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We examine the leading effects of two-body weak currents from chiral effective field theory on the matrix
elements governing neutrinoless double-beta decay. In the closure approximation these effects are generated by
the product of a one-body current with a two-body current, yielding both two- and three-body operators. When
the three-body operators are considered without approximation, they quench matrix elements by about 10%,
less than suggested by prior work, which neglected portions of the operators. The two-body operators, when
treated in the standard way, can produce much larger quenching. In a consistent effective field theory, however,
these large effects become divergent and must be renormalized by a contact operator, the coefficient of which
we cannot determine at present.

PACS numbers: 23.40.-s, 12.39.Fe, 21.60.Cs, 23.40.Hc

Neutrinoless double-beta (0νββ) decay is a still hypotheti-
cal process in which two neutrons decay to two protons and
two electrons, without emitting neutrinos [1]. Its discovery
would show that neutrinos are their own antiparticles and
could both pin down uncertain neutrino masses and discover
entirely new particles. Experiments to observe the decay
are thus growing in size and cost. Interpreting them, how-
ever, requires us to know the values of the nuclear-matrix el-
ements that figure in the decay rate via Fermi’s golden rule.
These cannot be measured, only calculated, and theorists have
worked increasingly hard to compute them accurately; see
Refs. [2, 3] for reviews and, e.g., Refs. [4–11] for original
work.

Because 0νββ decay has never been observed, one re-
ally ought to calculate its matrix elements from first prin-
ciples, with ingredients that allow an error estimate. The
standard scheme for doing this is chiral effective field the-
ory (EFT) [12]. Roughly speaking, one writes down all in-
teractions among nucleons and pions that are consistent with
spontaneously-broken chiral symmetry. There are infinitely
many of these but a power-counting scheme in nuclear mo-
menta or the pion mass (both denoted by Q) divided by a QCD
scale Λ near a GeV allows one to fit all the terms necessary
to achieve any desired level of accuracy, at least in principle.
The counting is not rigorous, but usually works well.

The weak nuclear current can also be represented in this
way. The leading piece involves the usual Gamow-Teller and
Fermi operators associated with a single nucleon. Three or-
ders down in the counting, two-body current operators appear
[13]. Two-body axial weak currents are currently receiving
a lot of attention because they appear [14] to mostly explain
the longstanding tendency of nuclear theorists to over-predict
single-β decay rates [15, 16], which forces them to adopt an
effective value for the axial-vector coupling constant gA that is
significantly smaller than the bare value. Recent suggestions
[17] that gA should exhibit similar quenching in 0νββ matrix
elements, where it is squared and would thus have a larger
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impact, have led theorists to examine the effects of two-body
current operators in 0νββ decay. Ref. [18] was the first work
on the issue. The authors, and those of the later Ref. [19],
normal-ordered the two-body operators with respect to the
non-interacting ground state of spin- and isospin-symmetric
nuclear matter to obtain an effective density-dependent one-
body current that quenched 0νββ matrix elements by roughly
30%, less than one might fear because the quenching was less
effective when the virtual neutrino exchanged between nu-
cleons in the process transferred a significant amount of mo-
mentum. The assumptions underlying the conclusions — that
an effective one-body operator is sufficient and that normal-
ordering with respect to a simple nuclear-matter state is suffi-
cient to obtain it — have never been examined, however.

Here we carry out a more comprehensive analysis. We con-
struct the explicit product of the one-body and two-body cur-
rent operators, the leading contribution from two-body cur-
rents to the 0νββ matrix element in the closure approxima-
tion (which in tests is accurate to 10% or so [20, 21]), to
obtain two- and three-body 0νββ operators. After an illus-
trative calculation in symmetric nuclear matter, we evaluate
the matrix elements of these operators between reasonable ap-
proximations to full shell-model wave functions in 76Ge and
76Se, which have been used in many experiments; see, e.g.,
Ref. [22]. We find that the obvious sources of quenching, in-
volving three nucleons (only two of which decay), have even
smaller effects than the effective-operator approach suggests.
Contributions from pairs of nucleons that both generate the
two-body current and decay themselves turn out to be more
problematic, however.

