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Background: To extract the proton charge radius from electron scattering data, requires determining the slope
of the charge form factor at Q2 of zero. As experimental data cannot reach that limit, numerous methods for
making the extraction have been proposed.

Purpose: In this study, we seek to find functional forms that will allow for a robust extraction of the proton
radius from a wide variety of functional forms. The primary motivation of this study is to have confidence in the
extraction of upcoming low Q2 experimental data.

Method: We create a general framework for studying various form-factor functions along with various fitting
functions. The input form factors are used to generate pseudo-data with fluctuations mimicking the binning
and random uncertainty of a set of real data. All combinations of input functions and fit functions can then be
tested repeatedly against regenerated pseudo-data. Since the input radius is known, this allows us to find fitting
functions that are robust for proton radius extractions in an objective fashion.

Results: For the range and uncertainty of the PRad data, we find that a two-parameter rational function, a
two-parameter continued fraction and the second order polynomial expansion of z can extract the input radius
regardless of the input charge form factor function that is used.

Conclusions: We have created a framework to determine which functional forms allow for a robust extraction
of the radius from pseudo-data generated from a wide variety of trial functions. By taking into account both bias
and variance, the optimal functions for extracting the proton radius can be determined.

I. INTRODUCTION

Much effort has been devoted to the determination of
the charge radius of the proton (R), but results from dif-
ferent experiments and/or analyses exhibit sizable dis-
crepancies. For example, in high-precision muonic hy-
drogen Lamb shift experiments, R was measured to be
0.8409±0.0004 fm [1, 2], while the current value from CO-
DATA, determined from atomic Lamb shift and electron-
proton (ep) scattering experiments, is R = 0.8751 ±
0.0061 fm [3]. This difference is known as the proton
radius puzzle [4–6]. The newer atomic Lamb shift and
electron scattering results that have become available [7–
9] thus far are contradictory and the proton radius puzzle
remains.

To extract the proton radius from ep-scattering data
the electric form factor, GE , is first plotted as a func-
tion of the four-momentum transferred squared, Q2. This
data must then be fit to find the slope at Q2 = 0. The
radius depends on the slope according to Eq. 1. Since ex-
perimental electron scattering cannot reach the Q2 = 0
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limit, many different methods have been proposed to ex-
tract the radius from the data.

R ≡
(

−6
dGE(Q

2)

dQ2

∣

∣

∣

∣

Q2=0

)1/2

(1)

Recent global analyses of ep-scattering data found
R ≈ 0.84 fm, in agreement with the muonic Lamb shift
results [10–17]. Though these analyses used existing ex-
perimental data, they systematically extract smaller radii
than the results of other groups [18–23]. It has been
pointed out that the difference between the results is
mainly due to differences in how the high-order moments
〈r2n〉 (n > 1) are handled [24, 25]. A summary table of
the higher order moments from a number of these fits can
be found in the recent work of Alarcón and Weiss [26].
The form-factor GE is often fit with a multi-parameter

polynomial expansion of Q2 up to an order Q2N , since
each moment 〈r2n〉 (1 ≤ n ≤ N) corresponds to an in-
dependent parameter. Though this description seems to
be model independent, as Kraus et al. have shown, it
does not ensure a correct R extraction when it is used
for extrapolating beyond the data to Q2 = 0 [27].
In addition to multi-parameter polynomials, functional

forms of GE based on models of the proton charge distri-
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bution are also used to determine R. The problem with
this approach is that it can be difficult to quantify how
much the extraction of R is affected by the assumptions
in the model. In addition, constructing a model descrip-
tion of the full charge distribution of the proton is a far
more complex problem than simply trying to mathemat-
ically extract R value from experimental data.
Herein we present a systematic method to find math-

ematical function(s) that can robustly extract R over a
broad set of GE input functions. In this study, we use
the expected binning and uncertainty of the PRad ex-
periment [28, 29] as an example, but the method can be
applied to any expected binning and uncertainty.

