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Background: Given the importance of including nonlocality in the effective interactions in reaction models, a recent phe-
nomenological study focusing on neutron-target non-local optical potentials suggests the need for the inclusion of explicit
energy dependence (Phys. Rev. C 96, 051601).

Purpose: In this work, we inspect whether the same is true for proton non-local optical potentials.

Method: Similarly to the earlier work (Phys. Rev. C 96, 051601), we perform a χ2 analysis of proton elastic scattering data
on 40Ca, 90Zr and 208Pb at energies ranging E ≈ 10− 45 MeV, assuming the Tian, Pang, and Ma non-local form for the
optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the
data to obtain a global parameterization.

Results: No matter which starting point is used, or whether we include backward angles in the fitting procedure, our results
show the emergence of a strong energy dependence in the potential. We also show that while our parameterization
represents only a modest improvement over the original energy-independent potential for those cases included in the fit,
our new energy-dependent potential extrapolates much better for nuclei not included in the fit and for energies above
those included.

Conclusions: As for the neutron case, we conclude that non-locality alone cannot provide a complete description of proton
elastic scattering data and that a significant energy dependence is required.

PACS numbers: 21.10.Jx, 24.10.Ht, 25.40.Cm, 25.45.Hi
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I. INTRODUCTION

Reactions with rare isotope beams have revived an im-
portant discussion on the best form to describe the effec-
tive interaction between a nucleon and a complex many-
body nucleus. From the many-body formulation of the
problem it is understood that the effective nucleon-target
potential should be nonlocal but the form of the nonlo-
cality may differ significantly based on the physics it is
representing [1–3].

From earlier works (e.g. [4, 5]) to the recent times (e.g.
[6]), understanding the correct form of the non-locality
in the optical potential has been a focus of many studies.
As discussed in [6], there are two main types of non-
locality in the optical potential. The first arises from an-
tisymmetrization effects, can be described by a Gaussian
shape, and is short range. The second is caused by chan-
nel coupling, can have a very different shape, and typi-
cally has a larger range. Recent optical potential studies
based on the dispersive relation [7] are consistent with
the existence of these two types of nonlocality. Whatever
the type of nonlocality, the community has attempted to
express the non-local character of the optical potential
into simpler forms, such as a velocity dependence (e.g.
[5, 8, 9]). Moreover, one must acknowledge that a large
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part of the reaction community still uses the traditional
local energy-dependent optical potential, assuming that
the energy dependence alone can make up for the effects
of non-locality (e.g. [10, 11]). Even if a given set of
elastic scattering data can usually be well described by
a local approximation, studies in the last few years have
revealed that the explicit inclusion of non-locality in the
optical potential is important for other reaction channels
and should be explicitly included [12–18].

In principle, one may be able to use microscopic cal-
culations to derive the form of the optical potential. An
example of such studies is the microscopic proton optical
potentials based on the g matrix approach [19, 20] which
provide good predictions for several reaction observables.
However, more recent ab initio efforts [21, 22] demon-
strate the difficulties of computing the optical potential
from first principles, both due to model space truncations
as well as deficiencies in the NN force. In this study, we
focus on a phenomenological approach to proton optical
potential and we limit the energy range to 10-65 MeV.
This work follows an similar study for neutrons Ref.[23]
where a broader introduction to the topic can be found.

The pioneering work of Perey and Buck (PB) [4]
demonstrated that just by fitting neutron elastic scatter-
ing on 208Pb at 7.0 and 14.5 MeV, one was able to obtain
a parameterization that provided a good description of
neutron elastic scattering across the nuclear chart. The
form for the non-locality incorporated in the Perey and
Buck parameterization is Gaussian which, as mentioned
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earlier, accounts for antisymmetrization effects [4]. More
recently Tian, Pang and Ma (TPM) [24] expanded that
study to both neutron and proton scattering on a wider
variety of targets. The fitting protocol for TPM included
proton elastic scattering data on 27Al, 56Fe, 90Zr, and
208Pb at energies in the range E = 16− 30 MeV. In both
these efforts, the nonlocal parameterization is energy in-
dependent.
Optical potentials are known to be target dependent