In 0νββ decay the weak current acts twice. The nuclear
matrix element that governs the decay is given by

M =
4πR
g2

A

∫
dx1dx2dq

(2π)3

eiq·(x1−x2)

q(q + Ed)
〈0+

F | Ĵ
µ(x1)Ĵµ(x2) |0+

I 〉 ,

(1)

where Ĵ(x) is the nuclear current, R ≡ 1.2A1/3 fm is the nu-
clear radius, gA ≈ 1.27, q labels the momentum transfer and
Ed ≡ Ē−(EI +EF)/2 is an average excitation energy, to which
the matrix element is not sensitive [23] (Ē is an absolute aver-
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FIG. 1. (Color online.) 0νββ decay, with electron lines omitted.
Diagram (a) shows the leading contribution, in which the one-body
current acts twice, turning two neutrons into two protons via the ex-
change of a Majorana neutrino. Diagram (b) shows the action of the
pion-exchange two-body current at one vertex; the line on the left
represents either a proton or a neutron. In diagram (c) the contact
current replaces the pion-exchange current.

age energy). Up to third order in Q/Λ, the nuclear current Ĵµ

can be written as Ĵµ = Ĵ
µ
1b + Ĵ

µ
2b, where the two terms in the

sum are the one and two-body pieces of the current. The first
of these is [13, 24, 25]

Ĵ
µ
1b(x) =

A∑
n=1

[
δµ0Jn,0(q2) − δµ jJn, j(q2)

]
τ−n δ(x − rn) . (2)

Here rn is the coordinate of the nth nucleon, q ≡ i∇ and

Jn,0(q2) = gV + . . . , (3)

Jn(q2) =gAσn + i(gM + gV )
σn × q

2mN
− gP(q2)

q σn · q

2mN
+ . . . ,

where gV = 1, gM ≈ 3.706, gP(q2) is given, e.g., in Ref. [18],
and mN is the nucleon mass. In what follows, we will be
looking at the axial current, and so neglect contributions of
Jn,0(q2). The terms indicated by ellipses can be shown [18] to
contribute negligibly to the matrix element in Eq. (1).

In considering the two-body current, we neglect the term
with coefficient c6 [13] and terms with two-body pion poles
[26], but otherwise keep the full momentum-dependence of
Ref. [13]), Fourier transforming Eqs. (A5) and(A6) of that pa-
per with, following Ref. [27], an additional factor of −1/4 in
the contact term gives the leading space piece of the axial two-
body current operator in coordinate space:

Ĵ 2b(x) =

A∑
k<l

Jkl(x) , (4)

Jkl(x) =
2c3gA

mN F2
π

[
m2
π

((σl

3
− σl · r̂r̂

)
Y2(r) −

σl

3
Y0(r)

)
+
σl

3
δ(r)

]
τ−l δ(x − rk) + (k ↔ l)

+
(
c4 +

1
4
) gA

2mN F2
π

[
m2
π

((σ×
3
− σk × r̂σl · r̂

)
Y2(r) −

σ×
3

Y0(r)
)

+
σ×
3
δ(r)

]
τ−×δ(x − rk) + (k ↔ l)

−
gA

4mN F2
π

[
2d̂1(σkτ

−
k + σlτ

−
l ) + d̂2σ×τ

−
×

]
δ(r)δ(x − rk) , (5)

where Fπ = 92.4 MeV is the pion decay constant, mπ is the
pion mass, r = rk−rl and r̂ ≡ r

r . The Yukawa functions Y are
Y0(r) = e−mπr

4πr and Y2(r) = 1
m2
π
r ∂
∂r

1
r
∂
∂r Y0(r), and the compound

spin and isospin operators are σ× = σk×σl and τ−× = (τk×τl)−

[13]. The product of currents in Eq. (1) for the 0νββ matrix
element can be broken up into contributions from one- and
two-body currents. The leading piece, from two one-body
currents acting as in diagram (a) of Fig. 1, is what has been
considered almost exclusively in prior work. The first correc-
tion comes from diagrams like (b) and (c), in which one of the
one-body currents is replaced by a two-body current, of either
long range (diagram (b) with an internal pion) or short range
(diagram (c)). Ref. [18] first considered these contributions,
but only with approximations that we avoid here.