II. METHOD

If the exact functional form of the proton’s charge form
factor, GE , were available, one could fit experimental
data to this same functional form and extract the charge
radius. This ideal case is easily simulated by creating
randomized pseudo-data and examining the fitting re-
sults R(fit) using the same functional form as was used
to generate the pseudo-data. This process can be re-
peated multiple times in order to obtain a distribution of
R(fit).
However, as the true functional form is unknown, one

has to search for functional forms that can extract R by
extrapolating to Q2 = 0 from experimental data. For
simplicity, we call this feature robustness. In fact, due
to the variability of experimental data, the best fitting
function may not even be the true functional form [30].
To find appropriate functions for a given binning and

uncertainty, we generate pseudo-data using a wide variety
of functional forms. Next, we systematically fit each set
of pseudo-data with various functional forms. By study-
ing the distributions of the results, we find functional
forms that robustly extract the input radius. To be con-
sidered robust, the set of extracted R values must be,
within errors, the same as the R value used to generate
the pseudo-data regardless of which GE parameterization
was used in the generating function.
A program library has been built with three parts

to generate pseudo data, add fluctuations, and fit the
pseudo data [31]. This program library is coded in C++
using the Minuit and CERN ROOT package [32, 33]. The
three components of this library are described in detail
in the following subsections.

A. Generator

The generator library has been built to generate GE

values at givenQ2 using either simple standard functions,
parameterizations of experimental data or full theoretical
calculations. Other functions could easily be added to
this library. The currently installed functions include:

a. Dipole The dipole functional form of GE [34] is
expressed as

GE(Q
2) =

(

1 +
Q2

p1

)

−2

, (2)

where p1 = 12/R2. This functional form corresponds to
an exponential charge distribution of the proton, and the
relation between moments is

〈r2n〉 = (n+ 1)(2n+ 1)

6
〈r2〉〈r2n−2〉, (3)

where n > 1.
b. Monopole The monopole functional form of GE

[34] is expressed as

GE(Q
2) =

(

1 +
Q2

p1

)−1

, (4)

where p1 = 6/R2. This functional form corresponds to a
Yukawa charge distribution of the proton, and the rela-
tion between moments is

〈r2n〉 = n(2n+ 1)

3
〈r2〉〈r2n−2〉, (5)

where n > 1.
c. Gaussian The Gaussian functional form of GE

[34] is expressed as

GE(Q
2) = exp(−Q2/p1), (6)

where p1 = 6/R2. This functional form corresponds to
a Gaussian charge distribution of the proton, and the
relation between moments is

〈r2n〉 = 2n+ 1

3
〈r2〉〈r2n−2〉, (7)

where n > 1.
d. Kelly-2004 The parameterization from Ref. [35]

is expressed as

GE(Q
2) =

1 + a1τ

1 + b1τ + b2τ2 + b3τ3
, (8)

where τ = Q2/4m2
p, and mp is the proton mass. The

parameters a1, b1, b2 and b3 can be found in Table I of
Ref. [35]. The radius in this parameterization is R =
0.8630 fm.
e. Arrington-2004 The parameterization from Ref.

[36] is expressed as

GE(Q
2) =

(

1 +

N
∑

i=1

p2iQ
2i

)−1

, (9)

where parameters p2i up to i = 6 can be found in Table
I of Ref. [36]. The radius in this parameterization is
R = 0.8682 fm.
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f. Arrington-2007 The parameterization from Ref.
[37] is a fifth-order continued-fraction (CF) expansion ex-
pressed as:

GE(Q
2) =

1

1 + p1Q2

1+
p2Q2

1+···

, (10)

where the parameters pi (index i from 1 to 5) can be
found in Table I in Ref. [37]. The radius in this parame-
terization is R = 0.8965 fm.
g. Venkat-2011 The parameterization from Ref.

[38] is expressed as

GE(Q
2) =

1 + a1τ + a2τ
2 + a3τ

3

1 + b1τ + b2τ2 + b3τ3 + b4τ4 + b5τ5
,(11)

where parameters ai and bi can be found in Table II of
Ref. [38]. The radius in this parameterization is R =
0.8779 fm.
h. Bernauer-2014 This parameterization is a refit

of the full set of 1422 data points from Ref. [23] and is
expressed as a 10th-order polynomial expansion of Q2:

GE(Q
2) = 1 +

10
∑

i=1

piQ
2i, (12)

where the refitted parameters pi are close to those found
in appendix J.1 of Ref. [39]. The radius in this parame-
terization is R = 0.8868 fm.
i. Alarcón-2017 As a fully realistic charge form fac-

tor, we used the model of Alarcón and Weiss [26, 40, 41]
referred to herein as Alarcón-2017. This model uses
the recently developed method combining chiral effec-
tive field theory and dispersion analysis. Solely for the
purpose of testing extraction techniques, the radius in
the model was fixed to a series of values: 0.84 fm from
muonic hydrogen, 0.875 fm from CODATA, and 0.85 fm
as the central value from the range of radii allowed by
the model. Unlike the other models where a simple func-
tion could be programmed, here we have used a finely
spaced table of charge values and then fit it with a cubic
spline. The spline function can then be called in a similar
manner to the other functions.
j. Ye-2018 The parameterization of Ye et al. [42] is

a fit to world data with the radius fixed to R = 0.879 fm.
The parameterization and the values of the parameters
can be found in the supplemental materials of Ref. [42].
The author Z. Ye also provided a separate parameteriza-
tion with a different fixed radius, R = 0.85 fm. This sec-
ond parameterization will be referred to as Ye-2018 (re-
fix) in this study.

B. Fluctuation-adder

In order to mimic the variability of real data, library
allows adding bin-by-bin and/or overall fluctuations to
the GE vs. Q2 tables. It includes fluctuations ac-
cording to a user-defined random Gaussian distribution,

N (µ, σ2
g). In the bin-by-bin case, the uncertainty δGE

of each bin is defined by the user. The library sets µ = 0
and σg = δGE , and generates fluctuations according to
N (µ, σ2

g) in each bin. In the overall case, the user can
manually set the values of µ and σg, and the library gen-
erates an overall scaling factor according to N (µ, σ2

g) for
all the bins in a table. Other types of fluctuations, such
as uniform and Breit-Wigner, are also included in the
library for test purposes.

C. Fitter

To study which function robustly extract R from the
generated pseudo-data, a fitting routine has been devel-
oped. This library uses the Minuit package of CERN
ROOT to fit the GE vs. Q2 tables with the functional
forms listed below:
a. Dipole The dipole fitter is expressed as

fdipole(Q
2) = p0GE(Q

2) = p0

(

1 +
Q2

p1

)

−2

, (13)

where p0 is a floating normalization parameter, and p1 is
a fitting parameter related to the radius R =

√

12/p1.
b. Monopole The monopole fitter is given by

fmonopole(Q
2) = p0GE(Q

2) = p0

(

1 +
Q2

p1

)

−1

, (14)

and R =
√

6/p1.
c. Gaussian The Gaussian fitter has the form

fGaussian(Q
2) = p0GE(Q

2) = p0 exp(−Q2/p1), (15)

and R =
√

6/p1.
d. Multi-parameter polynomial-expansion of Q2

The fitter of the multi-parameter polynomial-expansion
of Q2 is written as

fpolyQ(Q
2) = p0GE(Q

2) = p0

(

1 +

N
∑

i=1

piQ
2i

)

, (16)

where p0 is a floating normalization parameter, p1 is a
fitting parameter related to the radius by R =

√−6p1,
parameters for higher order terms (pi with i > 1) are free
fitting parameters, and N is defined by the user.
e. Multi-parameter rational-function of Q2 The fit-

ter of the multi-parameter rational-function of Q2 is ex-
pressed as

frational(Q
2) = p0GE(Q

2) = p0

1 +
N
∑

i=1

p
(a)
i Q2i

1 +
M
∑

j=1

p
(b)
j Q2j

, (17)

where p0 is a floating normalization parameter, p
(a)
i and

p
(b)
j are free fitting parameters, and radius can be found

as R =

√

6(p
(b)
1 − p

(a)
1 ). The orders N and M are defined

by the user.
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f. CF expansion The CF expansion fitter is ex-
pressed as [43]

fCF(Q
2) = p0GE(Q

2) = p0
1

1 + p1Q2

1+
p2Q2

1+···

, (18)

where p0 is a floating normalization parameter, pi (i > 0)
are free fitting parameters, and R =

√
6p1. The user can

define the maximum i of the expansion.
g. Multi-parameter polynomial-expansion of z The

z-transformation is expressed as [19]

z =

√

Tc +Q2 −√
Tc − T0

√

Tc +Q2 +
√
Tc − T0

, (19)

where Tc = 4m2
π, mπ is set to be 140 MeV (close to

the π0 mass as in Ref. [19]), and T0 is a free parameter
representing the point mapping onto z = 0 (T0 is set to
0 in this study). With the new variable z, GE can be
parameterized as

fpolyz(Q
2) = p0GE(Q

2) = p0

(

1 +

N
∑

i=1

piz
i

)

, (20)

where p0 is a floating normalization parameter, p1 is a fit-
ting parameter related to the radius by R =

√

−3p1/2Tc,
pi are free fitting parameters, and N is defined by the
user.

