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We perform a systematic study on the decorrelation of anisotropic flows along the pseudorapidity
in relativistic heavy-ion collisions at the LHC and RHIC energies. The dynamical evolution of the
QGP fireball is simulated via the CLVisc (ideal) (3+1)-dimensional hydrodynamics model, with the
fully fluctuating initial condition from A-Multi-Phase-Transport (AMPT) model. Detailed anal-
ysis is performed on the longitudinal decorrelations of elliptic, triangular and quadrangular flows
in terms of flow vectors, flow magnitudes and flow orientations (event planes). It is found that
pure flow magnitudes have smaller longitudinal decorrelation than pure flow orientations, and the
decorrelation of flow vectors is a combined effect of both flow magnitudes and orientations. The
longitudinal decorrelation of elliptic flow has a strong and non-monotonic centrality dependence due
to the initial elliptic collision geometry: smallest decorrelation in mid-central collisions. In contrast,
the decorrelations of triangular and quadrangular flows have weak centrality dependence, slightly
larger decorrelations in more peripheral collisions. Our numerical results for Pb+Pb collisions at
the LHC are in good agreement with the ATLAS data, while our RHIC results predict much larger
longitudinal decorrelations as compared to the LHC. We further analyze the longitudinal structures
of the AMPT initial conditions and find that the final-state longitudinal decorrelation effects are
strongly correlated with the lengths of the initial string structures in the AMPT model. The decor-
relation effects are typically larger at lower collision energies and in more peripheral collisions due
to shorter lengths of the string structures in the initial states.

I. INTRODUCTION

High-energy heavy-ion collisions, such as those per-
formed at Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC), provide ideal en-
vironments to create and study the strong-interaction
nuclear matter under extreme temperatures and densi-
ties. Various experimental observations and theoreti-
cal studies have demonstrated that the hot and dense
nuclear matter produced in these extremely energetic
nucleus-nucleus collisions is a strongly-coupled quark-
gluon plasma (QGP), which behaves like a relativis-
tic fluid with extremely low shear-viscosity-to-entropy-
density-ratio [1–5]. One of the most important evidences
for the formation of the strongly-coupled QGP is the
strong collective flow of the QGP fireball [6–9], which is
developed from the pressure gradient of the fireball and
the strong interaction among the QGP constituents.

Due to event-by-event fluctuations of the initial state
energy density and geometry, the collective flow of the
QGP fireball is typically anisotropic in the plane trans-
verse to the beam axis, which leads to anisotropic mo-
mentum distributions for the final state soft hardons. To
quantify the anisotropic collective flows, the flow vector
Vn = vn exp(inΨn) for n-th order flow is usually de-
fined, where vn is the flow magnitude and Ψn is the flow
orientation (the symmetry plane of the anisotropic flow
Vn or the event plane) [10]. Relativistic hydrodynam-
ics has been very successful in describing the space-time
evolution of the QGP fireball and in explaining the ob-
served anisotropic collective flows in relativistic heavy-

ion collisions at RHIC and the LHC [11–18]. In re-
cent years, much attention has been paid to the studies
of higher-order anisotropic flows [19–32], event-by-event
flow fluctuations [33–36], correlations of event planes [37–
40], and flow correlations in terms of symmetric cum-
mulants [33, 41, 42] and nonlinear (hydrodynamics) re-
sponses [43–47], as well as anisotropies observed in small
collision systems such as p+Pb collisions at the LHC [48–
55]. Detailed studies along these directions significantly
advance our understanding on the origin of anisotropic
collective flows of the fireball, and on the transport prop-
erties of the hot and dense QGP produced in high-energy
nuclear collisions.

While there has been tremendous effort devoted to the
study of the QGP dynamics and anisotropic flow in the
transverse directions (plane), event-by-event fluctuations
in the longitudinal (pseudorapidity) direction are of great
importance as well [56–69]. Many recent studies have
shown that the longitudinal fluctuations can lead to siz-
able decorrelations of anisotropic collective flows along
the pseudorapidity (η) direction; both flow magnitudes
vn(η) and flow orientations Ψn(η) are different at two
different rapidities [i.e., Vn(η1) 6= Vn(η2)]. These re-
sults provide a new set of important tools for constraining
the models for initial states, and for studying the trans-
port properties and evolution dynamics of the QGP. In
order to experimentally study the longitudinal decorre-
lation of anisotropic flows between two different rapidity
bins, CMS Collaboration have first proposed a reference-
rapidity-bin method [63]. This method measures the cor-
relation between rapidity bins η and −η using the ratio
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of the correlation between the η bin and the reference
rapidity bin ηr and the correlation between the −η bin
and the reference bin ηr. Since a large rapidity gap can
be used between ±η and the reference rapidity bin ηr,
this method should be able to remove a large part of
short-range correlations. Since this method uses three
rapidity bins, it is also called three-rapidity-bin method.
Very recently, ATLAS Collaboration have extended the
CMS three-rapidity-bin method and measured a few new
longitudinal decorrelation observables based on multiple-
particle correlations in two or more rapidity bins [70].
In this work, we perform a systematic study for the lon-

gitudinal decorrelations of elliptic, triangular and quad-
rangular flows in relativistic heavy-ion collisions at the
LHC and RHIC energies. We utilize the CLVisc (ideal)
(3+1)-dimensional hydrodynamics model [18, 58, 62, 69]
to simulate the dynamical evolution of the QGP fireball
and employ A-Multi-Phase-Transport (AMPT) model
[71] to generate the initial conditions for our hydrody-
namics simulations. A detailed analysis is presented
for the longitudinal decorrelation of anisotropic flows in
terms of flow vectors, flow magnitudes and flow orien-
tations. We further study the centrality and collision-
energy dependences of the longitudinal decorrelations of
anisotropic flows using the slope parameters of the longi-
tudinal decorrelation functions. The decorrelation ob-
servables involving four rapidity bins are also studied
compared to these involving three rapidity bins. Our
numerical results provide very good descriptions of the
recent ATLAS data on the longitudinal decorrelation in
Pb+Pb collisions at 5.02A TeV and 2.76A TeV at the
LHC. The prediction for RHIC energy is also presented
and we find much larger decorrelation at RHIC compared
to the LHC energies. We further analyze the longitudi-
nal structures of the AMPT initial conditions, and find
that the longitudinal decorrelation of anisotropic flows
are typically larger at lower collision energies and in more
peripheral collisions; this is mainly due to the shorter
lengths of the string structures (thus larger fluctuations)
in the AMPT model.
The paper is organized as follows. In Sec. II, we

demonstrate the setup of the event-by-event hydrody-
namics model including a very brief introduction of the
AMPT model for initial condition. In Sec. III , we
present in detail our numerical results for the longitudi-
nal decorrelations of elliptic, triangular and quadrangular
flows at the LHC and RHIC energies. We also compare
our results with the recent ATLAS data for Pb+Pb col-
lisions at the LHC. Sec. IV contains our summary.