To get an idea of what to expect in real nuclei, we begin
with a more schematic discussion of nuclear matter, modeled
after that in Ref. [18]. To simplify matters here (and only
here), we neglect all but the d1 and d2 contact pieces of the
two-body current (see Eq. (5)) and evaluate all the current op-

erators at q = 0.
In nuclear matter, the one-body-two-body contributions just

alluded to can be represented by the Goldstone-Heugenholtz
diagrams in Fig. 2. The top row of diagrams, in which one
nucleon in the two-body current is a spectator, was treated in
Ref. [18]. The spectators contribute coherently, leading to a
factor of the nuclear density in the matrix element, and al-
lowing one to replace the two-body current in the diagram by
a density-dependent one-body effective current. Three-body
operators need never be considered explicitly in such a proce-
dure.

The bottom row has not been examined before. These di-
agrams contract creation and annihilation operators from dif-
ferent vertices and superficially are perhaps not as coherent.
But the internal hole and particle lines are summed and it is
not obvious that their contributions will be much smaller. It
is obvious, however, that diagrams (e) and (f) have the same
sign as the top row of diagrams, and that diagrams (c) and (d)
have the opposite sign. A diagram’s sign contains a factor of
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FIG. 2. (Color online.) Contributions to the 0νββ matrix element
from the two-body current in symmetric nuclear matter. Red lines
represent neutrons, blue lines protons, and wiggly black lines the
exchanged neutrino. The top row of diagrams (a) and (b) represent
the contributions considered in Ref. [18]. The diagrams in the bottom
row (c–f) have not been considered before.

S = (−1)nh+nl , where nh (nl) is the number of hole lines (nu-
cleon loops). The diagrams in the top row have one hole line
and one nucleon loop, and thus S = 1. Diagrams (e) and (f)
have no hole lines or nucleon loops (S = 1) and diagrams (c)
and (d) have one hole line and no nucleon loops (S = −1).
The net effect once all terms are taken into account remains to
be seen.

We evaluate the diagrams in the closure approximation, that
is, by neglecting the variation in the energies of the interme-
diate particles and holes in the bottom row of diagrams. To
simplify matters, we set Ed in Eq. (1) to zero, so that the en-
ergy denominators contain just the 1/q2 associated with the
neutrino. We take the external momenta ka, kb, kc, and kd,
which are to represent those of valence nucleons, to lie on the
Fermi surface (k = kF), though in evaluating the angle average
of 1/|ka − kc|

2 in the top row of diagrams we let the magnitude
of one of the two momenta be distributed with equal probabil-
ity in a symmetric interval of width kF around the Fermi sur-
face (to avoid a divergent result). With these assumptions, the
amplitude represented by each of the diagrams has the form

X δ(ka + kb − kc − kd) 〈 f |σ1 · σ2 τ
−
1 τ
−
2 |i〉 , (6)

for some constant X, where the matrix element refers just to
the spin-isospin part of the initial (i) and final ( f ) wave func-
tions. We separately sum diagrams (a) and (b), (c) and (d),
and (e) and ( f ) (the members of each pair are equal). The
results:

Xab ≡ X(a) + X(b) ≈ −
2C(2 + 2 ln 2)kF

3π2

Xcd ≡ X(c) + X(d) =
3CkF

4π2 ≈ −
1
2

Xab

Xe f ≡ X(e) + X(f) ≈ −
6C(Λ − kF)

4π2 ≈ 2Xab ,

(7)

where C is a constant containing d1, d2, R, Fπ, gA, and mN ,
and where we take Λ, the momentum at which we cut off the

integral over particle states, to be 3kF . The relative signs of
the contributions reflect the discussion above. Avoiding the
closure approximation — i.e modifying the energy denomina-
tors to include the energies of the intermediate particle lines
— would reduce the contributions of diagrams (e) and (f) by
about 20% but the integral would still grow with Λ. (The clo-
sure approximation is more drastic here than anywhere else
because the intermediate-particle energies are bounded from
above by Λ, not by kF . The states that carry these high
intermediate-particle energies do not contribute strongly when
only one-body currents are at play because the second current
cannot act on the same nucleon as the first one.)

