This is the accepted manuscript made available via CHORUS. The article has been published as:

Toward complete spectroscopy using β decay: The example of ^\{32\} $\mathrm{Cl}(\beta \gamma)^{\wedge}\{32\} \mathrm{S}$

E. Aboud, M. B. Bennett, C. Wrede, M. Friedman, S. N. Liddick, D. Pérez-Loureiro, D. W.

Bardayan, B. A. Brown, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, E. I.
McNeice, Z. Meisel, W.-J. Ong, P. D. O'Malley, S. D. Pain, C. J. Prokop, H. Schatz, S. B.
Schwartz, S. Suchyta, P. Thompson, M. Walters, and X. Xu
Phys. Rev. C 98, 024309 - Published 15 August 2018
DOI: 10.1103/PhysRevC.98.024309

Toward complete spectroscopy using β decay: the example of ${ }^{32} \mathrm{Cl}(\beta \gamma)^{32} \mathrm{~S}$

E. Aboud, ${ }^{1,2, *}$ M. B. Bennett, ${ }^{1,2,3, \dagger}$ C. Wrede, ${ }^{1,2, \ddagger}$ M. Friedman, ${ }^{2}$ S. N. Liddick, ${ }^{2,4}$ D. Pérez-Loureiro, ${ }^{1,2}$ D. W. Bardayan, ${ }^{5}$ B. A. Brown, ${ }^{1,2}$ A. A. Chen, ${ }^{6}$ K. A. Chipps, ${ }^{7,8}$ C. Fry, ${ }^{1,2,3}$ B. E. Glassman, ${ }^{1,2}$ C. Langer, ${ }^{2,3}$ E. I. McNeice, ${ }^{6}$ Z. Meisel,,${ }^{1,2,3}$ W.-J. Ong, ${ }^{1,2,3}$ P. D. O’Malley, ${ }^{5}$ S. D. Pain, ${ }^{7}$ C. J. Prokop, ${ }^{2,4}$ H. Schatz, ${ }^{1,2,3}$ S. B. Schwartz, ${ }^{1,2,9}$ S. Suchyta, ${ }^{2,4}$ P. Thompson, ${ }^{7,8}$ M. Walters, ${ }^{6}$ and X. Xu ${ }^{1,2}$
${ }^{1}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{3}$ Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{4}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{5}$ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{6}$ Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
${ }^{7}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{8}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{9}$ Department of Geology and Physics, University of Southern Indiana, Evansville Indiana 47712, USA

(Dated: July 10, 2018)
Background: ${ }^{32} \mathrm{Cl}$ is a neutron-deficient isotope with a β-decay half-life of 298 ms and a spin and parity of $J^{\pi}=1^{+}$. Previous measurements of ${ }^{32} \mathrm{Cl} \beta$-delayed γ-rays have yielded a β-decay scheme with twelve β-decay transitions, contributing to studies of nuclear structure and fundamental symmetries. Those experiments have been limited to the observation of ${ }^{32} \mathrm{~S}$ states with $J^{\pi}=0^{+}, 1^{+}, 2^{+}$.

Purpose: To search for new β-delayed γ-rays and β-decay transitions of ${ }^{32} \mathrm{Cl}$ to ${ }^{32} \mathrm{~S}$.
Methods: A measurement of ${ }^{32} \mathrm{Cl} \beta$ delayed γ decay has been performed using the Clovershare array of high-purity germanium detectors at the National Superconducting Cyclotron Laboratory.

Results: By acquiring the highest-statistics ${ }^{32} \mathrm{Cl} \beta$-delayed γ-ray spectrum to date and exploiting a new sensitivity to $\gamma-\gamma$ coincidences, this experiment has allowed for the observation of nine previously unobserved β-delayed γ-ray transitions leading to the inference of five β-decay transitions never before observed in ${ }^{32} \mathrm{Cl} \beta$-delayed γ decay. The set of observed states includes negative-parity states for the first time. By combining the new information with data from previous work, the lifetimes and partial widths of the 8861 and $9650-\mathrm{keV}$ states of ${ }^{32} \mathrm{~S}$ have been determined. In addition, the ${ }^{31} \mathrm{P}(\mathrm{p}, \alpha)^{28}$ Si resonance strength of the $9650-\mathrm{keV}$ state has been limited to $\omega \gamma<9.8$ meV , which is an improvement over direct measurements.

Conclusion: An enhanced decay scheme has been constructed. Most of the excited bound ${ }^{32}$ S states that would correspond to allowed and first-forbidden β decay transitions have been observed, demonstrating the potential of β decay experiments to approach complete spectroscopy measurements at the next generation of radioactive beam facilities. The observed positive-parity levels are well matched by sd shell-model calculations.

PACS numbers: 23.40.-s, 29.30.Kv, 23.20.Lv, 27.30.+t

I. INTRODUCTION

Experimental studies of β^{+}decay in the $s d$ shell are sensitive probes of nuclear structure that is applicable to searches for physics beyond the standard model of the electroweak interaction [1] and to the study of nucleosynthesis and energy generation in astrophysical hydrogen and helium burning environments $[2-7]$. In the past, the constraints imposed by β decay selection rules, radioactive beam intensities, and radiation detection efficiencies

[^0]have mostly limited the utility of β decay spectroscopy to the study of the states whose population is allowed by the selection rules, except in special cases where only forbidden transitions are energetically accessible. A good example is ${ }^{32} \mathrm{Cl}$: an unstable isotope $\left(t_{1 / 2}=298(1) \mathrm{ms}\right.$, $\left.Q_{E C}=12680.9(6) \mathrm{keV}, \mathrm{J}_{\text {g.s. }}^{\pi}=1^{+}\right)[8,9]$ that lies close to the valley of β stability and β^{+}decays to states in ${ }^{32} \mathrm{~S}$, which has a stable ground state.

Early studies of ${ }^{32} \mathrm{Cl}$ decay by Breckon et al. [10] and Glass et al. [11] tested the hypothesis that ${ }^{32} \mathrm{Cl}$ was a part of a delayed heavy-particle emission series. Although they did not observe heavy-particle emission, they both reported four β-delayed γ-ray transitions; three γ-ray transitions were observed in common includ-
ing the observation of decay from the first excited state of ${ }^{32} \mathrm{~S}$ via a γ ray of energy $E_{\gamma}=2230 \mathrm{keV}$. In 1966 Anderson et al. [12] observed seven total β-delayed γ transitions, identifying the $T=1$ isobaric analog state (IAS) to have an excitation energy of $7014(10) \mathrm{keV}$. In 1968 Armini et al. [13] observed eight total β-delayed γ transitions with higher statistics than previous works, confirming the IAS and providing the more precise energy of 6998(3) keV. Détraz et al. [14] observed twelve total β-delayed γ transitions, up to an energy of 7200 keV , and found the spin and parity of the newly observed $6666-\mathrm{keV}$ state to be either 1^{+}or 2^{+}.

In the most recent literature on the β decay of ${ }^{32} \mathrm{Cl}$, Melconian et al. [15, 16] reported the results of a precision experiment to improve γ yields and determine ftvalues. They observed every known excited ${ }^{32}$ S state that corresponds to an allowed β decay transition up to the α particle emission threshold of 7 MeV . Their decay scheme pointed to isospin mixing between the 1^{+}isobaric ana\log state at $7001.4(4) \mathrm{keV}$ and the 1^{+}state at 7190 keV and provided experimental information for thirty-five β delayed γ transitions up to 7200 keV . Their measurement demonstrated the largest isospin symmetry breaking effect in a superallowed Fermi β^{+}decay, providing an important test of nuclear structure corrections that are used in searches for new physics based on β^{+}decay $[1,17]$. Mixing of a similar magnitude has been observed in ${ }^{31} \mathrm{~S}$ using the β decay of another chlorine isotope, ${ }^{31} \mathrm{Cl},[6]$ and both cases have been explained in terms of $T=1$, $J=2$ isospin non-conserving interactions related to the $s_{1 / 2}$ orbit [18]. Despite the relatively high sensitivity of their experiment, Melconian et al. were limited by a lack of statistics and acquisition of data at high γ-ray energies, and their decay scheme was consequently supplemented by including unobserved transitions adopted from experimental nuclear reaction data in the ENSDF database [8] and shell-model calculations. Only a single γ-ray detector was employed and $\gamma-\gamma$ coincidences could not be observed.

The present work further expands the β-delayed γ decay scheme of ${ }^{32} \mathrm{Cl}$ by acquiring the highest-statistics data set on this decay to date, providing sensitivity to new transitions and $\gamma-\gamma$ coincidence verification of the proposed decay scheme. The results are compared to the most recent experimental work $[15,16]$ and to $s d$ shellmodel calculations. The new experimental information is also combined with information from other experiments to determine the previously unknown lifetimes of two ${ }^{32} \mathrm{~S}$ resonances and, in one case, to limit the strength of a ${ }^{31} \mathrm{P}(\mathrm{p}, \alpha){ }^{28}$ Si resonance at astrophysically relevant energies.

Generally, this work shows the potential of β decay experiments to approach complete spectroscopy of energetically accessible nuclear states once next-generation radioactive ion beam facilities come online, despite the tendency of the β decay process to selectively populate states with particular spins and parities.

II. EXPERIMENT SETUP

The present measurement is part of a recent program of high-resolution β^{+}delayed γ decay measurements of proton-rich $s d$-shell nuclides $[5-7,19-25]$. The data set discussed in the present work was obtained over the course of approximately six hours at the National Superconducting Cyclotron Laboratory (NSCL) as calibration data for the analysis of an experiment designed to study the β decay of ${ }^{31} \mathrm{Cl}[6,19,20]$.