II. EVENT-BY-EVENT CLVISC
(3+1)-DIMENSIONAL HYDRODYNAMICS

SIMULATION

In this work, we utilize the ideal version of the
CLVisc (3+1)-dimensional ideal hydrodynamics model
[18, 58, 62, 69] to simulate the dynamical evolution of the
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FIG. 1. Determination of centrality classes for Pb+Pb colli-
sions at 5.02A TeV according to the probability density dis-
tribution (PDF) of the initial parton multiplicity (Nparton) in
the AMPT model.

QGP fireball and to study the longitudinal decorrelation
of anisotropic flows in Pb+Pb collisions at

√
sNN =2.76,

5.02 TeV and Au+Au collision at
√
sNN = 200GeV, re-

spectively. The initial conditions for hydrodynamics sim-
ulations are obtained from the AMPT model (the string-
melting version) [71]. Using the position (ti, xi, yi, zi)
and momentum (Ei, Pxi, Pyi, Pzi) information of each
produced parton, we can construct the local energy-
momentum tensor T µν at the initial proper time τ0 as
follows:
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, (1)

where a normalized Guassian smearing function is ap-
plied for each parton in the Milne coordinate (τ, x, y, ηs).
Here, pµ is the four-momentum of the parton:

pµ =
1

τ0
[mTicosh(Y − ηs), px, py,mT cosh(Y − ηs] ,(2)

with Y , ηs, mT being the rapidity, the space-time rapid-
ity and the transverse mass of the parton, respectively.
σr and σηs

are the widths for the Gaussian smearing in
the transverse and pseudorapidity directions, and they
are taken to be σr = 0.6 fm and σηs

= 0.6 in this study.
In our initial conditions, the scale factor K and the

initial proper time τ0 are two key parameters. In this
study, we take the initial proper time τ0 = 0.2 fm for
Pb+Pb collisions at 2.76A TeV and 5.02A GeV, and take
τ0 = 0.4fm for Au+Au collisions at 200A GeV. The scale
parameterK is fixed by comparing the experimental data
to our hydrodynamics results for charged hadron multi-
plicity distribution dN/dη in most central collisions at
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FIG. 2. Charged hadron multiplicity as a function of pseudorapidity η for Pb+Pb collisions at 5.02A TeV and 2.76A TeV at the
LHC, and for Au+Au collisions at 200A GeV at RHIC from event-by-event (3+1)-dimensional ideal hydrodynamics simulation
compared to the experimental data [72–74].

each colliding energy. Note that the initial flow is not
included in our initial conditions.
In this study, the collision centrality classes are deter-

mined from the initial parton multiplicity distribution in
the AMPT model by running one million minimum-bias
events (the range of impact parameter b ∈ [0, 20] fm).
Figure 1 shows the the probability density distribution
(PDF) of the initial parton multiplicity in the AMPT
model and the division of the centrality classes for
Pb+Pb collisions at 5.02A TeV. Then with initial con-
ditions from each centrality bin, we run one thousand
hydrodynamics events for our numerical analysis. In our
hydrodynamics simulations, we utilize the partial chem-
ical equilibrium equation of state (EOS) s95p-PCE-v0
[75]. After hydrodynamics evolution, we obtain the mo-
mentum distributions for the produced hadrons via the
Cooper-Frye formula, where the freezeout temperature
Tf is taken to be 137 MeV. Figure 2 shows our event-
by-event hydrodynamics results on dNch/dη in central
and mid-cental collisions compared with the experimen-
tal data [72–74]. From the comparison for central col-
lisions, we obtain K = 1.6 and K = 1.44 for Pb+Pb
collisions at 2.76A TeV and 5.02A TeV, and K = 1.45
for Au+Au collisions. The same K values are used for
non-central collisions.

III. NUMERICAL RESULTS

A. Longitudinal decorrelations of flow vectors, flow
magnitudes and flow orientations

In this work, we use the Qn vector method to quan-
tify the n-th order anisotropic collective flows in a given
pseudorapidity bin:

Qn(η) = qn(η)e
inΦn(η) =

1

N

N
∑

i=1

einφi , (3)

where qn and Φn are the magnitude and orientation of
the Qn vector, respectively. Note that the Qn vector con-
structed in the experimental measurements suffers the

effects of finite multiplicity fluctuation (which are usu-
ally corrected in the experiments with the resolution fac-
tors obtained using, e.g., the sub-event method). In our
hydrodynamic simulations, we use the smooth particle
spectra dN

dηpT dpT dφ to calculate the Qn vector, i.e.,

Qn(η) =

∫

exp(inφ) dN
dηdpT dφdpTdφ

∫

dN
dηdpT dφdpT dφ

. (4)

