〉
n
µnN̂

†
(

1− τ3

2

)
~σ · ~∇2BN̂ , (62)

where
√
〈r2
M〉p = 0.776(34)(17) fm [68, 69] is the proton magnetic radius and

√
〈r2
M〉n =

0.864+0.009
−0.008 fm [68, 70] is the neutron magnetic radius. Using this interaction the full magnetic

radius of 3H is

〈
r2
M

〉3H
=
〈
δr2
M

〉3H
+

1

2

µp
µ3H

(
µLO
s

κ0

− µLO
v

κ1

)〈
r2
M

〉
p

+
1

2

µn
µ3H

(
µLO
s

κ0

+
µLO
v

κ1

)〈
r2
M

〉
n
, (63)

and for 3He is

〈
r2
M

〉3He
=
〈
δr2
M

〉3He
+

1

2

µp
µ3He

(
µLO
s

κ0

+
µLO
v

κ1

)〈
r2
M

〉
p

+
1

2

µn
µ3He

(
µLO
s

κ0

− µLO
v

κ1

)〈
r2
M

〉
n
, (64)
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where µLO
s (µLO

v ) is the LO three-nucleon isoscalar (isovector) magnetic moment in EFT(/π).

From Eq. (41) it can be shown that in the Wigner-SU(4) limit these equations reduce to〈
r2
M

〉3H
=
〈
δr2
M

〉3H
+
〈
r2
M

〉
p
, (65)

and 〈
r2
M

〉3He
=
〈
δr2
M

〉3He
+
〈
r2
M

〉
n
. (66)

This result is analogous to the magnetic moments in the Wigner-SU(4) limit since the cor-

rection to the three-nucleon point magnetic radius only depends on the magnetic radius of

the unpaired nucleon. Although contributions from the nucleon magnetic radii are strictly

NNLO we include them at LO and NLO to compare with experimental results that include

such nucleon structure. For the three-nucleon charge radii the experimental nucleon charge

radii are subtracted from the experimental three-nucleon charge radii to give the “experi-

mental” three-nucleon point charge radii (See Eq. (51)) that are then compared with theory.

However, unlike Eq. (51) Eqs. (63) and (64) depend on theoretical numbers. Therefore, the

nucleon magnetic radii are added to the theoretical point magnetic radii to get the full mag-

netic radius rather than subtracting them from the experimental three-nucleon magnetic

radii and pollute experimental numbers with theoretical numbers.

Due to gauge invariance the three-nucleon charge is reproduced exactly at LO and higher

order one-, two- and, three-body currents are arranged such that the three-nucleon charge

remains fixed, or simply put F
AZ
C,n(Q2 = 0) = 0 for n ≥ 1. However, no such condition

exists for the magnetic form factor, thus the three nucleon magnetic moments receive non-

zero contributions from higher order one-,two-, and three-body currents and they are not

reproduced exactly at LO. This is why Eq. (51) contains no theoretical numbers, whereas

Eqs. (63) and (64) do.

The values of the three-nucleon magnetic moments, three-nucleon magnetic radii, and

σnp up to NLO are given in Table VI. There are three NLO rows, arranged as in Table V,

corresponding to different methods for fitting the L1 coefficient. For all of these rows L2 is

fit to the deuteron magnetic moment. Fitting L1 to σnp it is observed that the three-nucleon

magnetic moments are slightly under-predicted at NLO, while fitting L1 to µ3H or µ3H

and σnp leads to agreement between the three-nucleon magnetic moments and experiment.

For all choices of L1 the three-nucleon magnetic radii at NLO overlap within errors with

the experimental values, in part due to their relatively large experimental error. All NLO
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µ3H µ3He r
3H
M fm r

3He
M fm σ(np→ dγ) mb L1 fit

LO 2.75(95) -1.87(73) 1.40(24) 1.49(26) 325.2± 225.6 N/A

NLO 2.62(31) -1.78(21) 1.83(11) 1.92(11) 334.2± 79.7 σnp

NLO 2.98(36) -2.14(25) 1.77(11) 1.83(11) 370.47± 88.4 µ3H

NLO 2.92(35) -2.08(25) 1.78(11) 1.85(11) 364.5± 87.0 σnp and µ3H

Exp 2.979 -2.127 1.840(182) [2] 1.965(154) [2] 334.2(5) [53] N/A

TABLE VI: LO and NLO three-nucleon magnetic moments in nuclear magnetons, three nucleon

magnetic radii, and σnp compared to experiment. The different NLO rows are different fits for L1

as described in Table V.

results for the magnetic radii have a smaller estimated theoretical error than the current

experimental error. The results for L1 fit to µ3H and σnp are taken as the predictions of

EFT(/π) at NLO in this work.

A comparison of different calculations of three-nucleon magnetic moments, magnetic radii,

and σnp is given in Table VII. Ref. [40] uses the HH method and AV18/UIX to obtain a 3H

(3He) magnetic moment of 2.994 (−2.112) and a magnetic radius of 1.800 fm (1.909 fm).