The ${ }^{32} \mathrm{Cl}$ production mechanism and experimental procedure are similar to those described in Refs. $[6,19]$ for ${ }^{31} \mathrm{Cl}$. Briefly, a primary beam of $150 \mathrm{MeV} / \mathrm{u}, 75-\mathrm{pnA}$ ${ }^{36} \mathrm{Ar}$ was produced using the Coupled Cyclotron Facility at the NSCL and impinged upon a $1627-\mathrm{mg} / \mathrm{cm}^{2} \mathrm{Be}$ transmission target to generate a cocktail beam via projectile fragmentation that included ${ }^{32} \mathrm{Cl}$. Beam purification was accomplished both by using the A1900 fragment separator [26] with a $145-\mathrm{mg} / \mathrm{cm}^{2}$ achromatic Al wedge and by time-of-flight separation using the Radio Frequency Fragment Separator (RFFS) [27]. Beam composition was sampled using the energy loss measurements in two $300-\mu \mathrm{m}$ Si semiconductor detectors, located approximately one meter upstream of the experimental setup. The time-of-flight over a 25 m path between a scintillator at the focal plane of the A1900 and the Si detectors was also used. Due to the high intensity of the ${ }^{32} \mathrm{Cl}$ beam (max. $3.3 \times 10^{4} \mathrm{pps}$), the Si detectors were inserted into the beam-line only periodically to check the purity of the ${ }^{32} \mathrm{Cl}$, which was found to be consistently 99% pure, with only trace contaminants. While the Si detectors were in use, the beam intensity was attenuated to mitigate radiation damage to the detectors.

After passing through the RFFS, the ${ }^{32} \mathrm{Cl}$ passed through a $3.8-\mathrm{cm}$ diameter collimator and was implanted into a $25-\mathrm{mm}$-thick plastic scintillator (BC408), that was optically coupled to a photomultiplier tube and used to record both the ${ }^{32} \mathrm{Cl}$ implantations and the subsequent β decays of the ions. β-delayed γ rays were detected in the surrounding Yale Clovershare Array (Figure 1), comprised of nine high-purity Ge detectors of four "clover" crystals each. The nine detectors were arranged in two rings of four detectors each: one ring on both the upstream and downstream side of the scintillator, with the ninth clover detector centered on the beam axis directly downstream of the scintillator. Signals from all 36 clover crystals, the scintillator, and Si detectors were processed using the NSCL Digital Data Acquisition System [28].

III. ANALYSIS

In order to determine the γ-ray energies and intensities for the decay ${ }^{32} \mathrm{Cl}\left(\beta^{+} \gamma\right)^{32} \mathrm{~S}$, events were selected in a $1 \mu \mathrm{~s}$ gate in the timing spectrum between signals in the scintillator and the germanium detectors. The timing gate allowed for ${ }^{32} \mathrm{~S} \gamma$ rays in coincidence with a β particle to be counted preferentially while filtering out γ

FIG. 1. (Color online) Mechanical design drawing of the experimental apparatus used in the present work. The ${ }^{32} \mathrm{Cl}$ beam enters from the left and is implanted into the scintillator (obscured) in the center of the Ge array. The β-delayed γ-rays are detected by the nine surrounding high-purity Ge detectors, with eight detectors forming two rings around the scintillator and one detector along the beam axis. Each of the nine high-purity Ge detectors consists of four crystals.
rays from room background and ${ }^{32} \mathrm{Cl}$ that stopped in the collimator (Figures 2, 3). Each peak in the timing gated and ungated γ-ray energy histogram was fit with an exponentially modified Gaussian function superimposed on a localized linear background.

Low energy room background peaks were identified using compilations of common γ-ray room background lines [29]. For every peak, the ratio of the scintillator-gated to scintillator-ungated integral values was also taken. It was found that known peaks of ${ }^{32} \mathrm{~S}$ had a ratio of $60.2(1) \%$ that was independent of γ-ray energy (and, inferentially, independent of β-decay endpoint energy) representing the efficiency of the scintillator to detect β-particles from ${ }^{32} \mathrm{Cl}$ decay in coincidence with ${ }^{32} \mathrm{~S} \gamma$ rays in the clover array. While the intrinsic efficiency of the scintillator to detect β particles from the decays of implanted ions was effectively 100%, the lower ratio measured was attributed to ions that stopped in the collimator at the end of the beam line due to the finite size of the beam. The decays of those ions contributed to the Ge spectra, but were only registered in the scintillator with low efficiency. This ratio was used to help identify previously unobserved ${ }^{32}$ S photopeaks in the spectrum. 41 analyzed photopeaks along with the inference of three more photopeaks (Section III B 3) were determined to originate from ${ }^{32} \mathrm{Cl} \beta$-delayed γ-ray transitions (Figures 2, 3, and 4).

A. Energies

1. Energy Calibration

To correct for the intrinsic differences in gain between the channels corresponding to each of the clover crystals used in the analysis, an energy calibration was performed, which was then used to determine the γ-ray energies. For every crystal, the individual energy histograms were calibrated internally using the ${ }^{32} \mathrm{Cl} \beta$-delayed γ-ray energy values from Melconian et al. [15] as calibration standards up to 7190 keV . The spectra were summed to produce a single calibrated spectrum, incorporating all detectors for all runs. In part because the entirety of these data were taken over a short time span, it was found that gain drift over time was negligible for 31 of the crystals. The data from five crystals that displayed substantial gain drifts were not used in this analysis.

The statistical uncertainties for the energies were found by fitting the peaks with the exponentially modified Gaussian function and using the centroid as one of the free parameters. Each uncertainty was then inflated by the square root of the reduced chi-squared value for the corresponding fit. The systematic uncertainties for energies were constructed from, and dominated by, the energies and uncertainties documented in Melconian et al. [15] (Figure 5).

B. Intensities

1. γ-Ray Efficiencies and γ-Ray Intensities

The intensities were calibrated internally with respect to the standard intensities found in Melconian et al. [15] We built a relative efficiency curve using ${ }^{152} \mathrm{Eu}$ source data for $E_{\gamma}<1.4 \mathrm{MeV}$ and the normalized ${ }^{32} \mathrm{Cl}\left(\beta^{+} \gamma\right)^{32} \mathrm{~S}$ photopeaks for $1.5<E_{\gamma}<7.2 \mathrm{MeV}[6,19]$. The relative efficiency curve was arbitrarily normalized to unity at 4281 keV and fit with the function:

$$
\begin{equation*}
\epsilon=e^{-\sum p_{i} \log (E)^{i}} \tag{1}
\end{equation*}
$$

where $\sum p_{i} \log (E)^{i}$ was a sixth degree polynomial of $\log (E)$. The degree of the fit was determined by adding terms to the sum until a good fit $\left(\chi^{2} / v=0.51, p=0.87\right)$ was obtained. This function was used to interpolate the measured relative efficiencies and extrapolate them up to 8.2 MeV.

The uncertainties were determined by the same methods described in Bennett et al. $[6,19]$ and included a 1% uncertainty associated with $\gamma-\gamma$ summing effects. For $E_{\gamma}<1.5 \mathrm{MeV}$, the dominant systematic uncertainty was the summing effect for the ${ }^{152} \mathrm{Eu}$ data. The dominant systematic uncertainty for $E_{\gamma}>1.5 \mathrm{MeV}$ was the error envelope adopted from Melconian et al. [15] The total uncertainty envelope of the relative efficiency curve is presented in Figure 6.

FIG. 2. (Color online) ${ }^{32} \mathrm{Cl} \beta$ delayed γ decay spectrum gated on scintillator events. ${ }^{32} \mathrm{~S}$ peaks are labeled by γ-ray energy over the range of $E_{\gamma}=0-4250 \mathrm{keV}$. A single asterisk represents a first escape peak and a double asterisk represents a second escape peak.

FIG. 3. (Color online) Same as Figure 2 for the γ-ray energy range of $E_{\gamma}=4100-8250 \mathrm{keV}$

2. Geant4 Simulations

We also used the GEant4 Monte Carlo software package [30] to simulate the efficiency of the germanium array at each of the energies used in the calibration by incorporating the gross features of the experimental geometry. The Geant4 efficiency curve was found to produce ac-
curate relative efficiencies when compared to the data, validating certain aspects of the simulation for an application described in the following sub-section.

FIG. 4. (Color online) Nine segments of the histogram in Figures 2 and 3 displaying the peaks corresponding to the previously unobserved γ-rays presented in this analysis (blue online) and the corresponding fits (red online). (a) the 1659 -keV photopeak, which corresponds to decays from the 2^{+}state at 6666 keV to the 3^{-}state at 5006 keV . (b) the $2775-\mathrm{keV}$ photopeak, which corresponds to decays from the 3^{-}state at 5006 keV . (c) the $5798-\mathrm{keV}$ photopeak (d) the $7484-\mathrm{keV}$ photopeak. (e) the 8125keV photopeak. (f) the first escape peak at $7895-\mathrm{keV}$ that was used, following the procedure described in Section III B 3, to determine the intensity of the $8407-\mathrm{keV}$ photopeak. (g) the second escape peak at 7839 keV that was used to determine the intensity of the $8861-\mathrm{keV}$ photopeak. (h) the second escape peak at 8186 keV that was used to determine the intensity of the $9207-\mathrm{keV}$ photopeak. (i) both the $4954-\mathrm{keV}$ and $4959-\mathrm{keV}$ photopeaks. The $4954-\mathrm{keV}$ photopeak is newly observed, while the 4959-keV photopeak was observed in previous experiments.

