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Abstract

We examine the autocorrelation function of the 235U(n,f) reaction with a view to quantify the

presence of intermediate structure in the cross section. Fluctuations due to compound nucleus

resonances on the eV energy scale are clearly visible up to ≈ 100 keV neutron energies. Structure

on the one-keV energy scale is not present as a systematic feature of the correlation function,

although it is present in the data covering the region around 20 keV.
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I. INTRODUCTION

The fluctuations in reaction cross sections convey important information about the reac-

tion dynamics. Low-energy reactions on heavy nuclei are typically described by the Hauser-

Feshbach extension of Bohr’s compound nucleus model, and contain as parameters the den-

sity of the compound nucleus resonances and the effective number of channels participating

in the reaction. When the properties of the resonances cannot be individually measured,

one relies on a fluctuation analysis such as we use below to gain information about their

properties. Understanding the neutron-induced fission reaction is even more challenging

because there is no reason to believe that a simple compound nucleus picture is adequate

to deal with the large-amplitude shape changes the excited nucleus undergoes. This gives

a strong motivation to characterize as quantitatively as possible the fluctuations associated

with the reaction, in order to better understand the reaction dynamics.

Part of the complexity of the reaction is due to the presence of multiple fission barriers.

At energies below the barriers, the cross section can fluctuate due to resonant states located

between the barriers. Above the barriers, the situation remains unclear. There is evidence

for structure on the keV energy scale from experiments carried out in the 1970’s on the

235U(n,f) reaction with neutron energies in the range 1–100 keV. The compound nucleus

energies exceed the barrier top by ≈ 1 MeV, so below-barrier resonances could not be the

cause. Many experimental measurements have been made encompassing that energy range,

as detailed in Appendix A. Three of them have the resolution and documentation to make

a case for the presence of fluctuations on a keV energy scale. Their measured cross sections

between 10 and 25 keV are shown in Fig. 1. All three show a clear peak at 22 keV, having a

width about 1 keV. There may be correlated peaking at lower energies as well. The abstract

of one of the papers (Ref. [1]) states: “The previously reported intermediate structure in the

fission cross section in the keV region is confirmed by the results of this work.” Nevertheless,

such structures have not be documented as a general feature of cross sections at energies

above the barrier. The aim of this work is to analyze the cross section fluctuations in a

systematic way to see if quantitative information about them can be extracted.

Our analysis tool is the autocorrelation function R defined as [4, 5]

R(ε) =

〈
(σ(E+)− σ̄(E+))(σ(E−)− σ̄(E−))

σ̄(E+)σ̄(E−)

〉
(1)

where E± = E ± ε/2. The angle brackets denote an average over the energy E and σ̄ is
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FIG. 1. Experimental fission cross sections in the range 10 - 25 keV. Circles: from Ref. [2]; squares:

from [3]; diamonds: from [1]. The latter two data sets have been shifted upward for clarity in the

plotting of the figure.

an energy-dependent averaged cross section, with the details to be specified later. To keep

the number of entrance channels to a minimum, we limit the analysis to neutron energies

below 100 keV, which is sufficient to span the structure of interest at 22 keV. The analysis

of cross section fluctuations by the autocorrelation function has a long history in nuclear

physics, starting from Ericson’s analysis [6, 7] aimed at conditions where the resonances are

strongly overlapping. See Ref. [8] for an early review. Other methods have been proposed

as well. One analysis is based on the Fourier transform of the energy variable to the time

domain [8, pp. 372-373]. Another method is based on counting peaks in the cross section

[9–11], recently applied in Ref. [12].

The organization of this article is as follows. In Section II, we review the interpretation
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of the autocorrelation function and its parameterization. In Section III, we confirm the

expected behavior of the autocorrelation function in the isolated-resonance region at the

lowest energies. The data in the higher energy region of unresolved resonances is analyzed

in Sect. IV. Section V summarizes the two main conclusions of our analysis. The first

conclusion is that the eV-scale correlations due to compound nucleus resonances are present

and affect the correlation function far beyond the isolated resonance region. Second, only a

limit can be placed on any systematic correlation structure at the one-keV energy scale. Thus

the peaking seen in Fig. 1 is an isolated feature of the energy-dependent cross section. We

argue for a campaign of new measurements to pinpoint the origin of the observed structure

and to see if it occurs in above-barrier fission of other nuclei.