The hybrid approach in Ref. [62] using AV18/IL7 with GFMC finds a magnetic moment of

2.960 (-2.100). The χEFT calculation of Ref. [41] finds a magnetic moment of 2.979 (-2.127),

magnetic radius of 1.801(14) fm (1.920(14) fm), and σnp of 329.1(6) mb. For these values

of the χEFT calculation the LECs are fit to reproduce the 3H magnetic moment. A NLO

EFT(/π) calculation which includes Coulomb corrections [34] fits L1 to µ3H and finds a 3He

magnetic moment of -2.130. This is roughly 5% away from the NLO prediction for µ3He of

this work when L1 is fit to µ3H and Coulomb interactions are ignored, which agrees with the

8% error estimate from excluding Coulomb effects. All calculations predict the magnetic

moments well and within the large experimental errors all predictions for the magnetic radii

agree with experiment.

VI. CONCLUSIONS

In this work it was demonstrated how the zeroth (i.e. charge of charge form factor and

magnetic moment of magnetic form factor) and second (i.e. charge and magnetic radius of

charge and magnetic form factor respectively) moment of a generic form factor for a three-
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µ3H µ3He r
3H
M fm r

3He
M fm σ(np→ dγ) mb

AV18/UIX [40] 2.994 -2.112 1.800 1.909 –

AV18/IL7 GFMC[62] 2.960 -2.100 – – –

χEFT N3LO/N2LO [41] 2.979 -2.127 1.801(14) 1.920(14) 329.1(6)

NLO EFT(/π) [34] 2.979 -2.130 – – –

NLO EFT(/π) 2.92(35) -2.08(25) 1.78(11) 1.85(11) 364.5± 87.0

Experiment 2.979 -2.127 1.840(182) [2] 1.965(154) [2] 334.2(5) [53]

TABLE VII: Values of three-nucleon magnetic moments in nuclear magnetons, three nucleon mag-

netic radii, and σnp from different theoretical calculations and experiment.

body system coming from an external current via a non-derivative coupling can be calculated

in srEFT. This was carried out for three-nucleon systems in EFT(/π). Extension of this work

to calculate the generic form factor for arbitrary Q2 values is straightforward using the work

of Refs. [38, 49, 71] but of limited interest in EFT(/π) which in only valid for Q . 0.7 fm−1.

In addition by calculating the zeroth and second moments directly the number of integrals

is reduced and results at larger cutoffs can be calculated without numerical issues. Using

the methods of this work the point charge radii of the three-nucleon system was calculated

to NNLO, while the magnetic moments and magnetic radii were calculated to NLO.

The point charge radius of 3H (3He) is 1.14(20) fm (1.26(22) fm) at LO, 1.59(9) fm

(1.72(4) fm) at NLO, and 1.62(4) fm (1.74(4) fm) at NNLO.7 NLO and NNLO val-

ues both agree within errors with the experimental point charge radius of 1.5978(40) fm

(1.7763(54) fm) for 3H (3He). In this work Coulomb interactions were not included in the

calculation of 3He properties. Coulomb corrections should be roughly a 4% correction and

can be included perturbatively [30, 32]. The error estimate at NNLO is due to a small

amount of observed cutoff variation (∼1%) and EFT(/π) error (∼2%). Cutoff variation at

NNLO is either a consequence of slow convergence or divergence. To answer the question of

which a detailed asymptotic analysis or a calculation to higher cutoffs needs to be carried

out. Definitively answering this issue at NNLO is relegated to future work.

The magnetic moment of 3H (3He) at LO is 2.75(95) (−1.87(73)) in nuclear magnetons.

7 The point charge radius of 3H was calculated previously in Ref. [38] but is shown here with the more

conservative error estimates of this work.
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This agrees with the experimental magnetic moment for 3H (3He) of 2.979 (-2.127). The

LO magnetic radius of 3H (3He) is 1.40(24) fm (1.49(26) fm), which under-predicts the

experimental value of 1.840(182) fm (1.965(154) fm) [2]. This under-prediction is in line

with what is observed for the three-nucleon point charge radius at LO. Indeed a large jump

is observed in the LO to NLO three-nucleon magnetic radius just as for the three-nucleon

point charge radius. At NLO the isoscalar two-body current L2 is fit to the deuteron

magnetic moment. Fitting the isovector two-body current L1 to µ3H and σnp (L1 = −5.83±

2.01 fm) yields the NLO 3H (3He) magnetic moment 2.92(35) (-2.08(25)), the NLO cold np

capture cross-section 364.5± 87.0 mb, and the NLO 3H (3He) magnetic radius 1.78(11) fm

(1.85(11) fm), which are all consistent with experiment.

Using coordinate space techniques the three-nucleon magnetic moments have been calcu-

lated previously by Kirscher et al. [34] in EFT(/π) to NLO for different pion masses by fitting

to Lattice QCD data. Calculating at the physical pion mass Kirscher et al. fit L1 to µ3H and

found good predictions for the 3He magnetic moment and the 3H and 3He magnetic polar-

izabilities at NLO in which Coulomb interactions were included. They also considered the

three-nucleon charge radii at NLO and found good agreement with experiment. However,

they did not consider the value of σnp with their choice of L1.

Due to gauge symmetry the three-nucleon charge form factor at LO gives the three-

nucleon charge at Q2=0 and all higher order corrections give zero contribution at Q2=0. This

gives exact analytical expressions involving the properly renormalized three-nucleon vertex

functions. Going to the Wigner-SU(4) limit these identities for the charge form factor can

be used to make predictions about the magnetic form factor. In particular it is found that

the 3H (3He) magnetic moment is the proton (neutron) magnetic moment in the Wigner-

SU(4) limit reproducing the Schmidt-limit [43]. Comparing this to the experimental values

of three-nucleon magnetic moments provides added evidence that the Wigner-SU(4) limit is

a good starting point to describe three-nucleon systems. Corrections breaking Winger-SU(4)

symmetry can be added perturbatively as in Ref. [42]. It is also demonstrated that the NLO

correction to the magnetic moment can be written entirely in terms of LO quantities in

the Wigner-SU(4) limit. These results in the Wigner-symmetric limit should be taken as

an essential benchmark since any technique that is able to calculate three-nucleon magnetic

moments in the Wigner-SU(4) limit should reproduce them exactly up to to numerical error.