In this case, Qn vector is the same as the flow vector Vn.
To study the longitudinal decorrelations of anisotropic

collective flows, ATLAS Collaboration [70] defines the
following correlation function between the k-th moment
of the n-th order flow vector in two different rapidity bins
(η and −η):

r[n, k](η) =
〈Qk

n(−η)Q∗k
n (ηr)〉

〈Qk
n(η)Q

∗k
n (ηr)〉

, (5)

where the average is over many events in a given central-
ity class. Note the k = 1 case corresponds to the original
three-rapidity-bin method used by the CMS Collabora-
tion [63]. Here the rapidity bin η is usually taken to be
around mid-rapidity while the reference rapidity bin ηr is
chosen at forward (large) rapidity in order to remove the
short range correlations. The above correlation function
quantifies the correlation (decorrelation) between the ra-
pidity windows η and −η by comparing each of them to
the reference rapidity window ηr.
In Fig. 3, we show the numerical results for the longi-

tudinal decorrelation functions r[n, 1](η) in Pb+Pb col-
lisions at 2.76A TeV and compare to the CMS data (on
r[2, 1] and r[3, 1]). In this figure, three sub-figures from
left to right represent the longitudinal decorrelation re-
sults for elliptic flow V2, triangular flow V3 and quad-
rangle flow V4, respectively. Within each sub-figure, six
panels (plots) denote the results for six collision centrali-
ties. Here, we compare the ideal hydrodynamics simula-
tion results in this study and the viscous hydrodynamics
simulation results from Ref. [69]. While shear viscosity
may affect the overall magnitudes of the anisotropic flows
vn(pT , η), one can see that for most of the centralities
explored here, the longitudinal decorrelation functions
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FIG. 3. The correlation functions r[n, k](η) with n = 2, 3, 4 and k = 1 as a function of η obtained from event-by-event (3+1)-D
ideal hydrodynamics simulations (dotted, this work) and viscous hydrodynamics simulations (dashed, from Ref. [69]) for six
different centralities in Pb+Pb collisions at 5.02A TeV. The CMS data for r[2, 1](η) and r[3, 1](η) are shown for comparison.
The reference rapidity window is taken to be 4.4 < ηr < 5.0.

r[n, k](η) for anisotropic flows are not very sensitive to
shear viscosity to entropy density ratio ηv/s.

In the following, we will present a systematic study
on the longitudinal decorrelations of elliptic, triangular
and quadrangular flows at both the LHC and RHIC ener-
gies using (3+1)-dimensional ideal hydrodynamics. For
the LHC analysis, we follow the ATLAS setup: we limit
the central rapidity windows to η ∈ (−2.4, 2.4), the ref-
erence rapidity bin 4.0 < |ηr| < 4.9, and the charged
hadrons with 0.5 < PT < 3.0 GeV for Pb+Pb collisions
at 2.76A TeV and 5.02A TeV at the LHC. For the anal-
ysis of Au+Au collisions at 200A GeV at RHIC, we take
η ∈ (−1.5, 1.5), 3.0 < |ηr| < 4.0 and 0.3 < PT < 3.0 GeV.

We note that the above defined correlation function
[Eq. (5)] quantifies the decorrelation between the flow
vectors evaluated at two different rapidities [Vn(η) and
Vn(−η)]. In Ref. [67], two other similar longitudinal
decorrelation functions are defined, involving only flow
magnitudes vn and flow orientations Ψn, respectively.
Using the Qn vector notations, they can be written as
follows:

rM [n, k](η) =
〈qkn(−η)qkn(ηr)〉
〈qkn(η)qkn(ηr)〉

, (6)

and

rΦ[n, k](η) =
〈Q̂k

n(−η)Q̂∗k
n (ηr)〉

〈Q̂k
n(η)Q̂

∗k
n (ηr)〉

=
〈cos[kn(Φ(−η)− Φ(ηr))]〉
〈cos[kn(Φ(η) − Φ(ηr))]〉

, (7)

where Q̂n represent the unit vector Q̂n = Qn/qn. Com-
pared to the correlation function r[n, k](η) defined in Eq.
(5) which quantifies the longitudinal decorrelation for
the full flow vector, rM and rΦ describe the longitudi-
nal decorrelation of pure flow magnitudes and pure flow
orientations at two different rapidities.
In Figures 4, 5 and 6, we show the numerical re-

sults for the longitudinal decorrelations of full flow vec-
tors r[n, k](η), flow angles rΦ[n, k](η) and flow magni-
tudes rM [n, k](η), for different orders (n = 2, 3, 4) of
anisotropic collective flows, for different collision central-
ities, in Pb+Pb collisions at 5.02A TeV and at 2.76A
TeV, and in Au+Au collisions at 200A GeV. For simplic-
ity, only k = 1 results are shown in these figures; k > 1
results and the comparison (relation) between different k
values will be addressed in more details in a later sub-
section. From left to right in each figure, there are three
sub-figures which show the decorrelation results for ellip-
tic flow (n = 2), triangular flow (n = 3) and quadrangle
flow (n = 4), respectively. Within each sub-figure, there
are six panels (plots) which show the results for six differ-
ent collision centralities. In each single panel (plot), there



5

1 2
η

0.80
0.85
0.90
0.95
1.00

4.0 < ηr < 4.9
0.5 < PT < 3.0GeV

√SNN = 5.02TeV (n= 2, k= 1)
(a) 0 - 5 %

1 2
η

(b) 5 - 10 %

ATLAS
r[n, k]

1 2
η

0.80
0.85
0.90
0.95
1.00 (c) 10 - 20 %

Hydro
r[n, k]

1 2
η

(d) 20 - 30 %

Hydro
rΦ[n, k]

1 2
η

0.80
0.85
0.90
0.95
1.00 (e) 30 - 40 %

Hydro
rM[n, k]

1 2
η

(f) 40 - 50 %

1 2
η

0.80
0.85
0.90
0.95
1.00

√SNN = 5.02TeV (n= 3, k= 1)
(a) 0 - 5 %

1 2
η

(b) 5 - 10 %

1 2
η

0.80
0.85
0.90
0.95
1.00 (c) 10 - 20 %

1 2
η

(d) 20 - 30 %

1 2
η

0.80
0.85
0.90
0.95
1.00 (e) 30 - 40 %

1 2
η

(f) 40 - 50 %

1 2
η

0.80
0.85
0.90
0.95
1.00

√SNN = 5.02TeV (n= 4, k= 1)
(a) 0 - 5 %

1 2
η

(b) 5 - 10 %

1 2
η

0.80
0.85
0.90
0.95
1.00 (c) 10 - 20 %

1 2
η

(d) 20 - 30 %

1 2
η

0.80
0.85
0.90
0.95
1.00 (e) 30 - 40 %

1 2
η

(f) 40 - 50 %

FIG. 4. The correlation functions r[n, k](η), rM [n, k](η) and rΦ[n, k](η) with n = 2, 3, 4 and k = 1 as a function of η obtained
from event-by-event (3+1)-D ideal hydrodynamics simulations for six different centralities in Pb+Pb collisions at 5.02A TeV.
The ATLAS data for r[n, k](η) are shown for comparison. The reference rapidity window is taken to be 4.0 < ηr < 4.9.