and contain an imaginary component, but as mentioned
earlier, from a formal point of view, one also expects it
to contain, both nonlocality and energy dependence [1–3,
25]. The question one should ask, given the importance of
nonlocality in the interaction, is if the level of description
in [4] and [24] is sufficient, or whether elastic scattering
data calls for an explicit energy dependence in addition
to the explicit non-locality. Lovell et al. [23] investigated
this aspect for neutron-nucleus scattering. Starting from
either PB or TPM, including a diverse set of spherical
target nuclei as well as a couple of different angular cuts
on the data, it was found that neutron elastic scattering
data always prefers an explicit energy dependence in the
interaction. In this work, we address the same question
but now for proton elastic scattering.
The paper is organized as follows. In Section II we

discuss the data, the general philosophy of the fitting
procedure and some numerical details. The results are
presented in Section III, followed by the conclusions in
Section IV.

II. DATA AND FITTING PROCEDURE

In this work we focus on proton optical potentials to
describe the scattering off of stable spherical nuclei. Just
as in [23] we attempt to find the best description of the
data with the minimum complexity. As for the neutron
study [23] we include three targets in our fitting protocol,
namely 40Ca, 90Zr and 208Pb, so that the whole mass
range is spanned. Data for these targets is abundant,
and typically measured with large angular coverage. For
each of these targets, we include angular distributions
for five beam energies in the range E = 10 − 45 MeV.
Specifically we include proton elastic scattering data on:
40Ca at E = 12.4, 16.0, 26.3, 30.0, 40.0 MeV [26, 27];
90Zr at E = 9.0, 12.7, 22.5, 30.0, 40.0 MeV [28–32]; and
208Pb at E = 16.0, 24.1, 30.3, 35.0, 45.0 MeV [33, 34].
As for [23], an overall error of 10% was included in the χ2

minimization, based on the assumption that systematic
errors in the cross section measurements outweigh the
statistical errors typically included in the experimental
papers.
We used NLAT [35] combined with sfresco [36] to per-

form χ2 (per degree of freedom) minimizations for the
angular distributions generated with the single-channel
optical model assuming non-local potentials. We obtain
95% confidence bands by pulling parameters sets from
the standard uncorrelated χ2 distribution [37]. We also

compute, for each set of differential angular distributions
(corresponding to a given target and beam energy), the
χ2 per degree of freedom. As in other fitting procedures
(e.g. [38]), we can then group specific reactions by target
or energy, summing the corresponding χ2 per data set
and dividing by the number of data sets included - here
denoted χ2

set. These χ2
set are used to assess the quality

of the results for the various targets and energy ranges.
The TPM proton potential [24], after partial wave de-

composition, includes a real volume part and an imagi-
nary volume part of the form:

gℓ(r, r
′) =
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with r being the distance between the nucleon and the
target. The potential UWS is the standard Woods-Saxon
form with the following parameters for the depth, ra-
dius and difuseness: V = 70.95 MeV, rv = 1.290 fm,
av = 0.580 fm for the real term and Wi = 9.03 MeV,
ri = 1.240 fm, ai = 0.5 fm for the imaginary term. It
also includes an imaginary surface term in which UWS

is replaced by the derivative of the Woods-Saxon with
parameters: Ws = 15.74, rs = 1.20 fm, as = 0.45 fm.
The Gaussian nonlocality has range of β = 0.88 fm. In
addition to the nonlocal potential, there are two terms
that are local, namely the spin-orbit term (with param-
eters Vso = 8.130 MeV, rso = 1.020 fm, aso = 0.590 fm)
and the regularized Coulomb term with Coulomb radius
rc = 1.340 fm. In this work we fix the local terms and
the geometry of the nonlocal part of the interaction, and
vary the potential depths V, Wi, Ws simultaneously.
As a first exploration, we fit each angular distribution

individually using TPM as a starting point and obtain
new V,Wi and Ws. We then analyze the dependence of
these parameters with mass number A and beam energy
E. For the real depth V we found that no energy depen-
dence was needed but the data did require a weak mass
dependence:

V = 67.047 + 0.0238A. (2)