The most accurate determination to date of three-nucleon magnetic radii is from magnetic
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form factors measured from electron scattering [72]. Extracting the magnetic form factor

requires looking at the angular distribution of scattered electrons and subtracting out the

much larger isotropic contribution from the charge form factor, which leads to the larger

uncertainties for the magnetic radii vs. the charge radii. Future experiments involving the

hyperfine splitting of atomic S-wave states in muonic 3H (µ3H+) and 3He (µ3He+) offer the

possibility of more precise measurements of the three-nucleon magnetic radii [73, 74]. The

NLO EFT(/π) prediction of the three-nucleon magnetic radii has an approximate 6% error,

which is already smaller than the experimental error for the magnetic radius of 3H (3He) of

∼10% (∼8%). EFT(/π) offers the possibility of precision calculations with controlled errors

for three-nucleon properties. A NNLO EFT(/π) calculation of three-nucleon magnetic radii

including perturbative Coulomb corrections [32] would give a result accurate to about 2%.

Using spectroscopic data on µ3He+ the 3He charge radius can in principle be determined

to hundred-fold better accuracy than from current electron scattering experiments [75].

However, extraction from spectroscopic data is hampered by the relative uncertainty of two

photon exchange (TPE) contributions. The best current theoretical determinations of TPE

are accurate to about 3% [58, 76, 77]. A N3LO EFT(/π) calculation of TPE can improve on

this accuracy by a factor of two. Measurement of the 3He charge radius from µ3He+ will give

insight into the so called “proton radius puzzle” [67] in which a seven standard deviation

discrepancy is seen between the proton charge radius determined from electron scattering

and Hydrogen spectroscopy [66] vs. muonic-Hydrogen spectroscopy [63].
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Appendix A:

To derive the values in Table I the spin-isospin operator in c.c. space for each diagram

in Fig. 5 must be projected onto the doublet S-wave channel. The spin-isospin c.c. space

operator for diagram-(a) for minimally coupled Â0 photons is(
1 + τ3

2

)a
b

δαβ δ
ij, (A1)

and for magnetically coupled photons

(κ0 + τ3κ1)ab (σn)αβ δ
ij, (A2)

where α (β) is the initial (final) nucleon spin, a (b) is the initial (final) nucleon isospin, and

i (j) is the initial (final) dibaryon polarization. Projecting these operators into the doublet

S-wave channel using the projectors in Ref. [22] yields

1

3

(
σj 0

0 τB

) (1+τ3
2

)
δij 0

0
(

1+τ3
2

)
δAB

( σi 0

0 τA

)
=

( (
1+τ3

2

)
0

0 1
3

(
3−τ3

2

) ) , (A3)

for minimally coupled Â0 photons and

1

3

(
σj 0

0 τB

) (κ0 + τ3κ1)σnδij 0

0 (κ0 + τ3κ1)σnδAB

( σi 0

0 τA

)
= (A4)

(
−1

3
(κ0 + τ3κ1) 0

0 1
3

(3κ0 − τ3κ1)

)
σn,

for magnetically coupled photons. Choosing τ3 = 1 (τ3 = −1) gives the coefficients a11 and

a22 for 3He (3H) in Table I. The Pauli matrix σn couples to the magnetic field Bn not shown

here.

The spin-isospin c.c. space operator for diagram-(b) of Fig. 5 for minimally coupled Â0

photons is given by [
P

(w)
i

†
(

1 + τ3

2

)
P

(x)
j

]αa
βb

, (A5)

and for magnetically coupled photons by[
P

(w)
i

†
(κ0 + τ3κ1)σnP

(x)
j

]αa
βb
, (A6)

where P
(x)
j =

√
8Pj (P

(x)
j =

√
8P̄j) for x = t (x = s) in the spin-triplet iso-singlet (spin-

singlet iso-triplet) channel. Here the indices “i” and “j” are either spinor or isospinor indices
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depending on the values of (x) and (w). The values of (x) and (w) give the matrix element

of the c.c. space matrix. Projecting onto the doublet S-wave channel gives

1

3

(
σj 0

0 τB

) (1−τ3
2

)
σiσj τA

(
1−τ3

2

)
σj(

1−τ3
2

)
τBσi τA

(
1−τ3

2

)
τB

( σi 0

0 τA

)
=

(
−
(

1−τ3
2

) (
3+τ3

2

)(
3+τ3

2

)
−1

3

(
3+5τ3

2

) ) , (A7)

for minimally coupled Â0 photons and

1

3

(
σj 0

0 τB

) −(κ0 − τ3κ1)σiσnσj −τA(κ0 − τ3κ1)σnσj

−(κ0 − τ3κ1)τBσiσn −τA(κ0 − τ3κ1)τBσn

( σi 0

0 τA

)
= (A8)

(
−5

3
(κ0 − τ3κ1) 1

3
(3κ0 + τ3κ1)

1
3
(3κ0 + τ3κ1) 1

3
(3κ0 + 5τ3κ1)

)
σn,

for magnetically coupled photons.