are three curves which represent our hydrodynamics re-
sults for the decorrelations of flow vectors r[n, k](η), flow
angles rΦ[n, k](η) and flow magnitudes rM [n, k](η). The
experimental data from the ATLAS Collaboration on the
decorrelation of flow vectors r[n, k](η) are shown for com-
parison. We can see that our hydrodynamics calculations
for Pb+Pb collisions at both 2.76A TeV and 5.02A TeV
at the LHC provide very nice agreements with the AT-
LAS data for the longitudinal decorrleation of flow vec-
tors r[n, 1](η) for all centrality classes (these results are
consistent with the previous calculations [62, 69]).

From Figures 4, 5 and 6, we can see that the longi-
tudinal decorrelation functions r[n, k](η), rΦ[n, k](η) and
rM [n, k](η) for anisotropic flows v2, v3 and v4 are almost
linear in pseudorapidity η around mid-rapidity (we will
test the goodness of such linearity in the next subsec-
tion). The approximate linearity for longitudinal decor-
relations works well for all centralities in Pb+Pb colli-
sions at 5.02A TeV and 2.76A TeV and in Au+Au col-
lisions at 200A GeV. Another interesting feature (also
found in Ref. [67]) is that the longitudinal decorrelation
of pure flow orientations (event planes) is typically larger
than that of pure flow magnitudes, and the longitudinal
decorrelation of full flow vectors sit between the decor-
relations of flow magnitudes and flow orientations. Such
feature persists for all collision centralities at both the
LHC and RHIC, which might indicate that the orien-
tations of anisotropic flows are more sensitive to initial
state longitudinal fluctuations than the flow magnitudes.

Now we focus on the centrality dependence for the lon-
gitudinal decorrelations of the anisotropic flows. At first
sight, the elliptic flow decorrelation function r[2, 1](η)
shows a non-monotonic behavior from central to pe-
ripheral collisions (it first decreases and then increases,
and the decorrelation effect is weakest for 20%-30% cen-
tral collisions at both RHIC and the LHC). Such non-
monotonic centrality dependence originates from the un-
derlying elliptic shape of the initial collision geometry,
which is the driving mechanism behind the development
of elliptic flow v2 in mid-central collisions, whereas the
fluctuations become more important for more central and
more peripheral collisions. For triangular (n = 3) and
quadrangular (n = 4) flows, the decorelation effects have
a weak dependence on collision centrality; we observe a
slight increase from central to peripheral collisions. This
is mainly due to the fact that fluctuations play more im-
portant roles in the developments of v3 and v4, and also
fluctuations are typically larger for smaller collision sys-
tems (more peripheral collisions). In addition, the longi-
tudinal decorrelations of v3 and v4 are much larger than
the decorrelation of v2.

Finally we look at the collision energy dependence for
the longitudinal decorrelation by comparing the results
in Figures 4, 5 and 6. First, the decorrelations are much
larger in Au+Au collisions at RHIC than in Pb+Pb colli-
sions at the LHC energies. Also, more detailed compari-
son between 2.76A TeV and 5.02A TeV Pb+Pb collisions
at the LHC shows that the decorrelation effects are a lit-
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FIG. 5. The correlation functions r[n, k](η), rM [n, k](η) and rΦ[n, k](η) with n = 2, 3, 4 and k = 1 as a function of η obtained
from event-by-event (3+1)-D ideal hydrodynamics simulations for six different centralities in Pb+Pb collisions at 2.76A TeV.
The ATLAS data for r[n, k](η) are shown for comparison. The reference rapidity window is taken to be 4.0 < ηr < 4.9.

tle larger in 2.76A TeV than in 5.02A TeV. One of the
most important reasons for the above collision energy de-
pendence is the larger initial state fluctuations in the lon-
gitudinal direction in less energetic heavy-ion collisions.
A more detailed analysis on the collision energy depen-
dence for the longitudinal fluctuations and flow decorre-
lations will be presented in a later subsection.

B. Slope parameters for longitudinal decorrlations

As has been shown in Figures 4, 5 and 6, the lon-
gitudinal decorrelation functions for anisotropic flows,
r[n, k](η), rΦ[n, k](η) and rM [n, k](η) are almost linear in
pseudorapidity η, especially around midrapidity. Thus
it is easier to parameterize the decorrelation function
r[n, k](η) as follows:

r[n, k](η) ≈ 1− 2f [n, k]η (8)

where f [n, k] is called the slope parameter for the corre-
lation function r[n, k](η). Similarly, one may define the
slope parameters fM [n, k] and fΦ[n, k] for the decorrela-
tion functions rM [n, k](η) and rΦ[n, k](η):

rM [n, k](η) ≈ 1− 2fM [n, k]η

rΦ[n, k](η) ≈ 1− 2fΦ[n, k]η (9)

In principle, these slope parameters can be directly
extracted from the correlation functions f [n, k](η),

fM [n, k](η) and fΦ[n, k](η) as a function of η as shown in
Figures 4, 5 and 6. ATLAS Collaboration measures the
above slope parameters by performing the η-weighted av-
erage for the deviation of the correlation function r(n, k)
from the unity [70]:

f [n, k] =

∑

i {1− r[n, k](ηi)} ηi
2
∑

i η
2
i

(10)