Here the parameter V has units of MeV. Note that this
was not necessary for the neutron scattering case [23].
The imaginary depths coming from fitting the proton
elastic scattering data showed a strong variation with
both mass and beam energy, a dependence that could
be described approximately as linear, similarly to other
global potentials (e.g. [38]).
We then consider a form for the mass and energy de-

pendence similar to [23]:

Wi = aEv E + aasymv (N − Z)/A+ a0v,

Ws = aEs E + aasyms (N − Z)/A+ a0s, (3)

where the depths (Wi and Ws) and the energy (E)
are provided in units of MeV. Using the depen-
dence in Eqs.(2) and (3) and all 15 data sets si-
multaneously, we perform a six parameter fit (for
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θ < 100◦ aE
v aasym

v (MeV) a0

v (MeV) aE
s aasym

s (MeV) a0

s (MeV)

neutron [23] 0.02 ± 0.009 (fixed)0 0.36± 0.26 0.20± 0.004 4.50 ± 0.50 12.15 ± 0.40

neutron (TPM) 0.23 ± 0.006 (fixed)0 −0.75± 0.10 0.12± 0.005 5.33 ± 0.59 13.92 ± 0.22

TPM-E 0.03 ± 0.014 51.14 ± 3.22 0.405 ± 0.38 0.18± 0.011 9.08 ± 3.79 11.16 ± 0.37

TPM-E0 (fixed) 0 49.19 ± 3.19 1.86± 0.36 0.23± 0.015 9.72 ± 3.79 9.07± 0.62

MJ-E −0.17± 0.015 45.75 ± 3.51 7.86± 0.23 0.42± 0.011 11.86 ± 3.88 2.47± 0.36

TABLE I: Best fit parameters using TPM as starting point for the minimization, fitting data with θ < 100◦.

θ ≤ 180◦ aE
v aasym

v (MeV) a0

v (MeV) aE
s aasym

s (MeV) a0

s (MeV)

TPM-E 0.14 ± 0.004 23.21 ± 0.50 4.62± 0.09 0.73 ± 0.003 −5.09± 0.10 14.43 ± 0.66

MJ-E 0.306 ± 0.008 32.33 ± 0.79 0.20± 0.01 0.578 ± 0.005 −0.79± 0.047 7.47 ± 0.34

TABLE II: Best fit parameters using TPM as starting point for the minimization, fitting the full range of data θ ≤ 180◦.

aEv , a
asym
v , a0v, a

E
s , a

asym
s , a0s) starting from the original

TPM potential. We estimate the errors on the parame-
ters directly from the covariance matrix.

III. RESULTS

Tables I and II summarize the results of our fitting
procedure. The first row in Table I corresponds to the
parameterization obtained in [23] for the neutrons, when
the regression based on independent fits is taken as a
starting point, and only data up to 100◦ are included
(labeled in [23] as TPM-E). We also show the results for
the neutron potential when the neutron TPM potential
is taken as a starting point (second row) and the fitting
procedure included the same neutron data as in Ref. [23].
This fit was performed recently for the sake of comparison
with the proton results. These two sets of parameters for
neutrons demonstrate immediately that the parameters
depend strongly on the initial point, but in both cases a
strong energy dependence is obtained as in Ref. [23].
The parameters obtained for the proton interaction,

for identical conditions (here denoted by TPM-E), are
shown in the third row. Apart from the asymmetry
terms, aasymv and aasyms , the parameters obtained for
neutrons and protons are similar, supporting the idea
of charge symmetry and suggesting similar properties of
the χ2 function. The interaction obtained for the protons
has a strong asymmetry dependence, with errors of 10%
on the parameters aasymv and aasyms . The magnitude of
the surface asymmetry term is similar to that obtained
for the local parameterizations in [38], although in those
earlier studies, no asymmetry dependence is included in
the volume part of the imaginary potential.
Most importantly for this work, the energy dependence

in the imaginary surface term aEs is significant, just as for
the neutron case. Since aEv is very close to zero, one might
ask whether the energy dependence in the volume part
of the imaginary potential can be removed. Thus, we
repeated the fitting process with aEv = 0. The resulting
parameters are shown in the third row of Table I (TPM-

E0). These are very similar to the TPM-E parameters,
but aEs increases to compensate for the lack of energy
dependence in the volume part.