The spin isospin c.c. space operator for diagram-(c) of Fig. 5 for minimally coupled Â0

photons is given by
1

2
Tr

[
P

(x)
j

(
1 + τ3

2

)
P

(w)
i

†
]
δαβ δ

a
b , (A9)

and for magnetically coupled photons by

1

2
Tr
[
P

(x)
j (κ0 + τ3κ1)σnP

(w)
i

†]
δαβ δ

a
b . (A10)

Projecting onto the doublet S-wave channel yields

1

3

(
σj 0

0 τB

) 1
2
Tr
[
σjσi

(
1+τ3

2

)]
1
2
Tr
[
σj
(

1+τ3
2

)
τA
]

1
2
Tr
[
σiτB

(
1+τ3

2

)]
1
2
Tr
[
τB
(

1+τ3
2

)
τA
]
( σi 0

0 τA

)
= (A11)

(
1 0

0 1 + 2
3
τ3

)
,

for minimally coupled Â0 photons and

1

3

(
σj 0

0 τB

) 1
2
Tr [σjσnσi(κ0 + τ3κ1)] 1

2
Tr [σjσn(κ0 + τ3κ1)τA]

1
2
Tr [σnσiτB(κ0 + τ3κ1)] 1

2
Tr [σnτB(κ0 + τ3κ1)τA]

( σi 0

0 τA

)
= (A12)

(
4
3
κ0

2
3
κ1τ3

2
3
κ1τ3 0

)
σn,

for magnetically coupled photons.

The spin isospin c.c. space operator for diagram-(d) of Fig. 6 for Â0 photons from gauging

the dibaryon kinetic term is given by

δwx(c
(0)
0t δwtδij + c

(0)
0s δws(2δi1δj1 + δi0δj0))δαβ δ

a
b . (A13)
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δwt picks out the contribution from the spin-triplet dibaryon and δws from the spin-singlet

dibaryon. The indices i and j in δi0δj0 and δi1δj1 are spherical isospin indices and correspond

to the fact that only the the np and pp spin-singlet dibaryon are charged and not the nn

spin-singlet dibaryon. The spin isospin c.c. space operator for diagram-(d) of Fig. 6 for the

magnetic form factor comes the two-body currents in Eq. (6) which give

iL2ε
jinδwtδxtδ

α
β δ

a
b − L1(δniδj3δwtδxs + δnjδi3δwsδxt)δ

α
β δ

a
b . (A14)

Projecting in the doublet S-wave channel gives

1

3

(
σj 0

0 τB

) δijc
(0)
0t 0

0 (2δA1 + δA0)δABc
(0)
0s

( σi 0

0 τA

)
=

(
c

(0)
0t 0

0 (1 + 2
3
τ3)c

(0)
0s

)
, (A15)

for Â0 photons coupled to the dibaryons and

1

3

(
σj 0

0 τB

) iεjinL2 −L1δjnδA3

−L1δinδB3 0

( σi 0

0 τA

)
=

(
−2

3
L2 −1

3
L1τ3

−1
3
L1τ3 0

)
σn, (A16)

for photons magnetically coupled via the L1 and L2 two-body currents.

Appendix B:

The scalar functionAn is given in Ref. [38] for a specific choice of a11 and a22. Generalizing

to arbitrary a11 and a22 gives

An =

∫ Λ

0

dqq2
(
a11f

(n)
t (q) + a22f

(n)
s (q)

)
, (B1)

where

f
(0)
{t,s}(q) =

MN

384π2

1

D̃5D4
{t,s}

{
q2(D2

{t,s} − 2D{t,s}D̃ + 2D̃2) + 4D{t,s}D̃
2(3D̃ − γ{t,s})

}
, (B2)

f
(1)
{t,s}(q) = (Z{t,s} − 1)f

(0)
{t,s}(q), (B3)

and

f
(2)
{t,s}(q) =

(
Z{t,s} − 1

2γ{t,s}

)2
[(

D̃2 − γ2
{t,s}

)
f

(0)
{t,s}(q) (B4)

+
MN

192π2D̃3D3
{t,s}

{
8D̃2D{t,s} − q2(γ{t,s} − 3D̃)

}]
.
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The variables D{t,s} and D̃ are given by

D̃ =

√
3

4
q2 −MNE , D{t,s} = γ{t,s} − D̃, (B5)

where {t, s} is a shorthand for two different functions one with subscript t and the other

with subscript s. The c.c. space vector function An(p) is given by

An(p) =

∫ Λ

0

dqq2

 a11f
(n)
t (p, q) + 3a22f

(n)
s (p, q)

−a22f
(n)
s (p, q)− 3a11f

(n)
t (p, q)

 , (B6)

where

f
(0)
{t,s}(p, q) = −2πf

(0)
{t,s}(q)

1

pq
Q0(a) (B7)

− MN

27π

1

D{t,s}

1

(pq)3

{
5a

(1− a2)2
+

[(
q

p
+
p

q

)
(1 + 3a2)− a(3 + a2)

]
1

(1− a2)3

}
− MN

432π

1

D̃3D3
{t,s}

1

(pq)2

{
D̃2D{t,s}

[
38

1− a2
+

((
20
q

p
+ 8

p

q

)
a− 4(1 + a2)

)
1

(1− a2)2

]
−(γ{t,s} − 3D̃)