3. Peaks Above the Detection Energy Threshold

In several cases, high-energy escape peaks were observed corresponding to photopeaks that were not observed because they were above the upper energy threshold of 8200 keV set for the data acquisition (optimized for the ${ }^{31} \mathrm{Cl}$ experiment). By calibrating the ratio of the
integral value of both the first and second escape peaks to that of the corresponding observed photopeaks, the intensities of unobserved photopeaks were inferred using only the escape peaks. Plotting this ratio as a function of energy (Figure 7) allowed us to extrapolate to γ-ray energies above 8200 keV . Both the first and second escape peak ratio curves could be adequately fit using lin-

FIG. 5. Systematic uncertainty envelope for the determination of γ-ray energies constructed from the calibration standards in Melconian et al. [15]

FIG. 6. (Color Online) Panel (a) Relative γ-ray efficiency curve for the CloverShare array. Panel (b) Residuals between the plotted functional form of the efficiency curve and the data points. The error envelope of the relative efficiencies is plotted, as a dashed line, on the residual plot.
ear functions with respect to energy. This procedure was used to find the intensities for the transitions at energies of $8407 \mathrm{keV}, 8861 \mathrm{keV}$, and 9207 keV . The escape peak to photopeak ratios were simulated for the same peaks using GEant4 [30] and a consistent linear shape was found, corroborating the semi-empirical values. To account for systematic uncertainties two alternative ex-

FIG. 7. (Color online) Panel (a) Ratio of the second escape peak integral value (EP) to the photopeak integral value (PP). The plot was fit with a linear function, $\left(\chi^{2} / \nu=0.18\right)$. Panel (b) Residuals of the linear fit.
trapolations were applied: (1) the data points were fit with a second degree polynomial and (2) the highest energy data points were fit with the linear function used to fit the Geant4 data points. By taking the average of the deviation from both methods, the systematic uncertainty was determined to be 14% at the maximum energy considered.

4. γ Decay Probabilities and β Decay Probabilities

γ-decay transition probabilities for ${ }^{32} \mathrm{~S}$ levels were found by calculating the ratio of individual γ-ray intensities (Section III B 1) decaying from a given ${ }^{32}$ S state to the sum of the γ-ray intensities for transitions decaying from that ${ }^{32} \mathrm{~S}$ state.

The intensity of the ${ }^{32} \mathrm{Cl} \beta$-decay transition to each ${ }^{32} \mathrm{~S}$ state was calculated from the difference between the feeding and decaying γ-ray intensities. For the $8861-\mathrm{keV}$ and $9650-\mathrm{keV}{ }^{32} \mathrm{~S}$ states the β-delayed proton and α-particle emission branches from Honkanen et al. [31] were added to the β-delayed γ-decay branches from the present work to calculate the β-decay intensities, giving a total β-decay intensity for each of these two ${ }^{32} \mathrm{~S}$ states. Unobserved ${ }^{32} \mathrm{~S}$ γ-decay branches that are known from previous nuclear reaction data [8] were also included.

5. Upper Limits

We set upper limits for the intensities of selected unobserved γ-ray transitions for comparison to previous work. Using the photopeak integral values (consistent with zero), and the respective uncertainties, of unobserved γ-rays the upper limits of their intensities were

FIG. 8. ${ }^{32} \mathrm{Cl} \beta$-delayed γ decay scheme derived from the present work. Energy levels and transitions shown in gray represent previously known states and decays. Energy levels and transitions shown in black represent states and decays observed in the present work for the first time from the β decay of ${ }^{32} \mathrm{Cl}$. The β decay feeding values are shown to the right of the ${ }^{32} \mathrm{~S}$ energy states. β decay intensities are shown in percent of ${ }^{32} \mathrm{Cl}$ decays, γ decay probabilities are shown in percent of γ decays from the respective state, and their values and uncertainties can be found in Table IV. The β transition labeled with \dagger was adopted from Armini et al. [13] and the ones labeled with \dagger include $\beta-\alpha, \beta-p$, and $\beta-\gamma$ branches from ENSDF [8]. The energy levels are not plotted to scale, but simply increasing incrementally.
found at a 90% confidence level. Each upper limit was normalized to the intensity of the strongest branch from the respective state. The upper limits are reported in Table IV together with the corresponding hypothetical transitions.

6. ft values

The $\log (f t)$ values were calculated for each allowed β decay transition (Table IV). The β-decay branches deduced from the present work were used as input along with the known ${ }^{32} \mathrm{Cl}$ half life. Values for the phase space factor f were adopted from Ref. [15] when available; otherwise the procedures described in Ref. [32] were employed (those two calculations of f agreed to within a few percent).

C. $\beta-\gamma-\gamma$ Coincidences

The high granularity of the Yale Clovershare Array allowed us to construct $\beta-\gamma-\gamma$ coincidence spectra, providing supporting evidence for the proposed decay scheme
(Figure 8). To account for random coincidences and Compton background, each coincidence spectrum was compared to a corresponding histogram (e.g. Figure 9) that was gated on the background near the peak of the coincidence gate in the energy spectrum. A 3σ statistical significance was chosen as a threshold for positive detection of coincidences and it was also possible to detect most of those by back-gating. Table I presents a matrix of γ-ray transitions that were found to be in coincidence.

TABLE I. $\beta-\gamma-\gamma$ coincidence matrix. The column and row headings list the energies of γ-rays (keV) for which at least one other γ-ray was observed in coincidence with a statistical significance $\geq 3 \sigma$. A check mark indicates a coincidence.

	1547	2050	2230	2464	2775	3317	4281	4694	5548
852	-	-	-	\checkmark	-	-	-	\checkmark	-
916	\checkmark	-	-	-	-	-	-	-	-
1267	-	-	-	-	-	-	\checkmark	-	-
1452	-	-	-	-	-	\checkmark	-	-	\checkmark
1547		-	\checkmark	-	-	-	-	-	-
1659	-	-	-	-	\checkmark	-	-	-	-
1769	\checkmark	-	-	-	-	-	-	-	-
1970	-	-	-	\checkmark	-	-	-	-	-
2230	\checkmark	-		\checkmark	-	\checkmark	\checkmark	-	-
2305	-	-	-	\checkmark	-	-	-	-	-
2464	-	-	\checkmark		-	-	-	-	-
2719	-	\checkmark	-	-	-	-	\checkmark	-	-
2839	-	-	-	\checkmark	-	-	-	\checkmark	-
2887	\checkmark	-	\checkmark	-	-	-	-	-	-
3222	\checkmark	-	\checkmark	-	-	-	-	-	-
3317	-	-	\checkmark	-	-		-	-	-
4434	-	-	\checkmark	-	-	-	-	-	-
4769	-	-	\checkmark	-	-	-	-	-	-
4882	-	-	\checkmark	-	-	-	-	-	-
4959	-	-	\checkmark	-	-	-	-	-	-

FIG. 9. (Color online) The $\beta-\gamma-\gamma$ coincidence spectrum for the $2230-\mathrm{keV}$ gate. The darker (blue online) histogram is the coincidence spectrum and the lighter (green online) histogram was obtained by gating on the background in the γ-ray energy spectrum near the $2230-\mathrm{keV}$ peak. The labeled peaks correspond to ${ }^{32} \mathrm{~S} \gamma$-ray transitions found to be in coincidence with the $2230-\mathrm{keV} \gamma$-ray. The single asterisk represents a first escape peak.

D. Spins and Parities

In addition to the analysis of the experimental data acquired in the present work, the results were compared to theoretical sd shell-model calculations (detailed in Sec-
tion IV C) of $f t$-values for ${ }^{32} \mathrm{Cl} \beta$ decay transitions and γ-decay transition probabilities of ${ }^{32} \mathrm{~S}$ states (Table III and Figure 10). By comparing these detailed feeding and decay properties, each positive parity ${ }^{32} \mathrm{~S}$ state observed up to 8 MeV could be matched with a shell-model state, providing spin and parity arguments for those states.

E. Resonance Widths and Lifetimes of States

For a few unbound ${ }^{32} \mathrm{~S}$ states that were observed in the present work via β delayed γ decay and also observed in previous work via β delayed particle emission and radiative capture reactions, the partial widths Γ_{γ}, Γ_{p}, and Γ_{α} and lifetimes τ could be determined. The general procedure was to: (1) supplement the observed β delayed γ decay branch using other known γ decay branches of the state to determine the total β delayed γ intensity through the state (2) compare the total β delayed γ decay intensity through the state with the total β delayed particle intensity through the state in order to determine the branching ratios $\Gamma_{\gamma} / \Gamma, \Gamma_{p} / \Gamma$, and $\Gamma_{\alpha} / \Gamma(3)$ combine the branching ratios with radiative capture resonance strengths and spins from the literature to calculate the total width, Γ, of the state (4) invert the width to determine the lifetime (5) combine the total width with the branching ratios to determine the partial widths. In one case the deduced partial widths were applied to calculate the strength of a ${ }^{31} \mathrm{P}(\mathrm{p}, \alpha)^{28} \mathrm{Si}$ resonance at astrophysically relevant energies.

IV. RESULTS AND DISCUSSION

A. Overview

In the present work nine new ${ }^{32} \mathrm{Cl} \beta$-delayed γ-ray transitions were observed leading to the inference of five β decay branches that have not been observed in ${ }^{32} \mathrm{Cl}$ β-delayed γ-decay before. Three of the β-decay transitions have never been observed in β-delayed particle emission either and two that have were confirmed. Previously observed β decay transitions and delayed γ-rays have been measured to the highest statistical precision to date and with comparable systematic uncertainties to Refs. [15, 16]. Using the β decay intensity to the ground state from Armini et al. [13], β-delayed proton and alpha particle intensities from Honkanen et al. [31], and the β decay intensities from the present work supplemented by γ decay branching ratios from [8], the sum of the β-decay intensities was found to be $99.7(12) \%$, consistent with 100%. Figure 8 highlights the new energy levels and γ-ray transitions while displaying updated γ ray transition probabilities and β decay intensities. The newly observed photopeaks at $1659-\mathrm{keV}, 2775-\mathrm{keV}, 4954-$ $\mathrm{keV}, 5798-\mathrm{keV}, 7484-\mathrm{keV}$, and $8125-\mathrm{keV}$, as well as the newly observed escape peaks corresponding to the 8407keV , 8861-keV, and $9207-\mathrm{keV}$ photopeaks are displayed
in Figure 4. Table IV lists observed ${ }^{32} \mathrm{~S} \gamma$ rays with their respective energies, initial and final states, and intensities, along with β decay intensities, corresponding $\log (f t)$ values, and uncertainties. Table IV also lists upper limits on the intensities of unobserved γ rays that were set in the present work.