As for the neutrons, the proton parameterizations are
strongly dependent on initialization. For the neutron
cases presented in [23], fits to individual data sets were
produced starting from either the Perey and Buck po-
tential [4] or from TPM [24]. The linear regressions as
a function of energy were then used to produce the full
fits. These two starting points provided very different
parameterizations.

The potential labeled here as TPM-E starts directly
from TPM. Given that PB was only developed for neu-
trons, it would not make sense to use it as an initial-
ization here. We thus performed regressions over energy
and asymmetry for the parameters resulting from the in-
dividual fits, mimicking the dependences in Eq.3. That
gave us a new starting point for the joint fit to all 15 sets
of data. The resulting parameters are shown in the last
row of Table I (MJ-E) and correspond to a very different
minimum. While parameters are very different, there are
two important aspects that remain unchanged: first there
remains a significant energy dependence through aEs and
second the asymmetry terms remain large. Note that the
negative slope aEv is a cause for concern, given that it is
likely to provide unreliable extrapolations to high energy.
We will return to this point in Section III B.

As for [23], we investigate the differences obtained in
the parameterizations when all the data is included (full
angular range) and only angles up to θ < 100◦ are con-
sidered. Table II shows the resulting parameters includ-
ing data for the full angular range in the fit, for a TPM
initialization (TPM-E) or a initialization based on the in-
dependent fits (MJ-E). The resulting parameters change
significantly from those shown in Table I, but the en-
ergy dependence in the imaginary surface term remains
strong. The results show an interaction with a much
stronger energy dependence, and an unexpected nega-
tive dependence in asymmetry. It is understood that
the optical model will not perform well for backward an-
gles where complex coupling processes are expected to
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FIG. 1: (Color online) Angular distributions for
40Ca(p, p)40Ca at E = 12.4, 16, 26.3, 30, 40 MeV.
Comparison of the predictions using TPM-E (green-dashed
lines) with TPM (blue-dotted line) and the data [26, 27].
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FIG. 2: (Color online) Angular distributions for 90Zr(p, p)90Zr
at E = 9, 12.7, 22.5, 30, 40 MeV. Comparison of the pre-
dictions using TPM-E (green-dashed lines) with TPM (blue-
dotted line) and the data [28–32].
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FIG. 3: (Color online) Angular distributions for
208Pb(n, n)208Pb at E = 16, 24.1, 30.3, 35, 45 MeV.
Comparison of the predictions using TPM-E (green-dashed
lines) with TPM (blue-dotted line) and the data [33, 34].

TPM-E TPM MJ-E
40Ca (E ≤ 45 MeV) 72.0 70.2 69.1
90Zr (E ≤ 45 MeV) 20.6 48.5 20.0
208Pb (E ≤ 45 MeV) 8.6 117.1 8.5

Total (E ≤ 45 MeV) 101.1 235.8 97.5

32S (E ≤ 45 MeV) 12.2 15.9 13.8
68Zn (E ≤ 45 MeV) 17.7 32.3 17.9
89Y (E ≤ 45 MeV) 9.73 10.9 12.3

100Mo (E ≤ 45 MeV) 23.2 30.8 24.3
110Pd (E ≤ 45 MeV) 31.8 44.3 30.0

Total (E ≤ 45 MeV) 94.6 134.2 98.4

32S (45 < E ≤ 65 MeV) 400.9 826.5 313.8
68Zn (45 < E ≤ 65 MeV) 503.6 1437.3 482.6
89Y (45 < E ≤ 65 MeV) 48.2 82.9 53.9

100Mo (45 < E ≤ 65 MeV) 30.9 62.5 34.0
110Pd (45 < E ≤ 65 MeV) 235.2 718.9 203.0

Total (45 < E ≤ 65 MeV) 1219 3128 1087

TABLE III: χ2

set for proton elastic scattering on the various
targets here considered: our energy parameterization TPM-E
from Table I is shown in column 2 and compared with the
original TPM in column 3 and MJ-E in column 4.

dominate. From here on, we focus on the fits obtained
including data only up to 100◦.