We can break the X’s in Eq. (7) into contributions of three-
body operators, with n , k, l in the products of the currents in
Eqs. (1), (2), and (4), and two-body operators, with n = k
or l. In addition to the producing the quenching contribu-
tions Xab discussed in Ref. [18], three-body operators also
contribute exactly twice Xcd, so that the net quenching pro-
duced by the three-body operators nearly vanishes. Two-body
operators produce Xe f − Xcd, which is about 5/2 Xab (a num-
ber, that, again, would be a bit smaller without closure) so the
final overall quenching is greater than obtained in prior work.
As we see next, conclusions much like these still hold when
we use realistic nuclear wave functions, nucleon form factors,
and the full two-body current.

One might argue that in computing Xe f we should not use
a cutoff to regulate the integral. In a more consistent chiral
effective field theory like that in Refs. [28, 29], in which all
two-body processes such as those in diagrams (e) and (f) are
evaluated in isolation and the results subsequently embedded
in a many-body calculation (so that Eq. (1) is not the starting
point), that is standard practice; dimensional regularization re-
stricts the momenta in loops to be low. But that procedure in-
troduces counter terms with unknown coefficients at chiral or-
ders below those considered here. We are simply trying to as-
sess the quenching induced by two-body currents alone, and a
cutoff simulates the effects of nucleon form factors in the sum
over intermediate states in a realistic calculation. Of course,
the use of a form factor to eliminate divergences, in conjunc-
tion with chiral currents, is not consistent; if we really want to
do EFT we will require explicit counter terms. We return to
this issue later.

First, however, we present realistic shell-model-like calcu-
lations 76Ge and 76Se, in the usual f5/2 pg9/2 oscillator va-
lence space. Here, without the ability to include a complete
set of intermediate-nucleus states, we need to work to eval-
uate the matrix elements of three-body operators. We do so
by combining the three-body matrix elements of the operator
Ô3b (representing the three-body part of Ĵµ(x1)1bĴµ(x2)2b +

Ĵµ(x1)2bĴµ(x2)1b) with three-body transition-densities to ob-
tain

M3b = −
∑

abcde f

〈abc| Ô3b |de f 〉 ρ3b
abc,de f , (8)

where

ρ3b
abc,de f = 〈0+

F | a
†
aa†ba†cadaea f |0+

I 〉 . (9)
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Here the subscripts a, b, . . . represent full single-particle la-
bels, e.g., a stands for the set {τa, na, la, ja,ma}, i.e. the isospin,
harmonic oscillator radial quantum number, orbital angular
momentum, total angular momentum, and z-projection asso-
ciated with the level in question. M3b is thus the three-body
piece of the matrix element M in Eq. (1). Other than the terms
already mentioned, only those pieces of the product contain-
ing tensors in both the one-body and two-body currents are
neglected.

We obtain the three-body matrix elements of Ô3b in much
the same way as Refs. [30–32] obtained those of three-body
interactions, i.e., by first computing them in a large three-body
Jacobi basis and then transforming to a coupled product basis.
To get ρ3b we use the generator coordinate method (GCM)
to approximate shell-model wave functions [33]. As in Ref.
[34], we use the Hamiltonian GCN2850 [35, 36], take Ed to be
7.72 MeV, and include both axial deformation and an isoscalar
pairing amplitude [37] as generator coordinates. We assume
that the valence space sits atop an inert core of 56 filled os-
cillator orbitals. If all three nucleons acted on by Ô3b are in
the valence space, the densities ρ3b are the matrix elements
between the initial and final GCM states of three creation
and three annihilation operators. If one of the three nucle-
ons comes from the shell model core, on the other hand, then
the ρ3b reduce to simpler two-body valence-space transition
densities. The corresponding contributions to M3b are what
one would obtain by normal ordering the product of currents
with respect to the inert shell-model core, a more realistic ver-
sion of the symmetric nuclear-matter state considered in Ref.
[18]. The contractions generated by the normal-ordering can
be either between creation and annihilation operators within
the two-body current, as in the top row of Fig. 2 and in Ref.
[18], or between operators from different currents, as in the
bottom row of Fig. 2.