III. TESTS OVER FULL RANGE OF THE

PRAD KINEMATICS

We tested functions over the expected Q2 range for
the PRad experiment of 3 × 10−4 < Q2 < 0.072 GeV2,
using bin-by-bin random uncertainties from 0.02% to
1.1%. The exact values used can be found online and
are denoted as bin set one [44]. As an example, Fig. 1
shows pseudo-data generated with the dipole generator
[R(input) = 0.85 fm] in the PRad binning fit using the
dipole fitter. In the first panel, no fluctuation is added to
the central values of GE while the other panels show two
of the many possible outcomes of adding random fluctu-
ations to the pseudo-data. the same input parameters.
As one might expect, when there is no fluctuation, the fit
curve goes through all the pseudo-data points perfectly
and the input R value is obtained. However, when there
are fluctuations, the results of the fit can differ from the
input.

In order to determine the distribution of possible out-
comes, one needs to generate many sets of pseudo-data
and perform fits for each set. This is done using the
following procedure:

a. Generation First, one GE model is used to gener-
ate pseudo-data (using the generator), at the bin centers
of Q2 that the user inputs into the program.

b. Fluctuation-adding Next, bin-by-bin and overall
fluctuations are added to the GE vs. Q2 tables in a ran-
dom manner (using the fluctuation-adder), to mimic the
real data. The bin-by-bin uncertainties are taken from
the bin-set file, and an overall scaling uncertainty of 5%
(far larger than expected in the PRad result) is added in
the tests to show that this method works even if there is
such a big scaling uncertainty.
c. Fitting Finally, the GE vs. Q2 tables are fit with

a number of functional forms (using the fitting library)
to extract R from the pseudo-data with fluctuations.
The steps of generation, fluctuation-adding and fitting

are repeated 150,000 times for each combination of gen-
erator and fit function. The 150,000 fitting results of
R(fit) for each combination comprise a distribution with
a central value R(mean) and a root-mean-square (RMS)
width. As the fitting uncertainty of R, determined by
Minuit (for each of the 150,000 fits) is very close to the
RMS width of the R(fit) distribution, we will use the
RMS values to represent the one-σ fitting-uncertainty.

A. Fits with simple-function models

Fig. 2 shows the R(fit) distributions of the dipole,
monopole and Gaussian fits when the dipole generator
is used [R(input) = 0.85 fm]. It is observed that when
the dipole fitter is used, R(mean) ≈ R(input), but when
the monopole or Gaussian fitter is used, R(mean) signif-
icantly deviates from R(input).
Fig. 3 summarizes the fitting results using the dipole,

monopole and Gaussian fitter, respectively, when nine
generators covering nine of the GE models describe in
section IIA. It is clear that the simplest functional forms
are not able to provide a robust extraction of R over the
full kinematic range of PRad bins, since for various input
GE models, the fitting uncertainty (σ) is smaller than
the size of the bias [δR = R(mean)−R(input)]. We note
that in this type of statistical analysis, bias is simply
the mean offset from the input value and is not meant
as a pejorative term. In fact, it is the trade-off between
bias and variance that is at the heart of machine learning
algorithms [45].