II. THE AUTOCORRELATION FUNCTION

Before discussing practical details of calculating and interpreting cross section fluctua-

tions, we review the analytic statistical theory of the autocorrelation function C(ε). It is

defined

C(ε) = (σ(E+)− σ) (σ(E−)− σ)
/
σ2 . (2)

Here the overline denotes an average over an ensemble of S-matrix elements that enter

the cross sections, Eq. (3) below. The ensemble is generated from a statistical model of

compound nucleus resonances. The ensemble averages are calculated at fixed energy, but

by construction they do not depend on that energy. It is implicitly assumed that the energy

averaging in R(ε) is equivalent to the ensemble averaging in C(ε).

The first step in calculating C(ε) is to express the cross sections in terms of their S-matrix

elements,

σ =
π

k2
n

∑
i,c

gJ |Sic|2. (3)

Here i denotes the quantum numbers specifying an incident (s-wave) neutron channel of

angular momentum J and parity π, c denotes the quantum numbers of an exit fission channel

(of the same Jπ), and gJ is the usual spin statistical factor. C(ε) can then be written as the

incoherent superposition

C(ε) =
∑
i,c,c′

wicwic′Cicc′(ε), (4)
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of the autocorrelation functions for each channel i,

Cicc′(ε) =
|Sic(E + ε/2)|2|Sic′(E − ε/2)|2 − |Sic|2 |Sic′ |2

|Sic|2 |Sic′|2
(5)

together with the weighting factors

wic =
gJ |Sic|2∑

i,c′
gJ |Sic′|2

. (6)

The correlations of interest are determined by the Cicc′ , but their amplitude in C(ε) depends

on the number of fission channels and other information carried by the weights.

We will see later that the ε- and wic-dependence are easy to disentangle in the isolated

resonance regime, as well as the regime with strongly overlapping resonances.

A. The statistical Breit-Wigner model

Our derivation of Cicc′(ε) proceeds by modeling the S-matrix by a sum of Breit-Wigner

resonances,

Sab(E) = δab − i
∑
k

γakγkb
E − ek

. (7)

The poles are at complex energies ek = Ek − iΓk/2, where the widths Γk are related to the

real-valued partial width amplitudes γck by Γk =
∑

c γ
2
ck. Evaluation of Eq. (5) requires

assumptions about the distribution and correlations of γck and Ek. Here we are guided by

the empirical success of the Gaussian Orthogonal Ensemble (GOE) of Hamiltonian matrices.

According to the GOE model, partial width amplitudes γak are distributed for different res-

onances k as a Gaussian random variable of zero mean; the corresponding variance depends

on the choice of channel a alone. Furthermore, partial width amplitudes relating to differ-

ent open channels a are completely uncorrelated. As a consequence, for inelastic processes

(a 6= b), the ensemble average of Sab in Eq. (7) yields Sab = 0.

Our treatment of the ek in the energy denominator deviates from a strict application

of GOE level correlation statistics. Instead of using Dyson’s celebrated result for the two-

level cluster function Y2 [13], we follow Ref. [14] and adopt the simplified but effective

parameterization

Y2(∆E/D̄) ≈ 1

1 + (π∆E/D̄)2
(8)
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where ∆E is the difference of two resonance energies of the same spin and parity, and D̄ is

the average level spacing for that spin and parity. The imaginary part of ek, namely Γk/2

is assumed to be constant. Neglect of fluctuations in the total widths Γk will be a source of

inaccuracy if there are only a few open fission channels. (We return to this point below.)

Note that the analysis of the ensemble is at a fixed energy and thus not able to deal

with secular variations of the parameters with respect to energy. Thus the theory does not

address effects related to penetrability factors in the amplitudes γak or to increase of level

densities with excitation energy.

B. Analytic approximations for Cicc′(ε)

Compact integral representations of the averages in Cicc′(ε) can be derived using the

method presented in Ref. [14]. Our replacement of the different total widths Γk by a single

total width Γ permits us to infer explicit expressions which capture many of the essential

features of Cicc′(ε). In terms of the ratio x = D̄/πΓ, our full result for Cicc′(ε) reads

Cicc′(ε) ≈ 3(1 + 2δc,c′)
xΓ2

ε2 + Γ2

−
(

x

x+ 1

)
Γ2

ε2 + Γ2
− x(x+ 1)Γ2

ε2 + (x+ 1)2Γ2

−
(

x

x+ 1

)
Γ2

ε2 + (x+ 1)2Γ2

+ δc,c′
Γ2

ε2 + Γ2
.