Figure 3 shows the ratio M3b/M0, where M0 is the lead-
ing part of the matrix element that comes from one-body cur-
rents at both vertices (Fig. 1(a)) for the decay of 76Ge, with
the GCM wave functions described in the previous paragraph.
These wave functions are not quite as complex as those in
Ref. [34]; they are linear combinations of states with a single
value for the isoscalar pairing amplitude and seven values for
the axial deformation parameter β. The resulting matrix ele-
ment — 3.47 — is reasonably close to the exact result of 2.81
[36]. The different panels in the figure correspond to different
values for the couplings c3, and c4, and we present them as
functions of cD ≡ d1 + 2d2. The values c3 = −3.2, c4 = 5.4
are from Ref. [38], c3 = −4.78, c4 = 3.96 from Ref. [39],
and c3 = −3.4, c4 = 3.4 from Ref. [40]. To get the results on
left side of the figure (labeled “same”), we include only the
contributions of contractions of creation and annihilation op-
erators from within the same (two-body) current, like those of
Ref. [18] or diagrams (a) and (b) in Fig. 2. (Note, however,
that Ref. [18] omitted a factor of −1/4 in the last line of Eq.
(5).) We include all possible contractions to obtain the results
on the right. The dashed and dotted lines show approximate
results in which the we have discarded three-body operators
that survive normal ordering with respect to the inert core (the
discarded terms are those in which all three nucleons are in the
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FIG. 3. (Color online.) Relative effects on the 0νββ matrix element
from the three-body-operator parts of diagrams involving chiral two-
body currents (as shown in Fig. 1(b) and (c), and Eq. (8), with several
sets of coefficients c3, c4, and as a function of cD for 76Ge. The solid
line represents the full results, the dashed line the approximate re-
sults when three-body operator are discarded after normal-ordering
with respect to the inter core, and the dotted line the results when the
normal-ordering is with respect to an ensemble containing the GCM
76Ge and 76Se ground states. The results in the panels on the left
include only contributions from the contraction of creation an anni-
hilation operators at the same vertex in Fig. 1. See text for details.

valence shell) and with respect to an ensemble containing the
full GCM ground states of 76Ge and 76Se, weighted equally.
The ideas on which this ensemble normal ordering is based
are presented in Ref. [41].

The figure shows that with only the contractions from
within the two-body current, the three-body operators quench
the matrix element by 5% to 25% for |cD| ≤ 2. This level
of quenching is what one would obtain with the density-
dependent effective-operator treatment of Ref. [18] at a some-
what lower nuclear density than that used there. A similar
level of quenching holds in single-β decay, as discussed in
Ref. [14]. When all the contractions are included, the quench-
ing decreases, just as in our nuclear-matter results for the con-
tact part of the current. In the bottom two panels it doesn’t
decrease very much, but in the top panel it decreases signif-
icantly. The full results are also nearly independent of cD,
bearing out the almost complete cancellation between the dif-
ferent three-body contractions we found in the nuclear-matter
calculation. When all is said and done, the three-body opera-
tors end up quenching matrix element by 5 or 10%.

A final observation regarding Fig. 3: the normal ordering
with respect to the inert core indeed provides most of the ma-
trix element, with the configurations in which all three nucle-
ons are in the valence shell contributing relatively little. The
realistic reference ensemble usually makes the normal order-
ing even better. That is good news for many-body calculations
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FIG. 4. (Color online.) Relative effects on the 0νββ matrix element
from the two-body-operator parts of diagrams involving chiral two-
body currents (as shown in Fig. 1 (b) and (c)), as a function of cD.
The results in panel (a) are for three sets of values for c3 and c4.
Panel (b) shows the effects of several modifications to the operator,
both separately and when combined. See text for details.

in which three-body operators are problematic.
We turn finally to the troublesome two-body operators in

the product of one-body and two-body currents. As already
noted, without nucleon form factors or other regulators the
loops that produce these operators cause divergences. The op-
erator that comes from the contact current, for example, is

Ô2b
cD

= (10)

2cDR
πmN F2

π

A∑
k,l

∫
dq

[
qg2

A(q2) − q3gA(q2)gP(q2)
6mN

]
(q + Ed)g2

A

σk · σlτ
−
k τ
−
l δ(r) .