Similarly for the slope parameters fM [n, k] and fΦ[n, k].
In this study, we use the same ATLAS method to calcu-
late various slope parameters.
In Figure 7, we show the numerical results for the slope

parameters f [n, k], fM [n, k] and fΦ[n, k] of the longitu-
dinal decorrelations of flow vectors, flow magnitudes and
flow orientations as a function of centrality (the partic-
ipant number Npart), for different order of anisotropic
flows (v2, v3 and v4), for Pb+Pb collisions at 5.02A TeV
and 2.76A TeV and Au+Au collisions at 200A GeV. The
data for the slope parameter f [n, k] with k = 1 in Pb+Pb
collisions at 5.02A TeV and 2.76A TeV from ATLAS Col-
laboration are also shown for comparison, and we can see
our calculation can describe the ATLAS data quite well.
Since the longitudinal decorrelation functions r[n, k](η),
rM [n, k](η) and rΦ[n, k](η) are nearly linear in pseudo-
rapidity, we can see that the slope parameters f [n, k],
fM [n, k] and fΦ[n, k] can provide the same but more
clear information compared to the decorrelation func-
tion. Therefore we will focus on the slope parameters
in the following discussion. We will test the goodness
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FIG. 6. The correlation functions r[n, k](η), rM [n, k](η) and rΦ[n, k](η) with n = 2, 3, 4 and k = 1 as a function of η obtained
from event-by-event (3+1)-D ideal hydrodynamics simulations for six different centralities in Au+Au collisions at 200A GeV.
The reference rapidity window is taken to be 3.0 < ηr < 4.0.

of the linearity for the longitudinal decorrelations as a
function of η in the next subsection.

From Figure 7, we can see that the longitudinal decor-
relation effects are larger for pure flow orientations (event
planes) and smaller for pure flow magnitudes, whereas
the decorrelation of flow vector involves both flow mag-
nitudes and orientations, and therefore sits in the mid-
dle. Also, the decorrelation of elliptic flow shows a non-
monotonic centrality dependence due to the underlying
elliptic shape of the initial collision geometry, while the
decorrelations for triangular and quadrangular flows just
show a slight increase from central to peripheral colli-
sions. And the longitudinal decorrelations of v3 and v4
are usually much larger than the decorrelation of v2. Fi-
nally, the fluctuations and the longitudinal decorrelations
of anisotropic flows in Au+Au collisions at RHIC are
much larger than in Pb+Pb collisions at the LHC.

C. Linearity of longitudinal decorrelations

In this subsection, we will test the validity (goodness)
of the linear approximation for the longitudinal decorre-
lations of the anisotropic collective flows as a function of
pseudorapidity η. Following the argument of Ref. [66],
we perform a perturbative expansion for the flow vector
(Q-vector) along η direction around mid-rapidity,

Qn(η) ≈ Qn(0)(1 + αnη)e
iβnη (11)

In the equation, Qn(0) is the Q-vector at midrapidity
(η = 0), the term (1 + αnη) characterizes the linear
decorrelation along η direction for flow magnitude, and
eiβnη represents the rotation (twist) of flow orientation
with respect to the flow vector at mid-rapidity. With the
above approximation, the denominator of the longitudi-
nal decorrelation function r[n, k](η) for the flow vectors
can be written as:

〈Qk
n(η)Q

∗k
n (ηr)〉 ≈ 〈Qk

n(0)(1 + kαnη)e
ikβnηQ∗k

n (ηr)〉(12)

Note the linear approximation is only valid for small η.
For the flow vector Qn(ηr) at the reference rapidity bin
ηr, one may not simply take the linear approximation
since ηr is usually at large rapidity. Instead, we take the
following parameterization:

Qk
n(0)Q

∗k
n (ηr) = An,k(ηr)e

−iδn,k(ηr)

= Xn,k(ηr) + iYn,k(ηr) (13)

where An,k = (X2
n,k + Y 2

n,k)
1/2 and e−iδn,k are the mag-

nitude and the phase of the above product, respectively.
Then the denominator of the longitudinal decorrelation
function r[n, k](η) for the flow vectors can be written as
follows:

〈Qk
n(η)Q

∗k
n (ηr)〉≈ 〈Xn,k(ηr)〉 (14)

×
[

1 + k

( 〈αnXn,k〉
〈Xn,k〉

+
〈βnYn,k〉
〈Xn,k〉

)

η

]
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FIG. 7. The slope parameters f [n, k], fM [n, k] and fΦ[n, k] of the decorrelation functions r[n, k](η), rM [n, k](η) and rΦ[n, k](η)
with n = 2, 3, 4 and k = 1, as a function of collision centrality (Npart) for Pb+Pb collisions at 5.02A TeV and 2.76A TeV at
the LHC and for Au+Au collisions at 200A GeV. The ATLAS data for 5.02A TeV Pb+Pb collisions are shown for comparison.

With the above approximation, the decorrelation func-
tion r[n, k](η) can be approximated as:

r[n, k](η) ≈ 1− 2k

( 〈αnXn,k〉
〈Xn,k〉

+
〈βnYn,k〉
〈Xn,k〉

)

η (15)

We can see the decorrelation function r[n, k](η) is ap-
proximately linear in pseudorapidity η, i.e.,

r[n, k](η) ≈ 1− 2f [n, k]η (16)

The slope parameter f [n, k] can be identified as:

f [n, k] = k

( 〈αnXn,k〉
〈Xn,k〉

+
〈βnYn,k〉
〈Xn,k〉

)

(17)

We can do similar treatment for the longitudinal decorre-
lation functions rM [n, k](η) and rΦ[n, k](η) as well. First,
the denominator of the decorrelation function rM [n, k](η)
can be written as:

〈qkn(η)q∗kn (ηr)〉 ≈ 〈An,k〉
(

1 + k
〈αnAn,k〉
〈An,k〉

η

)

(18)

Then the decorrelation function fM [n, k] becomes:

rM [n, k](η) ≈ 1− 2fM [n, k]η (19)

The slope parameter fM [n, k] is:

fM [n, k] = k
〈αnAn,k〉
〈An,k〉

(20)

We can see that the decorrelation function rM [n, k](η)
only involves the slope parameter fM [n, k]. As for the
decorrelation function rΦ[n, k](η), its denominator can
be written as:

〈Q̂k
n(η)Q̂

∗k
n (ηr)〉 ≈ 〈cos(δn,k)〉

[

1 + k
〈βn sin(δn,k)〉
〈cos(δn,k〉)

η

]

(21)

Then the decorrelation function rΦ[n, k] becomes:

rΦ[n, k] ≈ 1− 2fΦ[n, k]η (22)

The slope parameter fΦ[n, k] is:

fΦ[n, k] = k
〈βn sin(δn,k)〉
〈cos(δn,k〉)

(23)
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FIG. 8. The slope parameters f [n, k]/k of the flow decorrelation functions r[n, k](η) for different values of n = 2, 3, 4 and
different values of k = 1, 2, 3 as a function of collision centrality (Npart) for Pb+Pb collisions at 5.02A TeV and 2.76A TeV at
the LHC and for Au+Au collisions at 200A GeV. The ATLAS data for 5.02A TeV Pb+Pb collisions are shown for comparison.