9

2

q2

1− a2

}
,

f
(1)
{t,s}(p, q) =

(
Z{t,s} − 1

2γ{t,s}

)[
(γ{t,s} + D̃)f

(0)
{t,s}(p, q)− 2πD{t,s}f

(0)
{t,s}(q)

1

pq
Q0(a) (B8)

− MN

432π

1

D̃3D2
{t,s}

1

(pq)2

{[
38D̃2D{t,s} −

9

2
q2(γ{t,s} − 3D̃)

]
1

1− a2

−D̃2D{t,s}

[
4(1 + a2)−

(
20
q

p
+ 8

p

q

)
a

]
1

(1− a2)2

}]
,

and

f
(2)
{t,s}(p, q) =

(
Z{t,s} − 1

2γ{t,s}

)2 [
(D̃2 − γ2

{t,s})f
(0)
{t,s}(p, q) (B9)

− MN

96π

1

D̃3D3
{t,s}

{
8D̃2D{t,s} − q2(γ{t,s} − 3D̃)

} 1

pq
Q0(a)

− MN

216π

1

D̃D2
{t,s}

1

(pq)2

{[
38D̃D{t,s} + 9q2

] 1

1− a2

−D̃D{t,s}
[
4(1 + a2)−

(
20
q

p
+ 8

p

q

)
a

]
1

(1− a2)2

}]
.

The variable a is defined by

a =
q2 + p2 −MNE

qp
. (B10)
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An(p, k) is c.c. space matrix given by

An(p, k) = (B11)∫ Λ

0

dqq2

 a11f
(n)
t (p, k, q) + 9a22f

(n)
s (p, k, q) −3(a11f

(n)
t (p, k, q) + a22f

(n)
s (p, k, q))

−3(a11f
(n)
t (p, k, q) + a22f

(n)
s (p, k, q)) a22f

(n)
s (p, k, q) + 9a11f

(n)
t (p, k, q)

 ,

where

f
(0)
{t,s}(p, k, q) = −2π

{
f

(0)
{t,s}(k, q)

1

pq
Q0(a) + f

(0)
{t,s}(p, q)

1

kq
Q0(b)

}
(B12)

− 4π2f
(0)
{t,s}(q)

1

kq
Q0(b)

1

pq
Q0(a)

+
MN

54

1

D̃D2
{t,s}

1

q4k2p2

{
2D̃D{t,s}

([
12(1− b2)(1− a2) + 4

q

p
a(1− b2) + 4

q

k
b(1− a2)

]
+ 2ab

[
k

p
(1− b2) +

p

k
(1− a2)

]
+ 2b

k

q

[
2b2 − (1 + a2)

]
+ 2a

p

q

[
2a2 − (1 + b2)

]
+2

k

q

(
q

p
a− 2

)
(1− b2)2Q0(b) + 2

p

q

( q
k
b− 2

)
(1− a2)2Q0(a)

)
1

(1− b2)2(1− a2)2

+ q2

([
4 +

k

q
b+

p

q
a− 2

k

q

p

q
ab

]
+
k

q
(1− b2)

(
1− 2a

p

q

)
Q0(b)

+
p

q
(1− a2)

(
1− 2b

k

q

)
Q0(a)− 2

k

q

p

q
(1− b2)(1− a2)Q0(b)Q0(a)

)
1

(1− b2)2(1− a2)2

}
,

f
(1)
{t,s}(p, k, q) =

(
Z{t,s} − 1

2γ{t,s}

)
(γ{t,s} + D̃)f

(0)
{t,s}(p, k, q) (B13)

− 2πf
(1)
{t,s}(k, q)

1

pq
Q0(a)− 2πf

(1)
{t,s}(p, q)

1

kq
Q0(b)

+

(
Z{t,s} − 1

2γ{t,s}

)
MN

54

1

D̃D{t,s}

1

q2k2p2

{[
4 +

k

q
b+

p

q
a− 2

k

q

p

q
ab

]
+
k

q
(1− b2)

(
1− 2a

p

q

)
Q0(b) +

p

q
(1− a2)

(
1− 2b

k

q

)
Q0(a)

−2
k

q

p

q
(1− b2)(1− a2)Q0(b)Q0(a)

}
1

(1− b2)(1− a2)

+ 2π

(
Z{t,s} − 1

2γ{t,s}

)
(γ{t,s} + D̃)

[
f

(0)
{t,s}(k, q)

1

pq
Q0(a) + f

(0)
{t,s}(p, q)

1

kq
Q0(b)

]
− 4π2

(
f

(1)
{t,s}(q)−

(
Z{t,s} − 1

2γ{t,s}

)
(γ{t,s} + D̃)f

(0)
{t,s}(q)

)
1

pq
Q0(a)

1

kq
Q0(b),
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and

f
(2)
{t,s}(p, k, q) =

(
Z{t,s} − 1

2γ{t,s}

)2

(D̃2 − γ2
{t,s})f

(0)
{t,s}(p, k, q) (B14)

− 2πf
(2)
{t,s}(k, q)

1

pq
Q0(a)− 2πf

(2)
{t,s}(p, q)

1

kq
Q0(b)

+

(
Z{t,s} − 1

2γ{t,s}

)2
MN

27

1

D{t,s}

1

q2k2p2

{[
4 +

k

q
b+

p

q
a− 2

k

q

p

q
ab

]
+
k

q
(1− b2)

(
1− 2a

p

q

)
Q0(b) +

p

q
(1− a2)

(
1− 2b

k

q

)
Q0(a)

−2
k

q

p

q
(1− b2)(1− a2)Q0(b)Q0(a)

}
1

(1− b2)(1− a2)

+ 2π

(
Z{t,s} − 1

2γ{t,s}

)2

(D̃2 − γ2
{t,s})

[
f

(0)
{t,s}(k, q)

1

pq
Q0(a) + f

(0)
{t,s}(p, q)

1

kq
Q0(b)

]
− 4π2

(
f

(2)
{t,s}(q)−

(
Z{t,s} − 1

2γ{t,s}

)2

(D̃2 − γ2
{t,s})f

(0)
{t,s}(q)

)
1

pq
Q0(a)

1

kq
Q0(b).