Generally, the observed γ-ray transitions and β decay intensities in the present work agree with, and build upon, those observed in Melconian et al. [15]. As a result, the $f t$-values also agree with those determined reported in Ref. [15].

Construction of the coincidence matrix provided further evidence in support of the proposed decay scheme. 29 combinations of γ-ray transition were found to be in coincidence (Table I). This confirms and improves upon previous work $[15,16]$, in which coincidences were not measured.

B. Discussion of Specific States

In previous works $[15,16]$, the ${ }^{32} \mathrm{Cl}$ decay scheme deduced from observed transitions had to be supplemented by adopting data from nuclear reaction data for three γ ray transitions [8]. One of the three supplemental transitions was observed in this analysis, $1^{+}(9207) \rightarrow 0^{+}$(g.s.). The other two transitions, $1_{4}^{+}(8125) \rightarrow 2_{1}^{+}(2230)$ and $0_{4}^{+}(7637) \rightarrow 2_{2}^{+}(4281)$, were not observed in the present work either, but they are reported as upper limits, which improve upon previously reported upper limits [15].

1. 5006-keV state

The 3^{-}state at 5006 keV was observed to be populated by a $1659-\mathrm{keV} \gamma$-ray transition from the $6666-\mathrm{keV}$ ${ }^{32} \mathrm{~S}$ state. In particular, the $1659-\mathrm{keV} \gamma$ ray was found to be in coincidence with the $2775-\mathrm{keV} \gamma$ ray, which is known to de-excite the $5006-\mathrm{keV}$ state. The intensity of the direct β-decay transition to the $5006-\mathrm{keV}$ state was limited to be $<0.053 \%$ resulting in a corresponding limit of $\log (f t)>6.93$. For comparison, Raman and Gove [33] have proposed the rule that the lower limit of the $\log (f t)$ value for a first-forbidden unique transition such as this one is 8.5 .

2. $5798-k e V$ state

The energy of the observed $5798-\mathrm{keV} \gamma$-ray is consistent with the energy of the only known transition from the 1^{-32} S state at an excitation energy of 5797 keV (to the ground state). Therefore, we identified the observed γ-ray with this transition. No other γ-rays were observed to de-excite this state or feed it at our level of sensitivity. However, we are not able to exclude the possibility that this state is mainly populated by $\beta \gamma$ decay rather than directly by a first-forbidden β decay transition. The β
decay feeding was limited to be $<0.036 \%$ corresponding to a limit of $\log (f t)>6.77$.

3. 8407-keV state

The ${ }^{32} \mathrm{~S}$ state at 8407 keV was previously observed in Brenneisen et al. [34] via the ${ }^{29} \mathrm{Si}(\alpha, n \gamma)$ reaction. However, only low energy γ-rays were observed to deexcite this level in that experiment due to an upper energy threshold for detection of approximately 6950 keV . In contrast, the only observed γ-ray transition de-exciting this level in the present work was to the ground state. The γ-rays that were observed in previous works were not observed in the present work and are reported as upper limits (Table IV). The previous work [34] found the following relative intensities: $20 \%, 18 \%$, and 100% for the $3714-\mathrm{keV}, 4126-\mathrm{keV}$, and $4625-\mathrm{keV} \gamma$-rays, respectively. In the present work the following relative intensities were found: $<139 \%,<50 \%,<159 \%$, and 100% for the $3714-\mathrm{keV}, 4126-\mathrm{keV}, 4625-\mathrm{keV}$, and $8407-\mathrm{keV} \gamma$-rays, respectively. These present values are consistent with those from Ref. [34] with the exception of the new transition. Using β-decay selection rules the parity of the $J=2,8407-\mathrm{keV}$ state was determined to be positive for the first time.

4. 8861-keV state

The new information from the present work combined with data from past work enables us to calculate the lifetime and partial widths for this state. Our β delayed γ decay intensity is $0.024(5) \%$ for the $8861-\mathrm{keV} \gamma$ ray, which is the only one observed. Including the other γ branches from ENSDF [8] increases the total $\beta-\gamma$ intensity to $0.046(11) \%$. From Honkanen et al. [31] the $\beta-\alpha$ intensity is $0.0146(20) \%$. Comparing the $\beta-\alpha$ intensity to the $\beta-\gamma$ intensity gives the branching ratios. The proton width for this state is negligibly small due to its close proximity to the proton threshold and the Coulomb barrier. The resonance strength for the ${ }^{28} \mathrm{Si}(\alpha, \gamma)^{32} \mathrm{~S}$ reaction as defined and measured in Rogers et al. [35] is 16(3) meV . The spin of the level is 2 from ENSDF. Using this information, the total width of the state is $17.5(77) \mathrm{meV}$, corresponding to a lifetime of $38(17)$ fs. From this and the branching ratios, one can calculate the partial widths for alpha and γ emission (Table II).

$E_{x}[\mathrm{keV}]$	$\Gamma_{p}[\mathrm{eV}]$	$\Gamma_{\alpha}[\mathrm{eV}]$	$\Gamma_{\gamma}[\mathrm{eV}]$	$\tau[\mathrm{fs}]$
8861		$0.0042(20)$	$0.0133(67)$	$38(17)$
9650	$0.21(7)$	<0.0081	$3.9(14)$	$0.16(5)$

TABLE II: Partial widths and lifetimes for the ${ }^{32}$ S states at 8861 keV and 9651 keV .

5. 9207-keV state

In the present work the $9207-\mathrm{keV} \gamma$-ray decaying from the $9207-\mathrm{keV}^{32} \mathrm{~S}$ state has a relative intensity of $100(32) \%$, while the 6973 -keV γ-ray decaying from the same state has a relative intensity of $96(26) \%$. This is consistent with experimental nuclear reaction experiments $[8,36]$, which have yielded relative intensities of $100(6) \%$ and $99(6) \%$ for the $9207-\mathrm{keV}$ and $6973-\mathrm{keV} \gamma$ rays, respectively.

The $\beta \gamma$ intensity of $0.015(4) \%$ for the $6973-\mathrm{keV} \gamma$ ray measured in the present experiment is significantly lower than the value of 0.098(18)\% reported in the most recent ${ }^{32} \mathrm{Cl} \beta$ decay experiment [15]. The difference can be attributed to a contribution to the $6973-\mathrm{keV}$ peak from the first-escape peak of the $7484-\mathrm{keV}$ photopeak, which was not detected in the previous experiment.

6. $9650-\mathrm{keV}$ state

Placing the newly-observed 4954-keV γ-ray in the decay scheme required some interpretation because the low statistics for the corresponding peak rendered $\gamma-\gamma$ coincidences unobservable. Based on energy considerations, candidate initial ${ }^{32} \mathrm{~S}$ states for the 4954 - $\mathrm{keV} \gamma$-ray include the $8729-\mathrm{keV}$, the $8737-\mathrm{keV}$, and the $9650-\mathrm{keV}$ states. The $8729-\mathrm{keV}$ state has a spin and parity of 3^{+}, which should not be directly populated via β-decay and should not have a strong γ-ray branch to the 0^{+}state at 3778 keV . Adding the $4954-\mathrm{keV} \gamma$-ray energy to the excitation energy of the $3775-\mathrm{keV}$ state yields an excitation energy of $8733-\mathrm{keV}$, which is 4 keV away from both the 8729 and 8737 keV states. On the other hand, adding 4954 keV to the excitation energy of the $4695-\mathrm{keV}$ state yields the excitation energy of the known state at $9650 \mathrm{keV} .{ }^{32} \mathrm{Cl}$ β-delayed proton emission experiments $[8,36]$ have also observed population of the $9650-\mathrm{keV}$ state. Therefore, the newly observed 4954 -keV γ-ray was interpreted to be from the $9650-\mathrm{keV}$ state.

The $9650-\mathrm{keV}$ state has a previously known $7419-\mathrm{keV}$ γ-ray transition to the first excited state [8] that was near our detection sensitivity threshold and it was, therefore, not detected definitively. Instead, we adopted the relative intensity value from ENSDF, assigning the $7419-\mathrm{keV}$ γ-ray a relative intensity of $100(9) \%$, while the newly observed $4954-\mathrm{keV} \gamma$-ray decaying from the $9650-\mathrm{keV}^{32} \mathrm{~S}$ state was assigned a relative intensity of $69(6) \%$.

The new information from the present work combined with data from past work enables us to calculate the lifetime and partial widths for this state. Our β delayed γ decay intensity is $0.038(8) \%$ for the $4954-\mathrm{keV} \gamma$ ray, which is the only one observed. Including the other γ branches from ENSDF [8] increases the $\beta-\gamma$ intensity to $0.097(15) \%$. From Honkanen et al. [31] the $\beta-p$ intensity is $0.0052(8) \%$ and the upper limit on the $\beta-\alpha$ intensity is $<0.0002 \%$. Comparing the $\beta-p$ and $\beta-\alpha$ intensities to the $\beta-\gamma$ branch gives the branching ratios. The resonance
strength for the ${ }^{31} \mathrm{P}(p, \gamma){ }^{32} \mathrm{~S}$ reaction as defined and evaluated in Iliadis et al. [37] is $0.25(2) \mathrm{eV}$. The spin of the level is 2 from ENSDF. The spins of ${ }^{31} \mathrm{P}$ and the proton are both $1 / 2$. Using this information, the total width of the state is $4.1(13) \mathrm{eV}$, corresponding to a lifetime of $0.16(5)$ fs. From this and the branching ratios, one can calculate the partial widths for proton and γ emission and impose a strong upper limit on the partial width for alpha emission (Table II).