We can see that the slope parameter fΦ[n, k] only involves
the decorrelations of flow orientations.
The above analysis tells that if the linear approxima-

tion works well for the longitudinal decorelation functions
as a function of pseudorapidity η, we will have the fol-
lowing simple approximate relations between the slope
parameters with different k values:

f [n, k] ≈ kf [n, 1]

fM [n, k] ≈ kfM [n, 1]

fΦ[n, k] ≈ kfΦ[n, 1] (24)

These relations can be used to test the goodness of the
linearity of the longitudinal decorrelation functions.
In Figure 8, we show the (scaled) slope parameters

f [n, k]/k for the decorrelation functions r[n, k](η), with
n = 2, 3, 4 and k = 1, 2, 3, as a function of collision cen-
trality (Npart) for Pb+Pb collisions at 5.02A TeV and
2.76A TeV and for Au+Au collisions at 200A GeV. First,
our hydrodynamics calculation provide a nice description
of the ATLAS data for the slope parameters f [n, k]/k
in 5.02A TeV Pb+Pb collisions. Second, three sets of

curves with k = 1, 2, 3 in Au+Au collisions at RHIC
and Pb+Pb collisions at the LHC roughly agree with
each other, indicating that the longitudinal decorrelation
function r[n, k](η) can be well approximated by a linear
function of the pseudorapidity η.

In Figure 9, we show the slope parameters fM [n, k]/k
and fΦ[n, k]/k for the decorrelation functions rM [n, k](η)
and rΦ[n, k](η), with n = 2, 3, 4 and k = 1, 2, 3, as a
function of collision centrality (Npart) for Pb+Pb colli-
sions at 5.02A TeV and 2.76A TeV at the LHC and for
Au+Au collisions at 200A GeV. One can see that three
sets of curves (solid, dotted and dashed for k = 1, 2, 3,
respectively) agree quite well with each other, for both
fM [n, k] and fΦ[n, k], for elliptic, triangular and quadrag-
ular flows, at both RHIC and the LHC energies. This is
very similar to Figure 8, which means that the linear
function in η is also good approximation for rM [n, k](η)
and rΦ[n, k](η). We should point out that there is also
some breaking of the lineariality in η for the longitu-
dinal decorrelation functions r[n, k](η), rM [n, k](η) and
rΦ[n, k](η) as shown by Figure 8 and Figure 9.
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FIG. 9. The slope parameters fM [n, k]/k and fΦ[n, k]/k of the flow decorrelation functions rM [n, k](η) and rΦ[n, k](η) for
different values of n = 2, 3, 4 and different values of k = 1, 2, 3 as a function of collision centrality (Npart) for Pb+Pb collisions
at 5.02A TeV and 2.76A TeV at the LHC and for Au+Au collisions at 200A GeV.

D. Four-rapdity-bin decorrelation observables

As we have seen from Eq. (17), the slope parameter
f [n, k] of the correlation function r[n, k](η) contains two
separate contributions:

f [n, k] = fasy[n, k] + ftwi[n, k] (25)

with

fasy[n, k] = k
〈αnXn,k〉
〈Xn,k〉

, ftwi[n, k] = k
〈βnYn,k〉
〈Xn,k〉

(26)

These two contributions have been interpreted as the
contribution from the forward-backward asymmetry
(fasy[n, k]) and the contribution from the event-plane
twist (ftwi[n, k]) [66]. It has been argued in Ref. [67]
that the slope parameter fasy[n, k] can be approximately
measured via the slope parameter fM [n, k]:

fasy[n, k] = k
〈αnXn,k〉
〈Xn,k〉

≈ k
〈αnAn,k〉
〈An,k〉

= fM [n, k](27)

Here we focus on the k = 2 case and study the following
correlation functions:

r[n, 2](η) = 1− 2f [n, 2]η = 1− 2(fasy[n, 2] + ftwi[n, 2])η

rM [n, 2](η) = 1− 2fM [n, 2]η (28)

The relation fasy[n, k] ≈ fM [n, k] means that by measur-
ing the correlation functions r[n, 2](η) and rM [n, 2](η),
we can extract the slope parameter ftwi[n, 2]:

ftwi[n, 2] ≈ f [n, 2]− fM [n, 2] (29)

In fact, the slope parameters ftwi[n, 2] can be measured
from a new observable R[n, 2](η) proposed by the ATLAS
Collaboration [61, 70].

R[n, 2](η) =
〈Qn(−ηr)Qn(−η)Q∗

n(η)Q
∗

n(ηr)〉
〈Qn(−ηr)Q∗

n(−η)Qn(η)Q∗

n(ηr)〉
(30)

One can see that this new observable involves four ra-
pidity bins. Now we may perform similar linar approxi-
mation analysis. We first look at the denominator of the
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FIG. 10. Comparison of the slope parameters F [n, 2] and FΦ[n, 2] extracted from R[n, 2](η) with the slope parameters f [n, 2]−
fM [n, 2] and fΦ[n, 2] extracted from r[n, 2](η), rM [n, 2](η) and rΦ[n, 2](η), for different values of n = 2, 3, 4, as a function of
centrality (Npart) for Pb+Pb collisions at 5.02A TeV and 2.76A TeV at the LHC and for Au+Au collisions at 200A GeV.

correlation function R[n, 2](η):

〈Qn(−ηr)Q
∗

n(−η)Qn(η)Q
∗

n(ηr)〉 ≈ 〈Xn,2〉 (31)