The variable b is defined as

b =
q2 + k2 −MNE

qk
. (B15)

The c.c. space matrix B0(p, k,Q) is given by

B0(p, k) = −2MNπ

9

1

p3k3

1

(1− a2)2
(B16)

×
{

4

3

a

1− a2
− 2a− 1

3

p2 + k2

pk

1 + 3a2

1− a2

}b11 b12

b21 b22

 ,

where now and for the rest of the appendix

a =
p2 + k2 −MNE

pk
. (B17)

Cn(k) is a c.c. space vector given by

Cn(k) =

 2c11g
(n)
t (k)− 2c21g

(n)
s (k)

2c12g
(n)
t (k)− 2c22g

(n)
s (k)

T

, (B18)

where

g
(0)
{t,s}(k) =

MN

384D̃5D3
{t,s}

{
4D̃2D{t,s}(2D̃ − γ{t,s}) + k2(γ{t,s} − 3D̃)D{t,s} + 2k2D̃2

}
, (B19)
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g
(1)
{t,s}(k) =

(
Z{t,s} − 1

2γ{t,s}

)[
(γ{t,s} + D̃)g

(0)
{t,s}(k) (B20)

+
MN

192D̃4D2
{t,s}

{
2D̃2D{t,s} + k2(D̃ −D{t,s})

}]
,

and

g
(2)
{t,s}(k) =

(
Z{t,s} − 1

2γ{t,s}

)2
[

(D̃2 − γ2
{t,s})g

(0)
{t,s}(k) (B21)

+
MN

96D̃3D2
{t,s}

{
2D̃2D{t,s} + k2

(
D̃ − 1

2
D{t,s}

)}]
.

For these functions and all functions below in this appendix the variables D̃, Dt, and Ds are

defined as

D̃ =

√
3

4
k2 −MNE , D{t,s} = γ{t,s} − D̃ (B22)

The c.c. space matrix Cn(p, k) is defined by

Cn(p, k) =

 2
[
c11g

(n)
t (p, k)− 3c21g

(n)
s (p, k)

]
2
[
c12g

(n)
t (p, k)− 3c22g

(n)
s (p, k)

]
2
[
c21g

(n)
s (p, k)− 3c11g

(n)
t (p, k)

]
2
[
c22g

(n)
s (p, k)− 3c12g

(n)
t (p, k)

]
 , (B23)

where

g
(0)
{t,s}(p, k) =− 2πg

(0)
{t,s}(k)

1

pk
Q0(a) (B24)

− MNπ

54D̃D{t,s}

1

pk

{
1

pk

1

1− a2
+

1

p2

(
4a+ a

(p
k

)2

− 2
p

k
(1 + a2)

)
1

(1− a2)2

}
− MNπ

144

k

p

1

D̃3D2
{t,s}

{
1

k2
Q0(a)− 1

pk

2− p
k
a

1− a2

}[
γ{t,s} − 3D̃

]
,

g
(1)
{t,s}(p, k) =

(
Z{t,s} − 1

2γt

)[
(γ{t,s} + D̃)g

(0)
{t,s}(p, k) (B25)

− MNπ

96D̃4D2
{t,s}

1

pk
Q0(a)

{
2D̃2D{t,s} + k2(D̃ −D{t,s})

}
−k
p

MNπ

72D̃2D{t,s}

{
2

pk

1

1− a2
− 1

k2

a

1− a2
− 1

k2
Q0(a)

}]
,
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and

g
(2)
{t,s}(p, k) =

(
Zt − 1

2γt

)2 [
(D̃2 − γ2

{t,s})g
(0)
{t,s}(p, k) (B26)

− MNπ

48D̃3D2
{t,s}

1

pk
Q0(a)

{
2D̃2D{t,s} + k2

(
D̃ − 1

2
D{t,s}

)}

−k
p

MNπ

36D̃D{t,s}

{
2

pk

1

1− a2
− 1

k2

a

1− a2
− 1

k2
Q0(a)

}]
.