The proton width and the upper limit on the alpha width can be used to calculate an upper limit on the resonance strength (as defined in Ref. [37]) for the ${ }^{31} \mathrm{P}(\mathrm{p}, \alpha)^{28} \mathrm{Si}$ reaction of $\omega \gamma<9.8 \mathrm{meV}$. This limit is more stringent than the one set by Kuperus et al. [38] by direct measurements confirming that although this resonance is in the Gamow window for explosive thermonuclear hydrogen burning in some astrophysical environments, it is not strong enough to be important in comparison to other resonances.

C. Comparison to Shell Model

Calculations were carried out in the $s d$ shell model space with the USDA and USDB Hamiltonians from [39] added with the Coulomb and charge-dependent interactions from [40]. The results are similar to those given in [15]. The GT+ decay up to 8 MeV contains about 9% of the total strength. The quenching factor of 0.6 as obtained from the average in the $s d$ shell [41] was used for the theoretical $\mathrm{B}(\mathrm{GT})$ values. The difference between USDA and USDB shown in in Table III gives a measure of the uncertainty coming from the Hamiltonian.

TABLE III. Allowed ${ }^{32} \mathrm{Cl}(\beta \gamma)^{32} \mathrm{~S}$ transitions from the present experiment and $s d$ shell-model calculations (USDB and USDA). Spins, parities, ${ }^{32}$ S excitation energies E_{x}, β-decay intensities $I_{\beta}, \log (f t)$ values, and Gamow Teller strengths $\mathrm{B}(\mathrm{GT})$ are compiled. Experimental values are only shown for states with firm shell model identifications. Due to the unknown mixing ratio between the IAS and the $7190-\mathrm{keV}$ states, their $\mathrm{B}(\mathrm{GT})$ values are omitted from the table. The experimental values for the ground state are adopted from Ref. [13].

	Experiment				USDB				USDA			
J_{n}^{π}	$E_{x}(\mathrm{keV})[8]$	$I_{\beta}(\%)$	$\log (f t)$	B(GT)	$E_{x}(\mathrm{keV})$	$I_{\beta}(\%)$	$\log (f t)$	B(GT)	$E_{x}(\mathrm{keV})$	$I_{\beta}(\%)$	$\log (f t)$	B(GT)

| | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0_{1}^{+} | 0.0 | $1.0_{-0.5}^{+0.2}$ | $6.7_{-0.1}^{+0.3}$ | $0.0008(5)$ | 0.0 | 0.43 | 7.053 | 0.0003 | 0.0 | 0.67 | 6.851 | 0.0005 |
| 2_{1}^{+} | 2230.6 | $59.59(65)$ | $4.521(5)$ | $0.1134(13)$ | 2160 | 59.18 | 4.492 | 0.1255 | 2173 | 58.84 | 4.481 | 0.1285 |
| 0_{2}^{+} | 3778.4 | $1.14(6)$ | $5.870(23)$ | $0.0052(3)$ | 3455 | 0.83 | 6.041 | 0.0035 | 3451 | 0.79 | 6.052 | 0.0034 |
| 2_{2}^{+} | 4281.8 | $2.23(9)$ | $5.443(14)$ | $0.0134(5)$ | 4378 | 0.58 | 5.953 | 0.0043 | 4387 | 0.57 | 5.951 | 0.0044 |
| 1_{1}^{+} | 4695.3 | $5.80(15)$ | $4.906(10)$ | $0.0474(12)$ | 4787 | 7.29 | 4.735 | 0.0716 | 4772 | 7.38 | 4.724 | 0.0734 |
| 2_{3}^{+} | 5548.5 | $3.89(7)$ | $4.819(12)$ | $0.0581(11)$ | 5446 | 3.47 | 4.852 | 0.0547 | 5441 | 3.43 | 4.848 | 0.0552 |
| 2_{4}^{+} | 6666.1 | $1.97(5)$ | $4.701(11)$ | $0.0740(19)$ | 6674 | 1.82 | 4.688 | 0.0798 | 6650 | 1.62 | 4.738 | 0.0712 |
| 1_{2}^{+} | 7001.4 | $22.3(2)$ | $3.508(4)$ | - | 6840 | 24.54 | 3.490 | - | 6809 | 24.53 | 3.493 | - |
| 2_{5}^{+} | 7115.3 | $0.588(25)$ | $5.034(17)$ | $0.0337(14)$ | 6960 | 0.54 | 5.094 | 0.0313 | 6949 | 0.76 | 4.941 | 0.0446 |
| 1_{3}^{+} | 7190.1 | $0.589(22)$ | $5.01(2)$ | - | 7149 | 0.23 | 5.391 | - | 7133 | 0.19 | 5.462 | - |
| 0_{3}^{+} | 7535.7 | $0.183(11)$ | $5.347(26)$ | $0.0168(10)$ | 7334 | 0.26 | 5.247 | 0.0220 | 7356 | 0.24 | 5.271 | 0.0209 |
| 2_{6}^{+} | 7484.0 | $0.064(6)$ | $5.83(5)$ | $0.0056(5)$ | 7396 | 0.20 | 5.331 | 0.0182 | 7379 | 0.19 | 5.345 | 0.0176 |
| 0_{4}^{+} | - | - | - | - | 7460 | 0.020 | 6.308 | 0.0019 | 7461 | 0.035 | 6.051 | 0.0035 |
| 0_{5}^{+} | 7921.0 | $0.037(7)$ | $5.86(10)$ | $0.0054(10)$ | 7927 | 0.12 | 5.289 | 0.0019 | 7918 | 0.11 | 5.342 | 0.0035 |
| 1_{4}^{+} | 8125.4 | $0.045(6)$ | $5.65(6)$ | $0.0084(11)$ | 7959 | 0.06 | 5.560 | 0.0107 | 7927 | 0.07 | 6.471 | 0.0110 |
| 2_{7}^{+} | - | - | - | - | 8044 | 0.13 | 5.207 | 0.0242 | 8048 | 0.12 | 5.209 | 0.0241 |
| 2_{8}^{+} | - | - | - | - | 8422 | 0.11 | 5.055 | 0.3430 | 8397 | 0.12 | 5.020 | 0.0372 |
| 0_{6}^{+} | - | - | - | - | 8432 | 0.0003 | 7.685 | 0.0001 | 8424 | 0.0002 | 7.722 | 0.0001 |
| 2_{9}^{+} | - | - | - | - | 8578 | 0.014 | 5.846 | 0.0056 | 8567 | 0.015 | 5.812 | 0.0060 |
| 2_{10}^{+} | - | - | - | - | 8781 | 0.024 | 5.487 | 0.0127 | 8768 | 0.022 | 5.529 | 0.0115 |
| 1_{5}^{+} | - | - | - | - | 8821 | 0.09 | 4.863 | 0.0534 | 8813 | 0.09 | 4.885 | 0.0507 |
| 0_{7}^{+} | - | - | - | - | 9293 | 0.027 | 5.060 | 0.0339 | 9286 | 0.025 | 5.093 | 0.0314 |
| 1_{7}^{+} | - | - | - | - | 9633 | 0.007 | 5.331 | 0.0182 | 9590 | 0.008 | 5.307 | 0.0192 |
| 1_{8}^{+} | - | - | - | - | 9716 | 0.0013 | 5.996 | 0.0039 | 9668 | 0.0016 | 5.940 | 0.0045 |
| 1_{9}^{+} | - | - | - | - | 10051 | 0.012 | 4.667 | 0.0837 | 10018 | 0.014 | 4.656 | 0.0859 |
| 1_{10}^{+} | - | - | - | - | 10669 | 0.0008 | 4.988 | 0.0400 | 10645 | 0.0008 | 5.050 | 0.0347 |
| 0_{8}^{+} | - | - | - | - | 10789 | 0.0005 | 4.983 | 0.0405 | 10767 | 0.0005 | 5.015 | 0.0376 |

FIG. 10. Comparison of experimental and theoretical summed Gamow Teller strengths for the β-decay of ${ }^{32} \mathrm{Cl}$ to ${ }^{32}$ S states. The gray solid line represents the USDB theoretical values and the black solid line represents the experimental values with the corresponding uncertainties represented by black dashed lines. Due to the unknown mixing ratio, the $\mathrm{B}(\mathrm{GT})$ value for the transition to the IAS was assumed to be zero and the transition to the $7190-\mathrm{keV}$ state was assumed to be purely Gamow-Teller. The $\mathrm{B}(\mathrm{GT})$ value for the transition to the ground state was calculated from the $f t$-value adopted from [13].

Experimental values for $\mathrm{B}(\mathrm{GT})$ were calculated using Equation (7) in Ref. [15]. The ft values from the present work were used together with a value of $\mathcal{F} t^{0^{+}} \rightarrow 0^{+}=$ 3072.27(62) from the survey of Hardy and Towner [1] and the values of δ_{R}^{\prime} for the transition-dependent part of the radiative correction adopted from Ref. [15].

The experimental $\mathrm{B}(\mathrm{GT})$ values are compared to the theoretical values in Table III and Fig. 10. The detailed state-by-state agreement between experiment and theory is good. The strength of the allowed Gamow-Teller transition to the ${ }^{32} \mathrm{~S}$ ground state is very weak and consistent with the $90 \% \mathrm{C} . \mathrm{L}$. upper limit of 2.2% deduced from the sum of the β decay intensities from the present experiment and the constraint that they must sum to 100

An interesting anomaly is the $6582(5)-\mathrm{keV}$ state [8], which was not observed in the present work. In a previous evaluation [8], the $6582(5)-\mathrm{keV}$ state was determined to have an ambiguous $J^{\pi}=\left(2^{+}, 3^{-}\right)$. All of the observed bound states with $J^{\pi}=2^{+}$could be matched with those predicted by the $s d$ shell model based on a comparison of
their β decay feedings and γ decay branchings, yielding a clear one-to-one correspondence without the $6582-\mathrm{keV}$ state. If the $6582-\mathrm{keV}$ state has $J^{\pi}=2^{+}$, then it must be an intruder state considering that that all of the $s d$ shell states have been identified. However, based on the apparently weak β feeding of this state, we conclude that the spin and parity is more likely to be 3^{-}than 2^{+}since the latter would correspond to an observable allowed transition.