×
(

1 + 2
〈βnYn,2〉
〈Xn,2〉

η

)

Then the correlation function R[n, 2](η) becomes:

R[n, 2](η) = 1− 2F [n, 2]η (32)

The slope parameter F [n, 2] is:

F [n, 2] = 2
〈βnYn,2〉
〈Xn,2〉

= ftwi[n, 2] (33)

It is clear that if the decorrelation functions r[n, 2](η) and
R[n, 2](η) are linear functions of η, we have the following
relation between the slope parameters:

F [n, 2] ≈ f [n, 2]− fM [n, 2] (34)

The above relation can be tested by measuring the longi-
tudinal decorrelation functions R[n, 2](η), r[n, 2](η) and

rM [n, 2](η), respectively. Similarly, we may define the fol-
lowing four-rapidity-bin decorrelation function RΦ[n, 2]:

RΦ[n, 2](η) =
〈Q̂n(−ηr)Q̂n(−η)Q̂∗

n(η)Q̂
∗

n(ηr)〉
〈Q̂n(−ηr)Q̂∗

n(−η)Q̂n(η)Q̂∗

n(ηr)〉
(35)

This observable involves only the decorrelations of flow
orientations. Performing the linear approximation anal-
ysis, its denominator becomes:

〈Q̂n(−ηr)Q̂
∗

n(−η)Q̂n(η)Q̂
∗

n(ηr)〉

≈ 〈cos(δn,2)〉
[

1 + 2
〈βn sin(δn,2)〉
〈cos(δn,2〉)

η

]

(36)

Then the correlation function RΦ[n, 2](η) becomes:

RΦ[n, 2](η) ≈ 1− 2FΦ[n, 2]η (37)

The slope parameter FΦ[n, 2] is:

FΦ[n, 2] = 2
〈βn sin(δn,2)〉
〈cos(δn,2〉)

= fΦ[n, 2] (38)
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FIG. 11. The slope parameters f [n, k] (with n = 2, 3, 4 and k = 1) as a function of centrality (Npart) for Pb+Pb collisions at
5.02A TeV and 2.76A TeV at the LHC and for Au+Au collisions at 200A GeV. The ATLAS data on f [n, k] are compared.

We can see that both rΦ[n, 2](η) and RΦ[n, 2](η) measure
the (same) decorrelation of pure flow orientations.

Figure 10 shows our hydrodynamics results for dif-
ferent slope parameters extracted from three-rapidity-
bin and four-rapidity-bin correlation functions. In par-
ticular, we compare F [n, 2] with f [n, 2] − fM [n, 2] and
FΦ[n, 2] with fΦ[n, 2], for n = 2, 3, 4, as a function of
centrality (Npart) for Pb+Pb collisions at 5.02A TeV
and 2.76A TeV and for Au+Au collisions at 200A GeV.
We can see that the relation F [n, 2] = ftwi[n, 2] =
f [n, 2] − fasy[n, 2] ≈ f [n, 2]− fM [n, 2] holds pretty well
for Pb+Pb collision at two LHC energies, and for Au+Au
collisions at RHIC there is a very small violation of this
relation. This means that the decorrelation functions
R[n, 2](η), r[n, 2](η) and rM [n, 2](η) at the LHC energies
are well described by the linear functions in pseudora-
pidity η, and such linearity is slightly violated at RHIC.
One the other hand, there is sizable violation for the re-
lation FΦ[n, 2] ≈ fΦ[n, 2], and the violation is typically
larger at RHIC than at the LHC energies. This is be-
cause the correlation functions RΦ[n, 2] and rΦ[n, 2] de-
scribe the decorrelations of pure flow orientations whose

effects are typically much larger than the decorrelations
of flow magnitudes.

E. Collision energy and centrality dependences

In this subsection, we study in more detail the collision
energy dependence for the longitudinal decorrelations of
the anisotropic collective flows. In Figure 11, we com-
pare the slope parameters f [n, k], fM [n, k] and fΦ[n, k]
with n = 2, 3, 4 and k = 1 as a function of collision cen-
trality for different collision energies. The ATLAS data
on f [n, k] for Pb+Pb collisions are shown for compari-
son. We can see that the longitudinal decorrelations of
anisotropic flows are much larger at RHIC than at the
LHC energies. From 5.02A TeV to 2.76A TeV Pb+Pb
collisions, there is around 10-20% increase of the slope
parameters for the longitudinal decorelations.
The collision energy dependence for the longitudinal

decorrelations of anisotropic flows can be traced back to
the fluctuations of the initial states of relativistic heavy-
ion collisions. To see this more clearly, we perform a more
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FIG. 12. Strings formed by the initial patrons for some typical events in Pb+Pb collisions at 5.02A TeV and 2.76A TeV and
for Au+Au collisions at 200A GeV.
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FIG. 13. The slope parameter f [n, k], fM [n, k] and fΦ[n, k] for n = 2, 3, 4 and k = 1 as function of the mean string length 〈ls〉
(the collision energy and the centrality class) for Pb+Pb collisions at 5.02A TeV and 2.76A TeV at the LHC and for Au+Au
collisions at 200A GeV. In each plot (subfigure), there are three separate curves denoting three different collision energies
(5.02A TeV, 2.76A TeV and 200A GeV, respectively). For each curve (collision energy), there are five symbols denoting five
centrality classes; from left to right, they are 40-50%, 30-40%, 20-30%, 10-20% and 5-10%, respectively.

detailed analysis for the initial conditions generated by
the AMPT model (in which the string melting mech-
anism is utilized to convert strings to partons). More
specifically, we use the scikit-learn package to extract
the mean length of the strings in the AMPT model [76].