The integral diverges if gA has no q dependence. Here, for
the purposes of estimation, we assign the dipole nucleon form
factors given in Ref. [25] and used in nearly every prior cal-
culation. Figure 4 (a) shows the relative effects on the nuclear
matrix elements from all the two-body operators and with the
GCM wave functions described earlier (again for several chi-
ral interactions). These operators can quench the matrix ele-
ment substantially, by up to 90% in the figure. The amount
of quenching, however, is very sensitive to c3, c4 and cD, and
can be much less. Furthermore, the quenching is due almost
entirely to the zero-range parts of the two-body operators, in
Eq. (10) and in the analogous contact associated with pion-
exchange. (The longer-range pion-exchange Yukawa func-
tions have very little effect.) As a result, modifications to
physics at short distances, omitted from the matrix elements in
panel (a) but typically included in calculations like ours, have
significant effects. Panel (b) shows what happens when we in-
clude them. A consistent EFT calculation requires regulation;
the two-body regulator from Ref. [13], with Λ = 500 MeV
smears out the contact terms in the operator and decreases
the quenching from the two-body matrix element by about a
third. An explicit short-range correlation function is needed if
the model space omits high-momentum states; the figure indi-
cates that a Jastrow function of the “Argonne” type from Ref.
[42]) drastically reduces the quenching. When the regulator
and short-range correlation function are used together, the lat-
ter has a much smaller effect because of the smearing by the
regulator. It is not, of course, consistent to use a short-range

correlation function from a calculation with the Argonne po-
tential in chiral EFT, but the regulator makes the precise form
of the correlation function irrelevant.

What is the meaning of these various results? One might
take the final dot-dashed curve in panel (b) to be a rough esti-
mate of the quenching from two-body operators, but because
those contributions diverge without form factors or a cutoff, a
consistent calculation will contain additional short-range con-
tributions from a counter term. Unfortunately, the coefficient
of that term is unknown, with no obvious way to fix it from
data. Only if it is small, i.e. if short-range repulsion fully and
faithfully represents the effects induced by high-energy virtual
neutrinos, will the dot-dashed line represent reality.

Interestingly, the counter term is already a part of the ββ
EFT of Ref. [28], where it occurs one order below that of
the two-body currents. Within a cutoff-like scheme such as
ours, that is the order required to cancel the divergent loops.
With more typical dimensional regularization, however, the
two-body operators in the product of currents, after removal of
the divergence, would naturally contribute at most at the same
order as the two-body currents themselves. We might even ex-
pect them to have less of an effect than the three-body opera-
tors in the product because the factor Q from the low momenta
in loops is a little smaller than kF , which one obtains from the
third particle in the three-body operators. But even with di-
mensional regularization one would need a counter term, at
higher order than with cutoff regulation but with an equally
unknown coefficient, to remove the divergence.

How can we determine the unknown coefficient? The same
question arises for a coefficient at leading order, according
to Ref. [29]. In either case, the coefficient can in principle be
fixed through a calculation in lattice QCD or from data on pion
double-charge exchange [43]. Either possibility is difficult to
realize, however. Until a lattice calculation becomes feasible,
we may have to resort to models to provide estimates that will
be hard to verify.

The unknown coefficient does not weaken our conclusions
about the three-body operators in the product of currents.
They probably quench matrix elements by about 10% — we
say “probably” because of the potential effects of pion poles,
higher-order contributions in χEFT, etc., which eventually
should be examined carefully. A 10% quenching is less than
previous work suggests, and nearly independent of cD. Fur-
thermore, in the future we can compute the effects of these
operators to a good approximation by discarding all but the
normal-ordered two-body pieces. All in all, many-body cur-
rents in χEFT are unlikely to produce really severe quenching.
To say more, we will need a way to determine the coefficients
of two-body counter terms.
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045503 (2018).
[7] J. Hyvärinen and J. Suhonen, Phys. Rev. C 91, 024613 (2015).
[8] M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
[9] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315

(2013).
[10] L. S. Song, J. M. Yao, P. Ring, and J. Meng, Phys. Rev. C 95,

024305 (2017).
[11] N. L. Vaquero, T. R. Rodrı́guez, and J. L. Egido, Phys. Rev.

Lett. 111, 142501 (2013).
[12] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[13] T.-S. Park, L. E. Marcucci, R. Schiavilla, M. Viviani,

A. Kievsky, S. Rosati, K. Kubodera, D.-P. Min, and M. Rho,
Phys. Rev. C 67, 055206 (2003).

[14] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris,
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