One might ask whether the ${ }^{32}$ S states populated in allowed ${ }^{32} \mathrm{Cl} \beta$ decay transitions are predicted by the $s d$ shell model to have observable γ-decay branches to positive parity ${ }^{32} \mathrm{~S}$ states with spin higher than 2 . The shell model predicts that any such branches would have been beyond the sensitivity of the present experiment, consistent with their non-observation. In particular, the 2207keV transition from the 2^{+}state at 6666 keV to the 4^{+} state at 4459 keV is predicted to have an intensity of approximately 0.01%, which might have been be detectable if the photopeak were not at essentially the same energy as the first-escape peak of the $2719-\mathrm{keV}$ gamma ray.

V. CONCLUSION

The present experiment has produced the most sensitive ${ }^{32} \mathrm{Cl} \beta$-delayed γ-ray data set to date, providing a more detailed decay scheme that was verified using $\gamma-\gamma$ coincidences. Nine previously unobserved β-delayed γ ray transitions were detected leading to the inference of β decay transitions to five ${ }^{32} \mathrm{~S}$ states that have not been observed via β-delayed γ decay before. Furthermore, the parity of the ${ }^{32} \mathrm{~S}$ state at 8407 keV was determined to be positive, the lifetimes and partial widths of the 8861 and $9650-\mathrm{keV}$ states were determined, and arguments were presented that the $6582-\mathrm{keV}$ state is unlikely to have a spin and parity of 2^{+}. The decay scheme is in good agreement with $s d$ shell model calculations.

All allowed ${ }^{32} \mathrm{Cl} \beta$-decay transitions to bound positive parity ${ }^{32} \mathrm{~S}$ states with $J \leq 2$ predicted by the $s d$ shell model were observed. In addition, the (potentially indirect) population of the lowest 3^{-}and 1^{-}states in ${ }^{32} \mathrm{~S}$ was observed, corresponding to at least half of the known bound negative parity states of ${ }^{32} \mathrm{~S}$ with $J \leq 3$. This broader population of states through β and $\beta \gamma$ feeding hints at the prospect for using β decay to perform complete spectroscopy measurements at the next generation of radioactive beam facilities, where beam intensities will be several orders of magnitude higher. The corresponding increase in activity associated with forbidden β decay transitions and weak γ transitions will provide sensitivity to a set of states with an even broader range of spins and parities than the present work, approaching complete spectroscopy despite the inherent selectivity of the β decay process.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the NSCL operations staff for providing the ${ }^{32} \mathrm{Cl}$ beam. This work was supported by the U.S. National Science Foundation under Grants No. PHY-1102511, No. PHY-1404442, No. PHY-1419765, and No. PHY-1431052, the U.S. Department of Energy Office of Science under Award Number DE-SC00106052, National Nuclear Security Administration under Grant No. DE-NA0000979, and the Natural Sciences and Engineering Research Council of Canada. E. A. acknowledges support from the Lawrence W. Hantel Endowed Fellowship Fund, in Memory of Professor Donald J. Montgomery.

Energy [keV]:		Transition	$I_{\gamma}[\%]$:		I_{β} [\%]	$\boldsymbol{\operatorname { l o g }} f t$
$\underline{E_{x}-J_{n}^{\pi}[8,15]}$	$E_{\gamma} \pm \delta$ stat $\pm \delta$ sys		Melconian et al. [15]	Present Work		
2230.6(2) - 2_{1}^{+}	*2230	$2_{1}^{+}(2230) \rightarrow 0^{+}$(g.s.)	$91.9{ }_{-0.4}^{+0.6}$	-	59.59 ± 0.65	4.521 ± 0.005
3778.4(10) - 0_{2}^{+}	$\begin{aligned} & { }^{*} 1547 \\ & 3779.6 \pm 0.3 \pm 0.7 \end{aligned}$	$\begin{aligned} & 0_{2}^{+}(3778) \rightarrow 2_{1}^{+}(2230) \\ & 0_{2}^{+}(3778) \rightarrow 0^{+}(\text {g.s. }) \end{aligned}$	$\begin{gathered} 3.155_{-0.036}^{+0.040} \\ 0.044 \pm 0.025 \end{gathered}$	0.044 ± 0.018	1.14 ± 0.06	5.870 ± 0.023
4281.8(3) - 2_{2}^{+}	$\begin{aligned} & 2051.0 \pm 0.0 \pm 0.4 \\ & { }^{*} 4281 \end{aligned}$	$\begin{aligned} & 2_{2}^{+}(4281) \rightarrow 2_{1}^{+}(2230) \\ & 2_{2}^{+}(4281) \rightarrow 0^{+}(\text {g.s. }) \end{aligned}$	$\begin{gathered} 0.47 \pm 0.04 \\ 2.42 \pm 0.06 \end{gathered}$	0.419 ± 0.024 -	2.23 ± 0.09	5.443 ± 0.014
4695.3(4) - 1_{1}^{+}	$\begin{aligned} & 916.8 \pm 0.9 \pm 0.4 \\ & 2464.6 \pm 0.0 \pm 0.5 \\ & { }^{*} 4695 \end{aligned}$	$\begin{aligned} & 1_{1}^{+}(4695) \rightarrow 0_{2}^{+}(3778) \\ & 1_{1}^{+}(4695) \rightarrow 2_{1}^{+}(2230) \\ & 1_{1}^{+}(4695) \rightarrow 0^{+}(\text {g.s. }) \end{aligned}$	$\begin{aligned} 0.034 & \pm 0.009 \\ 4.24 & \pm 0.05 \\ 2.42 & \pm 0.05 \end{aligned}$	$\begin{aligned} 0.019 & \pm 0.006 \\ 3.92 & \pm 0.12 \end{aligned}$	5.80 ± 0.15	4.906 ± 0.010
5006.2(3) - 3_{1}^{-}	$\begin{aligned} & 726 \\ & 1229 \\ & { }^{\S} 2775.2 \pm 0.2 \pm 0.5 \end{aligned}$	$\begin{aligned} & 3_{1}^{-}(5006) \rightarrow 2_{2}^{+}(4281) \\ & 3_{1}^{-}(5006) \rightarrow 0_{2}^{+}(3778) \\ & 3_{1}^{-}(5006) \rightarrow 2_{1}^{+}(2230) \end{aligned}$		$\begin{gathered} <0.012 \\ <0.015 \\ 0.081 \pm 0.009 \end{gathered}$	<0.053	>6.93
5548.5(10) - 2_{3}^{+}	$\begin{aligned} & 542 \\ & 852.9 \pm 0.4 \pm 0.4 \\ & 1266.9 \pm 0.6 \pm 0.4 \\ & 1769.8 \pm 0.2 \pm 0.4 \\ & { }^{*} 3317 \\ & { }^{2} 5548 \end{aligned}$	$\begin{gathered} 2_{3}^{+}(5549) \rightarrow 3_{1}^{-}(5006) \\ 2_{3}^{+}(5549) \rightarrow 1_{1}^{+}(4695) \\ 2_{3}^{+}(5549) \rightarrow 2_{2}^{+}(4281) \\ 2_{3}^{+}(5549) \rightarrow 0_{2}^{+}(3778) \\ 2_{3}^{+}(5549) \rightarrow 2_{1}^{+}(2230) \\ 2_{3}^{+}(5549) \rightarrow 0^{+}(\mathrm{g} . \mathrm{s} .) \end{gathered}$	$\begin{gathered} 0.027 \pm 0.008 \\ <0.036 \pm 0.013 \\ 0.136 \pm 0.026 \\ 2.46 \pm 0.05 \\ 1.50{ }_{-0.09}^{+0.08} \end{gathered}$	$\begin{aligned} &<0.009 \\ & 0.014 \pm 0.006 \\ & 0.022 \pm 0.009 \\ & 0.125 \pm 0.013 \end{aligned}$	3.89 ± 0.07	4.819 ± 0.012
5796.8(3) - 1_{1}^{-}	${ }^{\S} 5798.4 \pm 0.9 \pm 0$	$1_{1}^{-}(5798) \rightarrow 0^{+}$(g.s.)	-	0.028 ± 0.007	<0.036	>6.77
$6666.1(10)-2_{4}^{+}$	$\begin{aligned} & { }^{\S} 1659.9 \pm 0.3 \pm 0.4 \\ & 1970.4 \pm 0.2 \pm 0.4 \\ & 2383.6 \pm 0.2 \pm 0.5 \\ & { }^{2} 2887 \\ & 4434.8 \pm 0.0 \pm 0.8 \\ & 6664.9 \pm 0.6 \pm 1.5 \end{aligned}$	$\begin{gathered} 2_{4}^{+}(6666) \rightarrow 3_{1}^{-}(5006) \\ 2_{4}^{+}(6666) \rightarrow 1_{1}^{+}(4695) \\ 2_{4}^{+}(6666) \rightarrow 2_{2}^{+}(4281) \\ 2_{4}^{+}(6666) \rightarrow 0_{2}^{+}(3778) \\ 2_{4}^{+}(6666) \rightarrow 2_{1}^{+}(2230) \\ 2_{4}^{+}(6666) \rightarrow 0^{+}(\text {g.s. }) \end{gathered}$	$\begin{aligned} & 0.15 \pm 0.04 \\ & 0.077_{-0.021}^{+0.019} \\ & 0.976_{-0.025}^{+0.028} \\ & 0.83 \pm 0.06 \\ & 0.048_{-0.019}^{+0.018} \end{aligned}$	$\begin{aligned} 0.040 & \pm 0.011 \\ 0.134 & \pm 0.019 \\ 0.058 & \pm 0.007 \\ & - \\ 0.730 & \pm 0.030 \\ 0.036 & \pm 0.007 \end{aligned}$	1.97 ± 0.05	4.701 ± 0.011
7001.4(4) - 1_{2}^{+}	$\begin{aligned} & 1452.2 \pm 0.1 \pm 0.4 \\ & 2305.2 \pm 0.1 \pm 0.5 \\ & 2718.8 \pm 0.0 \pm 0.5 \\ & 3222.1 \pm 0.0 \pm 0.6 \\ & { }^{2} 4769.8 \pm 0.0 \pm 0.9 \\ & 7000.6 \pm 0.3 \pm 1.5 \end{aligned}$	$\begin{gathered} 1_{2}^{+}(7001) \rightarrow 2_{3}^{+}(5549) \\ 1_{2}^{+}(7001) \rightarrow 1_{1}^{+}(4695) \\ 1_{2}^{+}(7001) \rightarrow 2_{2}^{+}(4281) \\ 1_{2}^{+}(7001) \rightarrow 0_{2}^{+}(3778) \\ 1_{2}^{+}(7001) \rightarrow 2_{1}^{+}(2230) \\ 1_{2}^{+}(7001) \rightarrow 0^{+}(\mathrm{g} . \mathrm{s} .) \end{gathered}$	$\begin{gathered} 0.276 \pm 0.019 \\ 0.137 \pm 0.023 \\ 0.533_{-0.024}^{+0.019} \\ 0.881{ }_{-0.027}^{+0.029} \\ 20.62_{-0.17}^{+0.20} \\ 0.057 \pm 0.016 \end{gathered}$	$\begin{aligned} 0.235 & \pm 0.014 \\ 0.157 & \pm 0.009 \\ 0.471 & \pm 0.017 \\ 0.764 & \pm 0.025 \\ & - \\ 0.054 & \pm 0.007 \end{aligned}$	22.3 ± 0.2	3.508 ± 0.004
7115.3(10) - 2_{5}^{+}	$\begin{aligned} & 2107 \\ & 2418.3 \pm 0.2 \pm 0.5 \\ & 2831.0 \pm 0.7 \pm 0.5 \\ & 3339.0 \pm 0.4 \pm 0.7 \\ & 4882.7 \pm 0.0 \pm 0.9 \\ & 7115 \end{aligned}$	$\begin{gathered} 2_{5}^{+}(7115) \rightarrow 3_{1}^{-}(5006) \\ 2_{5}^{+}(7115) \rightarrow 1_{1}^{+}(4695) \\ 2_{5}^{+}(7115) \rightarrow 2_{2}^{+}(4281) \\ 2_{5}^{+}(7115) \rightarrow 0_{2}^{+}(3778) \\ 2_{5}^{+}(7115) \rightarrow 2_{1}^{+}(2230) \\ 2_{5}^{+}(7115) \rightarrow 0^{+}(\text {g.s. }) \end{gathered}$	$\begin{gathered} 0.057{ }_{-0.015}^{+0.013} \\ 0.019 \pm 0.013 \\ 0.037 \pm 0.015 \\ 0.504_{-0.032}^{+0.031} \end{gathered}$	$\begin{aligned} &<0.010 \\ & 0.064 \pm 0.009 \\ & 0.022 \pm 0.008 \\ & 0.024 \pm 0.009 \\ & 0.477 \pm 0.020 \\ &<0.020 \end{aligned}$	0.588 ± 0.025	5.034 ± 0.017
7190.1(15) - 1_{3}^{+}	$\begin{aligned} & 2183 \\ & 2911 \\ & 2494.4 \pm 0.8 \pm 0.5 \\ & 3412.5 \pm 0.1 \pm 0.7 \\ & 4958.7 \pm 0.1 \pm 0.9 \\ & * 7190 \end{aligned}$	$\begin{aligned} & 1_{3}^{+}(7190) \rightarrow 3_{1}^{-}(5006) \\ & 1_{3}^{+}(7190) \rightarrow 2_{2}^{+}(4281) \\ & 1_{3}^{+}(7190) \rightarrow 1_{1}^{+}(4695) \\ & 1_{3}^{+}(7190) \rightarrow 0_{2}^{+}(3778) \\ & 1_{3}^{+}(7190) \rightarrow 2_{1}^{+}(2230) \\ & 1_{3}^{+}(7190) \rightarrow 0^{+}(\text {g.s. }) \end{aligned}$	$\begin{aligned} & 0.016 \pm 0.014 \\ & 0.122 \pm 0.019 \\ & 0.32 \pm 0.04 \\ & 0.169_{-0.020}^{+0.024} \end{aligned}$	$\begin{gathered} <0.010 \\ <0.030 \\ 0.010 \pm 0.007 \\ 0.148 \pm 0.012 \\ 0.262 \pm 0.014 \end{gathered}$	0.589 ± 0.022	5.01 ± 0.02