B. Fits with polynomial expansions of Q2

Polynomial expansions have been widely used to fit
GE vs. Q2 data, though concerns have been raised
about extrapolating with polynomial functions [14–16,
24, 27]. Fig. 4 summarizes the fitting results using the
polynomial-expansion fitter with N = 1, 2, 3 and 4, us-
ing again the nine generators covering various types of
GE models.
For the full range of the PRad data, the first-order

polynomial fitter is clearly not robust as |δR| > σ for
all the input GE models. The second-order polynomial
is marginally robust, since |δR| ≈ σ is found for models
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FIG. 1. (color online). Left panel shows pseudo-data generated with dipole functional form without fluctuations and the middle
and right panel shows results with fluctuations [R(input) = 0.85 fm]. The fitting result [R(fit)], fitting uncertainty [R(err)] and
χ2 per data point [χ2/N(data)] are presented in each panel.
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FIG. 2. Dipole, monopole and Gaussian fits of pseudo-data tables generated with the dipole functional form and added
fluctuations. The dashed line indicates the value of the input radius of 0.85 fm.
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FIG. 3. (color online). Dipole, monopole and Gaussian fits of
pseudo-data tables generated with nine models.

Bernauer-2014 and Ye-2018, while |δR| < σ is found for
the others. The third and fourth order polynomial fits
seem to be robust with |δR| < σ for all the input GE

models, but with a significantly larger σ.

We observe that when the order of expansion is too
low (N = 1), R(mean) is systematically and significantly
smaller than R(input) for all the generators used in the
tests. The polynomial (1) fit shows high bias and a low
variance. When higher orders are included (N = 2, 3
and 4), R(mean) gets closer to R(input), regardless of the
type of generator. At the same time, as the number of
parameters increases the fitting uncertainties increases,
showing low bias with high variance. The optimal choice

R (fm)δ
0.05 0 0.05

Polynomial (1)

R (fm)δ
0.05 0 0.05

Polynomial (2)

R (fm)δ
0.05 0 0.05

Polynomial (3)

R (fm)δ
0.05 0 0.05

Polynomial (4)

Dipole

Monopole

Gaussian

Kelly2004

Arrington2004

Arrington2007

n2017oAlarc

Bernauer2014

Ye2018

FIG. 4. (color online). Polynomial-expansion fits of pseudo-
data tables generated with nine models.

of N depends on the Q2 range, the distance between bin
centers and the uncertainty level in the data table. This
clearly illustrates the trade-off between bias and variance
and the need to balanced them when fitting. Some efforts
have been taken to build algorithms that automatically
and systematically determine the proper order N when
fitting certain data [15, 46].

C. Fits with rational functions of Q2

Rational functions are also widely used to fit GE vs.
Q2 data, such as in Refs. [35, 36, 38, 47]. Fig. 5 sum-
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marizes the fitting results using the rational-function fit-
ter with (N,M) = (1, 1), (1, 2), (2, 1) and (2, 2),
using the same nine generators. In these tests, the
rational-function fitter (N,M)=(1, 1) extractsR robustly
(δR < 0.42σ) regardless of the model parameterization
in the generator. It also has the lowest fitting uncer-
tainty among these four rational-function parameteriza-
tions. The higher order rational-function fitters, are also
robust (|δR| < σ for all input GE models) but a have
significantly larger fitting uncertainties.
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R (fm)δ
0.05 0 0.05
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Gaussian
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Arrington2004

Arrington2007

n2017oAlarc

Bernauer2014

Ye2018

FIG. 5. (color online). Rational function fits of pseudo-data
tables generated with nine models.

D. Fits with Continued Fractions

Using Continued Fraction, CF, expansions to fit GE

vs. Q2 data was proposed and applied to the world data
by Sick in 2003 [43]. This work also included tests and
discussions regarding fitting pseudo and real data with
CF expansions.

Fig. 6 summarizes results using the CF fit at order 1,
2, 3 and 4, with the same nine generating models. In
these tests (using PRad binning), the second order CF
is robust: |δR| < σ, regardless of the parameterizations
in the generator, and the fitting uncertainties are small.
Higher-order CF fitters, while robust (|δR| < σ for all
input GE models), have significantly larger fitting uncer-
tainties.
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0.05 0 0.05

CF (1)

R (fm)δ
0.05 0 0.05

CF (2)

R (fm)δ
0.05 0 0.05

CF (3)
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Monopole

Gaussian

Kelly2004

Arrington2004

Arrington2007

n2017oAlarc

Bernauer2014

Ye2018

FIG. 6. (color online). CF fits of pseudo-data tables generated
with nine GE models.