Dn(k) is a c.c space vector given by

Dn(k) =

 d11h
(n)
t (k)− d21h

(n)
s (k)

d12h
(n)
t (k)− d22h

(n)
s (k)

T

, (B27)

where

h
(1)
{t,s}(k) = − 1

96D̃3D3
{t,s}

{
4D̃2D{t,s} + k2(3D̃ − γ{t,s})

}
, (B28)

and

h
(2)
{t,s}(k) = 0. (B29)

Finally, the c.c. space matrix Dn(p, k) is given by

Dn(p, k) =


[
d11h

(n)
t (p, k)− 3d21h

(n)
s (p, k)

] [
d

(0)
12 h

(n)
t (p, k)− 3d22h

(n)
s (p, k)

]
[
d21h

(n)
s (p, k)− 3d11h

(n)
t (p, k)

] [
d22h

(n)
s (p, k)− 3d

(0)
12 h

(n)
t (p, k)

]
 , (B30)

where

h
(1)
{t,s}(p, k) =− 2πh

(1)
{t,s}(k)

1

pk
Q0(a) (B31)

+
2π

27D{t,s}

1

(pk)2

[(
4
k

p
+
p

k

)
a− 3a2 − 1

]
1

(1− a2)2

− π

18D̃D2
{t,s}

1

pk

{
Q0(a) +

a− 2k
p

1− a2

}
,

and

h
(2)
{t,s}(p, k) = −

(
Z{t,s} − 1

2γ{t,s}

)[
D{t,s}h

(1)
{t,s}(p, k) + 2πD{t,s}h

(1)
{t,s}(k)

1

pk
Q0(a) (B32)

− π

18D̃D{t,s}

1

pk

{[
2
k

p
− a
]

1

1− a2
−Q0(a)

}]
.

The NNLO functions h
(2)
{t,s}(k) and h

(2)
{t,s}(p, k) can only be used for the charge form factor.

These functions include NNLO corrections from gauging c
(1)
0t and c

(1)
0s that should not be

included in the magnetic form factor.
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Appendix C: Wigner-SU(4) limit

The three-nucleon magnetic moments are defined by the matrix element

e

2MN

〈
AZ

∣∣∣∣∣
3∑
i=1

(κ0 + κ1τ
(i)
3 )σ

(i)
3

∣∣∣∣∣AZ
〉
, (C1)

where the nucleon magnetic moment term is inserted between the three-nucleon wavefunction∣∣AZ〉 and summed over all nucleons in the system. Summing over all nucleons yields the

operators
3∑
i=1

σ
(i)
3 = 2Sz ,

3∑
i=1

τ i3σ
(i)
3 = 2Yzz, (C2)

where Sz is the total spin of the three-nucleon system and Yzz an SU(4) operator. Assuming

the three-nucleon system has Wigner-SU(4) symmetry than it is an eigenstate of the operator

Yzz and the matrix element reduces to

e

2MN

〈
AZ

∣∣∣∣∣2(κ0Sz + κ1Yzz)

∣∣∣∣∣AZ
〉

=

 e
2MN

(κ0 + κ1), AZ = 3H

e
2MN

(κ0 − κ1), AZ = 3He
. (C3)

[1] I. Angeli and K. Marinova, Atomic Data and Nuclear Data Tables 99, 69 (2013), ISSN

0092-640X.

[2] I. Sick, Prog. Part. Nucl. Phys. 47, 245 (2001).

[3] E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006).

[4] U. van Kolck, Nucl. Phys. A645, 273 (1999).

[5] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424, 390 (1998).

[6] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B534, 329 (1998).

[7] J.-W. Chen, G. Rupak, and M. J. Savage, Nucl. Phys. A653, 386 (1999).

[8] X. Kong and F. Ravndal, Phys. Lett. B450, 320 (1999).

[9] X. Kong and F. Ravndal, Nucl. Phys. A665, 137 (2000).

[10] S.-I. Ando, J. W. Shin, C. H. Hyun, and S. W. Hong, Phys. Rev. C76, 064001 (2007).

[11] J.-W. Chen and M. J. Savage, Phys. Rev. C60, 065205 (1999).

[12] S.-I. Ando and C. H. Hyun, Phys. Rev. C72, 014008 (2005).

[13] G. Rupak, Nucl. Phys. A678, 405 (2000).

37



[14] X. Kong and F. Ravndal, Phys. Rev. C64, 044002 (2001).

[15] S.-I. Ando, J. Shin, C. Hyun, S. Hong, and K. Kubodera, Phys. Lett. B668, 187 (2008).

[16] J.-W. Chen, C.-P. Liu, and S.-H. Yu, Phys. Lett. B720, 385 (2013).

[17] M. Butler, J.-W. Chen, and X. Kong, Phys. Rev. C63, 035501 (2001).

[18] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev. C58, 641 (1998).

[19] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A676, 357 (2000).

[20] F. Gabbiani, P. F. Bedaque, and H. W. Grießhammer, Nucl. Phys. A675, 601 (2000).

[21] P. F. Bedaque, G. Rupak, H. W. Grießhammer, and H.-W. Hammer, Nucl. Phys. A714, 589

(2003).

[22] H. W. Grießhammer, Nucl. Phys. A744, 192 (2004).

[23] J. Vanasse, Phys. Rev. C88, 044001 (2013).

[24] A. Margaryan, R. P. Springer, and J. Vanasse, Phys. Rev. C93, 054001 (2016).

[25] G. Rupak and X.-w. Kong, Nucl. Phys. A717, 73 (2003).

[26] S. König and H.-W. Hammer, Phys. Rev. C83, 064001 (2011).

[27] S. König and H.-W. Hammer, Phys. Rev. C90, 034005 (2014).

[28] J. Vanasse, D. A. Egolf, J. Kerin, S. König, and R. P. Springer, Phys. Rev. C89, 064003

(2014).

[29] S. König, H. W. Grießhammer, and H.-W. Hammer, J. Phys. G42, 045101 (2015).

[30] S. König, J. Phys. G44, 064007 (2017).