TABLE IV: ${ }^{32} \mathrm{Cl} \beta$-delayed γ decay data from the present work, unless otherwise indicated. ${ }^{32} \mathrm{~S}$ energy levels, deduced spins and parities, calibrated γ-ray energies, transitions, intensities, β decay intensities, $\log f t$ values, and their respective uncertainties are shown.

TABLE IV. (Continued)

Energy [keV]:		Transition	$I_{\gamma}[\%]:$		$I_{\beta}[\%]$	$\boldsymbol{l o g} f t$
$E_{x}-J_{n}^{\pi}[8,15]$	$E_{\gamma} \pm \delta$ stat $\pm \delta$ sys		Melconian et al. [15]	Present Work		
7484.0(4) - 2_{6}^{+}	2480	$2_{6}^{+}(7484) \rightarrow 3_{1}^{-}(5006)$	-	<0.070	0.064 ± 0.006	5.83 ± 0.05
	3203	$2_{6}^{+}(7484) \rightarrow 2_{2}^{+}(4281)$	-	<0.006		
	${ }^{\S} 7483.7 \pm 0.3 \pm 1.5$	$2_{6}^{+}(7484) \rightarrow 0^{+}$(g.s.)	-	0.064 ± 0.006		
7535.7(10) - 0_{3}^{+}	$2839.7 \pm 0.1 \pm 0.5$	$0_{3}^{+}(7536) \rightarrow 1_{1}^{+}(4695)$	0.185 ± 0.018	0.183 ± 0.011	0.183 ± 0.011	5.347 ± 0.026
	5304	$0_{3}^{+}(7536) \rightarrow 2_{1}^{+}(2230)$	-	<0.031		
	7534	$0_{3}^{+}(7536) \rightarrow 0^{+}$(g.s.)	-	<0.042		
7637.0(10) - 0_{4}^{+}	3355	$0_{4}^{+}(7637) \rightarrow 2_{2}^{+}(4281)$	-	<0.028		
7921.0(10) - 0_{5}^{+}	$5691.6 \pm 0.7 \pm 0.9$	$0_{4}^{+}(7921) \rightarrow 2_{1}^{+}(2230)$	$0.033{ }_{-0.013}^{+0.014}$	0.037 ± 0.007	0.037 ± 0.007	5.86 ± 0.10
8125.4(2) - 1_{4}^{+}	3120	$1_{4}^{+}(8125) \rightarrow 3_{1}^{-}(5006)$	-	<0.015	0.045 ± 0.006	5.65 ± 0.06
	5895	$1_{4}^{+}(8125) \rightarrow 2_{1}^{+}(2230)$	-	<0.015		
	${ }^{\S} 8125.4 \pm 0.4 \pm 1.5$	$1_{4}^{+}(8125) \rightarrow 0^{+} \text {(g.s.) }$	-	0.045 ± 0.006		
8407.0(14)- 2^{+}	3400	$2_{8}^{+}(8407) \rightarrow 3_{1}^{-}(5006)$	-	<0.012	0.033 ± 0.005	5.6 ± 0.1
	$3714{ }^{\bullet}$	$2_{8}^{+}(8407) \rightarrow 1_{1}^{+}(4695)$	-	<0.045		
	$4126{ }^{\bullet}$	$2_{8}^{+}(8407) \rightarrow 2_{2}^{+}(4281)$	-	<0.016		
	4625°	$2_{8}^{+}(8407) \rightarrow 0_{2}^{+}(3778)$	-	<0.052		
	${ }^{\S} 8406.7 \pm 0.3 \pm 1.5$	$2_{8}^{+}(8407) \rightarrow 0^{+}$(g.s.)	-	0.033 ± 0.005		
8861(2)- 2^{+}	3858	$2_{9}^{+}(8861) \rightarrow 3_{1}^{-}(5006)$	-	<0.013	$0.061^{\natural} \pm 0.011$	5.07 ± 0.05
	6630	$2_{9}^{+}(8861) \rightarrow 2_{1}^{+}(2230)$	-	<0.012		
	${ }^{\S} 8859.8 \pm 0.5 \pm 1.5$	$2_{9}^{+}(8861) \rightarrow 0^{+}$(g.s.)	-	0.024 ± 0.005		
9207.6(7) - 1^{+}	$6973.3 \pm 0.2 \pm 1.5$	$1_{5}^{+}(9207) \rightarrow 2_{1}^{+}(2230)$	0.098 ± 0.018	0.015 ± 0.004	$0.047^{\natural} \pm 0.007$	4.93 ± 0.06
	${ }^{\S} 9207.3 \pm 1.1 \pm 1.5$	$1_{5}^{+}(9207) \rightarrow 0^{+} \text {(g.s.) }$	-	0.016 ± 0.005		
9650.2(5) - 2^{+}	4101	$2_{14}^{+}(9650) \rightarrow 2_{3}^{+}(5549)$	-	<0.038	$0.102^{\natural} \pm 0.015$	4.23 ± 0.06
	4643	$2_{14}^{+}(9650) \rightarrow 3_{1}^{-}(5006)$	-	<0.015		
	${ }^{\text {§ }} 4954.2 \pm 0.5 \pm 0.9$	$2_{14}^{+}(9650) \rightarrow 1_{1}^{+}(4695)$	-	0.038 ± 0.008		
	5368	$2_{14}^{+}(9650) \rightarrow 2_{2}^{+}(4281)$	-	<0.018		
	5871	$2_{14}^{+}(9650) \rightarrow 0_{2}^{+}(3778)$	-	<0.004		
	7419	$2_{14}^{+}(9650) \rightarrow 2_{1}^{+}(2230)$	-	${ }^{\dagger} 0.055 \pm 0.008$		