E. Fits with polynomial expansions of z

Using polynomial expansion of z instead of Q2 is an-
other option to extract R. Here Eq. (19) is used to trans-
form Q2 to z.
Fig. 7 summarizes the fitting results using polynomial

expansions of z with N = 1, 2, 3 and 4, using the nine
generator functions. When N = 1, R(mean) is system-
atically and significantly larger than R(input) for all the
generators used in the tests, opposite to the systemati-
cally smaller R(mean) for the polynomial (1) fits in Q2.
Again, as higher-order terms are included in the poly-
nomial expansion of z, the bias is reduced though sigma
increases. The polynomial expansion of z with N = 2
is clearly the best as it is robust and has a small fitting
uncertainty.
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Monopole

Gaussian

Kelly2004

Arrington2004

Arrington2007

n2017oAlarc

Bernauer2014

Ye2018

FIG. 7. (color online). Polynomial-expansions-of-z fits of
pseudo-data tables generated with nine models.

IV. TESTS OVER LOW Q2 SUBSETS OF THE

PRAD KINEMATICS

In this section, we consider extracting R using only low
Q2 subsets of the PRad kinematics. As the amount of
data in the extremely low Q2 ranges are quite limited,
it is easy to overfit the data and cause huge variances,
so only the fit functions that give reasonable results are
shown.
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Ye2018

FIG. 8. (color online). The figure shows that while low Q2

linear fits have a large bias when used full range; as the range
in Q2 is decrease, the bias decreases while the sigma increases.
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FIG. 9. (color online). A series of quadratic fits over low Q2

ranges showing that for the smallest ranges the variance gets
huge and the function overfits the data.
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FIG. 10. (color online). Shown is a series of linear fits in z;
again showing a trade-off between bias and variance as the
upper limit in Q2 is decreased.

Fig. 8, we show linear fits, first order polynomial, for
various range of Q2. For the full Q2 range, the linear fit
produces a large bias and has a poor residual, while as
the range of the data is reduced, the linear fit becomes
robust. In Fig. 9, we show that though the quadratic fits
works reasonably well over the full range of the expect
data, as the range is restricted the quadratic function
quickly starts to overfit the data and has a much larger
variance than the linear fits.

Repeating the linear fits in z instead of Q2, again has
the interesting effect that the bias has the opposite sign.
Nevertheless, as the Q2 range is decreased, the bias is
reduced and the linear fits in both GE vs. Q2 and GE

vs. z agree. This emphasizes that merely transforming
to z does not eliminate the problem of selecting the ap-
propriate functional form to fit the data. Though the
results do show that for very low Q2, linear fits in z and
Q2 should agree.

V. DISCUSSION

Choosing the appropriate fit function to extractR for a
given set of data depends on both the Q2 ranges and bin-

by-bin uncertainties, thus, the the choice of appropriate
fitting function(s) needs to be determined on a case-by-
case basis. In fact, Figs. 8 and 9 show that it is possible
that simpler fitters are robust and have smaller σ then
more complex functions when focusing low-Q2 subsets of
data. It is therefore imperative to define the criteria for
selecting functions for extracting R.
A standard way of quantifying goodness of fit for this

type of study where the true values are known is to con-
sider both the bias and variance [48] using Root Mean
Square Error, RMSE, where

RMSE =
√

bias2 + σ2. (21)

In this study, δR is the bias and σ is represented by the
RMS value of the fitting results.
Fig. 11 summarizes the bias, σ and RMSE values for

the three good fitting functions, one of the large-bias fit-
ters (dipole) and one of the large-variance fitters [poly-
nomial expansion of z (N = 4)] for the full range of the
expected PRad data. The RMSE values of the three good
fitters are similar for all generating functions. The RMSE
values of the large-bias fitter, though smaller than those
of the three good fitters on average, have large variations
when different generators are used, which indicates that
the fitter is not robust. The RMSE values of the large-
variance fitter are significantly larger than those of the
good fitters, which indicates that too many parameters
were used.
The GE values in real data inevitably have some fluc-