[31] S.-I. Ando and M. C. Birse, J. Phys. G37, 105108 (2010).

[32] S. König, H. W. Grießhammer, H.-W. Hammer, and U. van Kolck, J. Phys. G43, 055106

(2016).

[33] L. Platter and H.-W. Hammer, Nucl. Phys. A766, 132 (2006).

[34] J. Kirscher, E. Pazy, J. Drachman, and N. Barnea, Phys. Rev. C96, 024001 (2017).

[35] H. De-Leon, L. Platter, and D. Gazit (2016), 1611.10004.

[36] H. Sadeghi, S. Bayegan, and H. W. Grießhammer, Phys. Lett. B643, 263 (2006).

[37] M. M. Arani, H. Nematollahi, N. Mahboubi, and S. Bayegan, Phys. Rev. C89, 064005 (2014).

[38] J. Vanasse, Phys. Rev. C95, 024002 (2017).

[39] R. Schiavilla, V. R. Pandharipande, and D. O. Riska, Phys. Rev. C41, 309 (1990).

[40] L. E. Marcucci, D. O. Riska, and R. Schiavilla, Phys. Rev. C58, 3069 (1998).

[41] M. Piarulli, L. Girlanda, L. E. Marcucci, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev.

38



C87, 014006 (2013).

[42] J. Vanasse and D. R. Phillips, Few Body Syst. 58, 26 (2017).

[43] T. Schmidt, Zeitschrift für Physik 106, 358 (1937), ISSN 0044-3328.

[44] D. R. Phillips, G. Rupak, and M. J. Savage, Phys. Lett. B473, 209 (2000).

[45] J. J. de Swart, C. P. F. Terheggen, and V. G. J. Stoks, in 3rd International Symposium on

Dubna Deuteron 95 Dubna, Russia, July 4-7, 1995 (1995), nucl-th/9509032.

[46] S. R. Beane and M. J. Savage, Nucl. Phys. A694, 511 (2001).

[47] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Rev. C59, 617 (1999).

[48] A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985).

[49] P. Hagen, H.-W. Hammer, and L. Platter, Eur. Phys. J. A49, 118 (2013).

[50] T. Mehen, I. W. Stewart, and M. B. Wise, Phys. Rev. Lett. 83, 931 (1999).

[51] L. I. Schiff, Phys. Rev. 133, B802 (1964).

[52] J. Vanasse and M. R. Schindler, Phys. Rev. C90, 044001 (2014).

[53] A. Cox, S. Wynchank, and C. Collie, Nuclear Physics 74, 497 (1965), ISSN 0029-5582.

[54] J. Kirscher, H. W. Grießhammer, D. Shukla, and H. M. Hofmann, Eur. Phys. J. A44, 239

(2010).

[55] N. Nevo Dinur, C. Ji, S. Bacca, and N. Barnea, Phys. Rev. C89, 064317 (2014).

[56] N. Barnea, W. Leidemann, and G. Orlandini, Phys. Rev. C61, 054001 (2000).

[57] N. Barnea, W. Leidemann, and G. Orlandini, Nucl. Phys. A693, 565 (2001).

[58] N. Nevo Dinur, C. Ji, S. Bacca, and N. Barnea, Phys. Lett. B755, 380 (2016).

[59] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C51, 38 (1995).

[60] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, Phys. Rev. Lett. 74,

4396 (1995).

[61] A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, and L. Girlanda, J. Phys. G35, 063101

(2008).

[62] S. Pastore, S. C. Pieper, R. Schiavilla, and R. B. Wiringa, Phys. Rev. C87, 035503 (2013).

[63] A. Antognini et al., Science 339, 417 (2013).

[64] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Phys. Rev. C64, 014001

(2001).

[65] R. J. Furnstahl, D. R. Phillips, and S. Wesolowski, J. Phys. G42, 034028 (2015).

[66] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

39



[67] R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, Ann. Rev. Nucl. Part. Sci. 63, 175 (2013).

[68] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016).

[69] G. Lee, J. R. Arrington, and R. J. Hill, Phys. Rev. D92, 013013 (2015).

[70] Z. Epstein, G. Paz, and J. Roy, Phys. Rev. D90, 074027 (2014).

[71] J. Vanasse, Phys. Rev. C95, 024318 (2017).

[72] A. Amroun et al., Nucl. Phys. A579, 596 (1994).

[73] S. G. Karshenboim, Phys. Rev. D90, 053013 (2014).

[74] A. Antognini (2015), 1512.01765.

[75] B. Franke, J. J. Krauth, A. Antognini, M. Diepold, F. Kottmann, and R. Pohl (2017),

1705.00352.

[76] C. E. Carlson, M. Gorchtein, and M. Vanderhaeghen, Phys. Rev. A95, 012506 (2017).

[77] O. J. Hernandez, N. Nevo Dinur, C. Ji, S. Bacca, and N. Barnea, Hyperfine Interact. 237,

158 (2016).

40


	Introduction
	Lagrangian and Two-Body System
	Three-Body System
	Charge and Magnetic Form Factors
	Charge and Magnetic Moments
	Charge and Magnetic Radius
	Wigner-Symmetry: Consequences

	Results
	Fitting L1 and L2
	Charge Radii of Three-Nucleon Systems
	Observables from The Magnetic Form Factor
	Magnetic Moments and Radii of Three-Nucleon Systems

	 Conclusions
	Acknowledgments
	
	
	 Wigner-SU(4) limit
	References