* - Data used as input to efficiency calibration; therefore energies and γ-ray intensities were not determined independently.
${ }^{\dagger}$ - Data adopted from ENSDF [8].
- - Not observed: upper limits for transitions that were previously observed in reaction experiments, but were not observed in the present work.
$\S^{\S}-\gamma$-ray transitions that have been observed for the first time, from ${ }^{32} \mathrm{Cl}(\beta \gamma)^{32} \mathrm{~S}$, in the present work.
${ }^{\natural}$ - Includes unobserved $\beta-\alpha, \beta-p$, and $\beta-\gamma$ decay branches, not explicitly shown in the table, that were adopted from ENSDF [8] or Honkanen et al. [31] to find the total β decay intensity feeding the state.
[1] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
[2] A. Saastamoinen, L. Trache, A. Banu, M. A. Bentley, T. Davinson, J. C. Hardy, V. E. Iacob, M. McCleskey, B. T. Roeder, E. Simmons, G. Tabacaru, R. E. Tribble,
P. J. Woods, and J. Äystö, Phys. Rev. C 83, 045808 (2011).
[3] J. P. Wallace, P. J. Woods, G. Lotay, A. Alharbi, A. Banu, H. M. David, T. Davinson, M. McCleskey, B. T. Roeder, E. Simmons, A. Spiridon, L. Trache, and R. E. Tribble, Phys. Lett. B 712, 59 (2012).
[4] E. Pollacco, L. Trache, E. Simmons, A. Spiridon, M. McCleskey, B. T. Roeder, A. Saastamoinen, R. E. Tribble, G. Pascovici, M. Kebbiri, J. P. Mols, and M. Raillot, Nucl. Instrum. Methods Phys. Res., Sect. A 723, 102 (2013).
[5] M. B. Bennett, C. Wrede, K. A. Chipps, J. José, S. N. Liddick, M. Santia, A. Bowe, A. A. Chen, N. Cooper, D. Irvine, et al., Phys. Rev. Lett. 111, 232503 (2013).
[6] M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, D. W. Bardayan, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, N. R. Larson, E. I. McNeice, Z. Meisel, W.-J. Ong, P. D. O'Malley, S. D. Pain, C. J. Prokop, H. Schatz, S. B. Schwartz, S. Suchyta, P. Thompson, M. Walters, and X. Xu, Phys. Rev. Lett. 116, 102502 (2016).
[7] C. Wrede, B. E. Glassman, D. Pérez-Loureiro, J. M. Allen, D. W. Bardayan, M. B. Bennett, B. A. Brown, K. A. Chipps, M. Febbraro, C. Fry, M. R. Hall, O. Hall, S. N. Liddick, P. O’Malley, W.-J. Ong, S. D. Pain, S. B. Schwartz, P. Shidling, H. Sims, P. Thompson, and H. Zhang, Phys. Rev. C 96, 032801 (2017).
[8] C. Ouellet and B. Singh, Nucl. Data Sheets 112, 2199 (2011).
[9] G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, Chin. Phys. C 36, 1157 (2012).
[10] S. W. Breckon, A. Henrikson, J. S. Foster, and W. M. Martin, Can. J. Phys. 32, 223 (1954).
[11] N. W. Glass and J. R. Richardson, Phys. Rev. 98, 1251 (1955).
[12] W. Anderson, L. Dillman, and J. Kraushaar, Nucl. Phys. 77, 401 (1966).
[13] A. J. Armini, J. W. Sunier, and J. R. Richardson, Phys. Rev. 165, 1194 (1968).
[14] C. Détraz, C. Zaids, D. Frantsvog, R. Wilson, and A. Kunselman, Nucl. Phys. A 203, 414 (1973).
[15] D. Melconian, S. Triambak, C. Bordeanu, A. García, J. C. Hardy, V. E. Iacob, N. Nica, H. I. Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble, and Y. Zhai, Phys. Rev. C 85, 025501 (2012).
[16] D. Melconian, S. Triambak, C. Bordeanu, A. García, J. C. Hardy, V. E. Iacob, N. Nica, H. I. Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble, and Y. Zhai, Phys. Rev. Lett. 107, 182301 (2011).
[17] I. S. Towner and J. C. Hardy, Phys. Rev. C 82, 065501 (2010).
[18] K. Kaneko, Y. Sun, T. Mizusaki, S. Tazaki, and S. K. Ghorui, Phys. Lett. B 773, 521 (2017).
[19] M. B. Bennett, C. Wrede, S. N. Liddick, D. PérezLoureiro, D. W. Bardayan, B. A. Brown, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, N. R. Larson, E. I. McNeice, Z. Meisel, W.-J. Ong, P. D. O'Malley, S. D. Pain, C. J. Prokop, S. B. Schwartz, S. Suchyta, P. Thompson, M. Walters, and X. Xu, Phys. Rev. C 97, 065803 (2018).
[20] M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, D. W. Bardayan, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, N. R. Larson,
E. I. McNeice, Z. Meisel, W.-J. Ong, P. D. O’Malley, S. D. Pain, C. J. Prokop, S. B. Schwartz, S. Suchyta, P. Thompson, M. Walters, and X. Xu, Phys. Rev. C 93, 064310 (2016).
[21] D. Pérez-Loureiro, C. Wrede, M. B. Bennett, S. N. Liddick, A. Bowe, B. A. Brown, A. A. Chen, K. A. Chipps, N. Cooper, D. Irvine, et al., Phys, Rev. C 93, 064320 (2016).
[22] S. B. Schwartz, C. Wrede, M. B. Bennett, S. N. Liddick, D. Pérez-Loureiro, A. Bowe, A. A. Chen, K. A. Chipps, N. Cooper, D. Irvine, et al., Phys. Rev. C 92, 031302 (2015).
[23] D. Pérez-Loureiro, C. Wrede, M. B. Bennett, S. N. Liddick, A. Bowe, B. A. Brown, A. A. Chen, K. A. Chipps, N. Cooper, E. McNeice, F. Naqvi, R. Ortez, S. D. Pain, J. Pereira, C. Prokop, S. J. Quinn, J. Sakstrup, M. Santia, S. B. Schwartz, S. Shanab, A. Simon, A. Spyrou, and E. Thiagalingam, Phys. Rev. C 96, 014306 (2017).
[24] B. E. Glassman, D. Pérez-Loureiro, C. Wrede, J. Allen, D. W. Bardayan, M. B. Bennett, B. A. Brown, K. A. Chipps, M. Febbraro, C. Fry, et al., Phys. Rev. C 92, 042501 (2015).
[25] B. E. Glassman, D. Pérez-Loureiro, C. Wrede, J. Allen, D. W. Bardayan, M. B. Bennett, B. A. Brown, K. A. Chipps, M. Febbraro, M. Friedman, C. Fry, M. R. Hall, O. Hall, S. N. Liddick, P. O'Malley, W. J. Ong, S. D. Pain, C. Prokop, S. B. Schwartz, P. Shidling, H. Sims, P. Thompson, and H. Zhang, Phys. Lett. B 778, 397 (2018).
[26] D. Morrissey, B. Sherrill, M. Steiner, A. Stolz, and I. Wiedenhoever, Nucl. Instrum. Methods Phys. Res., Sect. B 204, 90 (2003), 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications.
[27] D. Bazin, V. Andreev, A. Becerril, M. Dolans, P. Mantica, J. Ottarson, H. Schatz, J. Stoker, and J. Vincent, Nucl. Instrum. Methods Phys. Res., Sect. A 606, 314 (2009).
[28] C. Prokop, S. Liddick, B. Abromeit, A. Chemey, N. Larson, S. Suchyta, and J. Tompkins, Nucl. Instrum. Methods Phys. Res., Sect. A 741, 163 (2014).
[29] G. R. Gilmore, Practical Gamma-Ray Spectrometry, 361 (2008).
[30] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[31] J. Honkanen, M. Kortelahtl, K. Valli, K. Eskola, A. Hautojrvi, and K. vierinen, Nucl. Phys. A 330, 429 (1979).
[32] B. A. Brown, Prog. Part. Nucl. Phys. 47, 579 (2001).
[33] S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973).
[34] J. Brenneisen, B. Erhardt, F. Glatz, T. Kern, R. Ott, H. Ropke, J. Schmalzlin, P. Siedle, and B. H. Wildenthal, Z. Phys. A: Hadrons Nucl. 357, 157 (1997).
[35] D. W. O. Rogers, W. R. Dixon, and R. S. Storey, Nucl. Phys. A 281, 345 (1977).
[36] W. Coetzee, M. Meyer, and D. Reitmann, Nucl. Phys. A 185, 644 (1972).
[37] C. Iliadis, J. M. DAuria, S. Starrfield, W. J. Thompson, and M. Wiescher, Astrophys. J. Suppl. Ser. 134, 151 (2001).
[38] J. Kuperus, P. W. M. Glaudemans, and P. M. Endt, Physica 29, 1281 (1963).
[39] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[40] W. E. Ormand and B. A. Brown, Nucl. Phys. A 491, 1 (1989).
[41] W. A. Richter, S. Mkhize, and B. A. Brown, Phys. Rev. C 78, 064302 (2008).

[^0]: * abouderi@msu.edu
 \dagger benne438@msu.edu
 \ddagger wrede@nscl.msu.edu