tuations around the true central value due to statisti-
cal and systematic uncertainties. To test if these fluc-
tuations have been correctly accounted for in the tests
herein, we check the distribution of our results against
an ideal probability density function. The left panel of
Fig. 12 shows the correlation between the χ2 per de-
gree of freedom (DOF) and [R(fit) − R(input)], where
DOF = N(data) − 2, and N(data) is the number of
data points in the GE vs. Q2 table. The black curve
in the right panel of Fig. 12 is the ideal probability den-
sity function of χ2/DOF distribution, and the red curve
is from the numerical tests. The good agreement be-
tween these two curves indicates that the tests work as
expected [49, 50]. In this figure, both the generator and
the fitter use the dipole functional form, though similar
results were achieved for all functional forms.
The value of R extracted from a known generator can

vary due to fluctuations even if the χ2/DOF is reason-
able. Additionally, a good χ2 value is not sufficient to
determine if the corresponding fit can extrapolate the
radius properly. From a purely mathematical point of
view, this can be understood as the difference between a
good interpolating function, valid over the range of the
data, and a functional form that can be used to extrap-
olate beyond the range of the data.
For, with real data, with one only a single data set and

an unknown functional form, it is not possible to know
exactly how much the fluctuations affect the R extrac-
tion unless R is already known precisely. On the other



8

B
ia

s
 (

fm
)

0.02

0.01

0

0.01
Dipole

Monopole

Gaussian

Kelly2004

Arrington2004

Arrington2007

n2017oAlarc

Bernauer2014

Ye2018

Rational CF Polynomial z Dipole Polynomial z

(N=M=1) order 2 order 2 order 4

 (
fm

)
 V

a
ri
a

n
c
e

 

0

0.01

0.02

0.03

Rational CF Polynomial z Dipole Polynomial z

(N=M=1) order 2 order 2 order 4

R
M

S
E

 (
fm

)

0

0.01

0.02

Rational CF Polynomial z Dipole Polynomial z

(N=M=1) order 2 order 2 order 4

FIG. 11. (color online). Bias (δR), variance (σ) and RMSE of
the rational (N = 1,M = 1), CF (second order), polynomial
expansion of z (N = 2), dipole and polynomial expansion
of z (N = 4) fitters. The last two fitters represent typical
cases of under-fit (large bias and small variance) and over-fit
(small bias and large variance), respectively. The bias, σ and
RMSE values of nine GE generators with the fitters presented
by the nine colored columns in the corresponding to dipole,
monopole, Gaussian, Kelly-2004, Arrington-2004, Arrington-
2007, Alarcón-2017, Bernauer-2014 and Ye-2018 respectively.
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FIG. 12. (color online). The left panel presents the corre-
lation between χ2/DOF and [R(fit) − R(input)], when both
the generator and the fitter use the dipole functional form.
The black dashed curve in the right panel presents the ideal
probability density function of χ2/DOF distribution, and the
red curve is from the numerical tests.

hand, one can make use of the statistical bootstrap which
uses sampling with replacement to produce multiple data
tables from a single set of data [51, 52]. While the boot-

strap won’t affect the mean, it allows determination of
the uncertainty distribution from the data itself.
Theoretical models, such as Alarcón-2017, can also be

used to help with fitting experimental data and extract-
ing R. For example, one can use theory to constrain
high order moments and achieve a smaller fit uncertain-
ties [17], though these approaches inevitably introduce
theory dependence to the R extraction. Theory depen-
dence has been avoided in this study and we have demon-
strated that the robust fitting functions are able to ex-
tract R by using relatively simple functions and treating
the higher order moments as nuisance parameters. Of
course, a pure mathematical extraction, such as demon-
strated in this paper, and a valid nuclear theory extrac-
tion should give the same radius within errors.

VI. SUMMARY

We have created an expandable framework to search
for functional forms that can reliably extract the proton
radius using pseudo-data generated from a wide variety
of GE models. As a pertinent example, we have applied
this framework to the expected range and uncertainty of
the upcoming PRad data.
We find that for the full range of the data, the (N =

M) = (1, 1) rational function, the two parameter contin-
ued fraction, and the second order polynomial expansion
in z can all robustly extract the correct radius with small
σ regardless of the input pseudo-data generating func-
tion. By restricting data to the lowest Q2 ranges, it is
also possible to extract the radius using a linear function
though this yields a larger uncertainty than when using
the full range. We also note that functions with a good
χ2 do not necessarily extrapolate well beyond data; thus
χ2 alone cannot be used to determine which functions
can robustly extract the proton radius.
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