A. Results for fitted cases

We now turn to assessing the quality of the fits, in com-
parison to the original TPM interaction. In this section
we first focus on the results obtained for those cases that
were included in the fitting protocol, and then, in Section
III B, we discuss the predictions for targets not included
in the protocol and for energies outside the fitted range
(E > 45 MeV).
The angular distributions obtained with TPM-E from

Table I are shown in Figs. 1, 2, and 3 for proton elas-
tic scattering off of 40Ca, 90Zr and 208Pb, respectively
(green dashed lines). Included in grey are the 95% confi-
dence bands. For comparison, we also show the angular
distributions obtained with the original TPM interaction
(blue dotted lines). There are several cases for which
TPM-E improves the description of the data over TPM.
Visually, the data for 40Ca at the lower energies is better
described by TPM-E, as well as the 208Pb data for the
higher energies. Strikingly, TPM-E and TPM both do
very well in describing the 90Zr data across the energy
range here considered. This is not surprising since the
original TPM already included 90Zr data in the fit.
In order to quantify the goodness of the fit, we show in

Table III the χ2, divided by the number of data sets, for
the various targets considered. These χ2 are computed
for the whole angular range, even though TPM-E was de-
termined from a fit including data only up to 100◦. The
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improvement obtained by including the energy depen-
dence is significant for both 90Zr and 208Pb, but mostly
due to the highest energy here considered (the original
TPM potential was fit with elastic scattering data up to
30 MeV). For the 40Ca case, the averaged χ2 does not
show a significant improvement although, as we saw for
the angular distributions, there is a clear improvement at
the lower energies. Even though 40Ca was not explicitly
included in the original TPM fit, TPM does very well in
describing proton elastic scattering on 40Ca for energies
around 30 MeV.

Overall, the total χ2 for TPM-E is significantly reduced
compared to that obtained with TPM due to the χ2 being
calculated out to 180◦. For completeness, we also include
the resulting χ2 values when angular distributions are
computed with the interaction provided in the last row
in Table I (MJ-E). Even though the parameterization is
somewhat different, the resulting χ2 are very close to
those obtained with TPM-E. While the χ2 is reduced by
133% from TPM to TPM-E, the difference between MJ-E
and TPM-E is less than 5%.

The 95% confidence bands associated with TPM-E and
shown in Figs. 1, 2, and 3 are rather narrow, especially
considering the large errors on some of the parameters in
the TPM-E fit. Results in [37] demonstrate that when an
uncorrelated χ2 function is used, the resulting confidence
bands are unphysicaly narrow. One can expect that, if
instead of using the standard uncorrelated χ2 function
we had used a correlated χ2 function, these confidence
bands would widen considerably.

Finally, we discuss the nonlocality range. In the early
work of Perey and Buck [4], the nonlocality included in
the interaction was Gaussian with a range based on the
properties of the NN interaction (β = 0.85 fm). This
was kept constant in their fit to elastic scattering data.
The original TPM interaction was determined from a fit
that included the nonlocality range as a fitting param-
eter (β = 0.88 fm). In our work, the nonlocality range
β was fixed at the original TPM value, assuming this
corresponded indeed to the minimum for proton elastic
scattering. However, given that the energy dependence
introduced in this work is significant, we felt it was nec-
essary to explore the χ2 function around this β = 0.88
fm value by refitting the parameters in Table I starting
with either β0 = 0.2 fm or with β0 = 1.0 fm. We found
that the minimum in the χ2-function was obtained for β
in the range 0.84 − 0.86 fm, although the differences in
the resulting χ2 at the minima were so small that it did
not justify the addition of one more free parameter in
the fit; the χ2-function is essentially flat with β around
the TPM value. We thus kept the original TPM value of
β = 0.88 fm throughout this work.

Given the different sources of nonlocality [6], this result
is somewhat surprising. To account for channel coupling
effects, one would expect the need for a larger range in
the non-locality. However, this set of elastic data does
not require such a description. This is likely due to the
fact that the nuclei included in the fitting protocol are, to

a good approximation, spherical, and their elastic scat-
tering is fairly well described within a single-channel de-
scription. We do expect that, when focusing on light
targets or nuclei further from stability, the nonlocality
range would likely increase and one may need different
terms in the interaction, with multiple nonlocality ranges
as in [7].