First, we divide the initial partons into different clusters
according to their transverse positions using the k-means
algorithm (note that each cluster is associated with a
wounded nucleon). Then, the partons in the same clus-
ter are arranged in longitudinal direction according to
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FIG. 14. The slope parameter f [n, k], fM [n, k] and fΦ[n, k] for n = 2, 3, 4 and k = 1 as function of the variance-over-mean-ratio
σls/〈ls〉 of the string length (the collision energy and the centrality class) for Pb+Pb collisions at 5.02A TeV and 2.76A TeV
at the LHC and for Au+Au collisions at 200A GeV. In each plot (subfigure), there are three separate curves denoting three
different collision energies (5.02A TeV, 2.76A TeV and 200A GeV, respectively). For each curve (collision energy), there are five
symbols denoting five centrality classes; from right to left, they are 40-50%, 30-40%, 20-30%, 10-20% and 5-10%, respectively.

their pseudorapidities, and therefore form a string or a
string-like object. The length of each string is estimated
using the difference between maximum and minimum ra-
pidities of the initial patrons in the same cluster. Figure
12 shows the analysis results for the AMPT initial con-
ditions for three typical central collision events in three
different collision energies at the LHC and RHIC. For the
sake of easy display, we only show 20 clusters (strings)
is each plot. One can see that when the collision en-
ergy increases, the lengths of clusters (strings) increase.
For higher collision energies, since the mean lenghts of
strings are longer and the boost invariance works better,
the longitudinal fluctuation effects and the decorrelations
of anisotropic flows should be smaller.

In Figure 13, we show the slope parameters f [n, k],
fM [n, k] and fΦ[n, k] with n = 2, 3, 4 and k = 1 for dif-
ferent collision centralities and collision energies (both
are quantified by the mean length of the strings 〈ls〉) at
the LHC and RHIC. In each plot (subfigure), there are

three curves which represent the results for three different
collision energies: 5.02A TeV, 2.76A TeV and 200A GeV,
respectively. For each curve (collision energy), there are
five symbols (circles, squares or triangles) which repre-
sent the results for five centrality classes: 40-50%, 30-
40%, 20-30%, 10-20% and 5-10% (from left to right). One
can see that for a given collision energy, the lengths of
the strings slightly increase from peripheral collisions to
central collisions. From the figure, we can see that for
the decorrelation of the elliptic flow v2, the slope pa-
rameters not only depend on the collision energy (the
string lengths), but also on the collision centrality (this
is because the initial elliptic collision geometry plays an
important role in developing the elliptic flow v2). For
n = 3, 4, the collision geometry effect is small, and the
longitudinal decorrelation of anisotropic flows mainly de-
pend on the mean lengths of the strings.

It is also interesting to study the dependence of the
longitudinal decorrelations on the fluctuations of the ini-
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tial string structures (lengths). In Figure 14, we show the
slope parameters f [n, k], fM [n, k] and fΦ[n, k] (n = 2, 3, 4
and k = 1) as a function of the variance-to-mean-ratio of
the string lengths σls/〈ls〉. Similar to Figure 13, there are
three curves in each subfigure (plot), representing three
collision energies (5.02A TeV, 2.76A TeV and 200A GeV,
respectively). Also there are five symbols in each curve,
denoting five different centrality classes. Note that the
centrality classes are 40-50%, 30-40%, 20-30%, 10-20%
and 5-10% from right to left, different from Figure 13).
One can see that the variance-to-mean-ratio of the string
lengths is typically larger for lower collision energies and
more peripheral collisions. Again, the decorrelation of
elliptic flow depends not only on the collision energy, but
also on the collision centrality (the initial collision geom-
etry), thus shows a complex dependence on the variance
of the string lengths. As for triangular and quadranglar
flows, while there are some fine structure in Figure 14, we
can still see an overall trend that the longitudinal decor-
relations of v3 and v4 typically increase with increasing
σls/〈ls〉 ratio (i.e., lower collision energies and more pe-
ripheral collisions). These results indicate that the longi-
tudinal decorrelations of anisotropic collective flows can
be directly used to probe the longitudinal structures of
the initial states in relativistic heavy-ion collisions.

IV. SUMMARY

We have performed a systematic study on the longi-
tudinal decorrelations of anisotropic collective flows in
relativistic heavy-ion collisions at the LHC and RHIC
energies. The CLVisc (ideal) (3+1)-dimensional hydro-
dynamics model is utilized to simulate the dynamical
evolution of the QGP fireball, and the initial conditions
of the hydrodynamics simulation is obtained using the
AMPT model. A detailed analysis has been performed
on the longitudinal decorrelations of flow vectors, flow
magnitudes and flow orientations (event planes) for el-
liptic, triangular and quadrangular flows. We found that
pure flow magnitudes have smaller longitudinal decorre-
lations than pure flow orientations, and the decorrelation
of flow vectors is a combined effects of the decorrelations
of flow magnitudes and orientations. Due to initial el-
liptic collision geometry, the longitudinal decorrelation
of elliptic flow exhibits a strong and non-monotonic cen-

trality dependence: smallest decorrelation effect in mid-
central collisions. On the other hand, the longitudinal
decorrelations of triangular and quadrangular flows show
a weak dependence on the collision centrality: a slight
increase for the longitudinal decorrelation from central
to peripheral collisions. This is due to the fact that the
systems in more peripheral collisions are smaller and thus
have larger (longitudinal) fluctuation effects.
Our numerical results from event-by-event hydrody-

namics simulations for Pb+Pb collisions at 5.02A TeV
and 2.76A TeV at the LHC are in good agreement with
the available ATLAS data. Our predictions for Au+Au
collisions at 200A GeV at RHIC show much larger longi-
tudinal decorrelation effects as compared to Pb+Pb col-
lisions at the LHC. To track back the origin of the lon-
gitudinal decorrelation of anisotropic flows, we further
analyze the longitudinal structures of the AMPT ini-
tial conditions. We found that the final-state longitudi-
nal decorrelation effects are strongly correlated with the
mean lengths of the initial string structures in the AMPT
model. While the longitudinal decorrelations of elliptic
flow show a non-monotonic centrality dependence due to
the initial elliptic collision geometry, the decorrelation
effects for triangular and quadratic flows are typically
larger for lower collision energies and in more peripheral
collisions due to shorter lengths of the string structures
in the AMPT initial states. This study constitutes an
important contribution to our current understanding of
the initial state fluctuations, especially the fluctuations
in the longitudinal directions, and their manifestations
in the final states in relativistic heavy-ion collisions.
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