B. Results for predicted cases

We now use TPM-E to make predictions of cross sec-
tions and test the quality of these predictions with ex-
isting data. For that purpose we consider proton elastic
scattering on: 32S at 15, 17.7, 19, 21, 23, 25, 65 MeV
[39, 40]; 68Zn at 20.4, 30.5, 39.6, 49, 61.4 MeV [41–44];
89Y at 21.1, 49.4, 65 MeV [45–47]; 100Mo at 15, 30.3, 49.5,
65 MeV [48–50]; and 110Pd at 22 and 52 MeV [51, 52].
Fig. 4 shows that angular distributions for proton elas-

tic scattering on 68Zn at 39.6 MeV and 100Mo at 30 MeV.
These cases correspond to interpolations of the TPM-E
parameterization of Table I as a function of mass, asym-
metry and beam energy. The green-dashed line is the
prediction using TPM-E while the blue-dotted line repre-
sent the results using the original TPM interaction. The
corresponding 95% confidence bands for TPM-E are also
provided (gray bands). These results illustrate the mod-
est improvement obtained when using the explicit energy
dependence in the interaction for those cases within the
fitted range.
Fig. 5 shows the predicted angular distributions for

proton elastic scattering on 32S, which is outside the fit-
ted mass region. As before, the 95% confidence bands
for TPM-E are shown in gray. The figure shows that the
TPM-E interaction, which includes a small mass depen-
dence on the real part of the potential, is able to provide a
satisfactory description of elastic scattering, as opposed
to TPM which does not perform well. This is despite
the fact that the TPM fitting protocol does include light
masses, namely 27Al.
Finally in Fig. 6 we show predictions for proton elastic

scattering angular distributions for a higher energy, out-
side the range where the interactions were fitted. Due
to the explicit energy dependence introduced in TPM-E,
this interaction performs better than the original energy
independent TPM.
Table III includes the χ2 for each of the data sets con-

sidered in testing the predictive power of TPM-E. For
the 5 targets studied, we first only include beam energies
within the range that was fitted. We see an improvement
of TPM-E over TPM of the same magnitude as that ob-
tain for the fitted cases (40Ca, 90Zr and 208Pb). We then
also show the resulting χ2 per data set, obtained when
including the higher energies up to 65 MeV. Expectedly,
in this case the improvement is much larger. However,
in some cases, the resulting χ2 using TPM-E is still very
large, which suggests that the linear energy dependence
may already break down for energies E > 50 MeV. This
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FIG. 4: (Color online) Angular distributions for proton elastic
scattering for targets within the fitted mass range A = 40 −

208 and at an energy within E = 9− 45 MeV. Comparison of
the predictions using TPM-E (green-dashed lines) with TPM
(blue-dotted line) and the data [43, 49].
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FIG. 5: (Color online) Angular distributions for 32S(p, p)32S
at E = 17.5, 19, 23, 25 MeV. Comparison of the predictions
using TPM-E (green-dashed lines) with TPM (blue-dotted
line) and the data [39].
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FIG. 6: (Color online) Angular distributions for proton elastic
scattering on 89Y, 100Mo and 110Pd at beam energies outside
the fitted range, namely 65 MeV for the two first cases and 52
MeV for the last. Comparison of the predictions using TPM-
E (green-dashed lines) with TPM (blue-dotted line) and the
data [47, 50, 52].

is a known problem with phenomenological approaches
(e.g. [11]), a problem that can be reduced by using the
dispersion relation to further constrain the interaction
[53].

In Table III we also show the χ2 values obtained when
using the MJ-E parameterization. As for the fitted cases,
MJ-E provides very similar χ2 as the TPM-E parame-
terization. The difference of roughly 5% is not signifi-
cant compared to the large improvement over the origi-
nal TPM interaction. Also, it appears that the negative
slope aEv does not cause problems up to E = 65 MeV.

Finally, we need to consider the asymmetry term in
this interaction. First of all, contrary to the neutron
case, we found it necessary to include an asymmetry de-
pendence in the imaginary volume part of the interaction.
This resulted in a very large aasymv parameter, regardless
of the starting point. Such a large asymmetry depen-
dence in the volume imaginary term of the optical po-
tential is not observed for local potentials. In addition,
the asymmetry dependence of the surface imaginary po-
tential aasyms doubled compared to the values obtained
for the neutron elastic scattering study [23]. As men-
tioned before, its numerical value is very much in line
with that of a local parameterization of [38]. Moreover,
if the proton elastic scattering fit includes data in the
full angular range, the asymmetry dependence is much
reduced and even changes sign for the surface asymme-
try. This will result on a cancellation of the effect of the
imaginary volume term.

Note that the energy range over which the TPM pre-
dictions deviate largely from the experimental data is
not the same for proton-target and neutron-target inter-
actions. For neutrons, energy dependence was required
above 40 MeV, while for the protons, the transition oc-
cured around 50 MeV. This difference is likely due to the
Coulomb repulsion.

All nuclei for which we made predictions have asymme-
tries within the range of asymmetries included in the fit
N−Z
A

= 0−0.21. It is thus evident that the interpolations
provided by the asymmetry dependence we obtain, are
reliable. However, it is unclear how the asymmetry de-
pendence of the parameterizations of Table I will extrap-
olate outside the region, and in particular when moving
away from stability into the neutron-rich and proton-rich
regions of the nuclear chart.

Based on physics considerations, one might assume
the asymmetry coefficient for the neutron and proton
to be of the same magnitude but opposite sign. We
have thus rerun the neutron case of Ref. [23], fixing the
asymmetries aasymv = −51.14 MeV and aasyms = −9.080
MeV. The resulting minimum has a much larger χ2 value
(4 times worse). The resulting parameterization has a
much stronger energy dependence in the volume term,
while the surface term suffers only a modest modifica-
tion: aEs = 0.453; a0s = 21.17 MeV ; aEv = 0.26 ; and
a0v = 18.77 MeV. Further work is needed to better un-
derstand the asymmetry dependence of a nonlocal global
potential and the inter-relation between neutron and pro-
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ton parameters.

IV. CONCLUSIONS

Following the study of energy dependence of nonlocal
optical potentials for neutron elastic scattering [23], in
this work, we look into the energy dependence of pro-
ton elastic scattering. Namely, we want to answer the
question of whether the inclusion of an explicit Gaussian
nonlocality can fully account for the complexity of the
effective proton-nucleus interaction, or whether the elas-
tic data calls for an additional energy dependence in the
interaction.
With this goal in mind, we performed a joint fit to

proton elastic scattering data for a range of energies
E = 10− 45 MeV on 40Ca, 90Zr and 208Pb. We use the
energy independent nonlocal parameterization of Ref.[24]
as our starting point. Motivated by local global parame-
terizations and by the fits to the individual elastic scat-
tering data, we introduce a linear energy dependence on
both the surface and volume imaginary parts of the in-
teraction, as well as asymmetry terms.
Our results show that this energy dependent nonlo-

cal interaction (TPM-E) offers a modest improvement
over the original TPM for those cases in our fitting pro-
tocol. However, TPM-E presents a larger improvement
over TPM for those nuclei with masses outside the range
included in the fit, as well as for extrapolations in en-
ergy up to E = 65 MeV. We also show that although
the details of the parameterization obtained does depend
on the initial starting point for the fitting protocol, the
magnitude of the energy dependent component is identi-
cal and the resulting quality of the fit is similar for the

two different initializations considered here (TPM-E and
MJ-E). Finally, we also confirm that our conclusions con-
cerning the energy dependence do not change when the
nonlocality range parameter is allowed to vary in the fit.

In addition to the energy dependence, our study gives
rise to a large asymmetry dependence in the optical po-
tential. Although the errors on aasymv and aasyms are
small, of the order of 10%, we do not believe the asym-
metry dependence is robust. Most importantly, when
comparing with the neutron case [23], we do not under-
stand the physical reason for its emergence.

This study confirms that the Gaussian nonlocality
introduced explicitly in the optical potential is not
sufficient to properly describe proton elastic scattering.
This result is consistent with [6, 23], and justifies a more
comprehensive study to extract a new energy dependent
nucleon-nucleus non-local optical potential. This study
should also consider cases away from stability to become
useful for research on rare isotope worldwide.
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