(9)

In the limit ε = 0 and c = c′, Eq. (9) reduces to the second line of Eq. (B12) in Ref. [14],

when allowance is made for the different grouping of terms, the identification of Γ with the

Weisskopf estimate ΓW for the correlation width, and a typographical error1.

The four lines in Eq. (9) correspond to three physically distinct contributions to Cicc′(ε):

on the first line, a resonance self-correlation piece, dominant when D̄ � Γ (isolated resonance

regime); on the second and third lines, negative terms arising from level repulsion correlations

between pairs of distinct resonances, and; finally, on the fourth line, a cross section auto-

correlation function of the kind derived by Ericson [6], dominant when D̄ � Γ, i.e., in the

strongly overlapping resonance regime.

1 A plus sign should precede the “1” at the end of the second line of Eq. (B12) in Ref. [14].
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In the limit of large or small x, Eq. (9) depends on ε only by an overall factor Γ2/(ε2+Γ2).

In Appendix V B we show that the factorization can be extended over the entire range of x

with only a slight degradation of accuracy with the formula

Cicc′(ε) ≈ Cicc′(0)
Γ2

ε2 + Γ2
, (10)

where

Cicc′(0) ≈
[
(1 + 6x)δcc′ + (3x− 1)Θ(3x− 1)

]
(11)

and Θ(x) is the Heaviside step function.

With the above approximations, it is easy to carry out the sum of c and c′ in Eq. (4).

C(ε) has the form

C(ε) = C(0)
Γ2

ε2 + Γ2
(12)

where

C(0) ≈ (1 + 6x)
∑
i,c

w2
ic + (3x− 1)Θ(3x− 1)

∑
i,c,c′

wicwic′ , (13)

Note that the two sums depend on the number of significant entrance and exit channels.

The sum
∑

i,cw
2
ic in the first term of Eq. (13) appears in the theory for strongly overlapping

resonances [5, 7, 15, 16] as the damping factor N−1. However, Eq. (13) applies to a broader

range of conditions than the formulas derived in these publications.

C. Extracting R from experimental data

Several compromises must be made to apply Eq. (1) and interpret the results. For

the data treated here in detail, the experimental cross sections are provided as average

cross sections on a mesh of energies with mesh spacing ∆E covering some range of energy

[E0 −B/2, E0 +B/2]. The cross sections are given as a list σn where n specifies the energy

En = E0 − B/2 + n∆E. The ratio in Eq. (1) is computed for each pair of cross sections

in the list, and a running sum Σ(|n− n′|) is kept for each energy difference En − En′ . The

computed autocorrelation function is R(ε) = 〈Σ(m)〉 where the angular brackets denote the

average for that bin.

In the analysis presented below, we define a local average cross section 〈σ(E)〉l by making

a linear fit

〈σ(E)〉l = σ0 + b(E − E0) (14)
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to the data in the interval. We have also analyzed some of the data with a quadratic

fit and found that the extracted correlation is hardly changed. One can develop a semi-

analytic justification based on the assumption that the actual variation of the local average

cross section is due to the s-wave penetrability factor, giving 〈σ(E)〉l ≈ E−1/2. With our

bandwidths B, which are such that B/E0 < 1, a linear fit produces an error of less than 1%

in R(0).

The analysis will show a peak at ε = 0 which may or may not extend to other bins. The

experimental statistics are not good enough to test the actual shape of peak, but we can

extract R(0) and some measure of the peak width within the experimental uncertainty limits

of the data. We shall extract an “experimental” Γ as the value of ε satisfying R(ε) = R(0)/2.

Equation (12) does not take into account the finite energy resolution of an experimental

measurement. Typically, cross sections are reported as averages over energy bins ∆E. The

effect on R(ε) is analyzed in Appendix C. In the limit ε� ∆E the peak occurs only in the

first bin, and its height R∆E is

R∆E ≈ R(0)
πΓ

∆E
. (15)

Equation (15) applies to the data sets we consider in section IV as these involve multi-keV

neutron energies, for which the experimental resolution is much broader than the widths of

the compound-nucleus states.

III. RESOLVED RESONANCE REGION

As a warm-up to the computation of R on multi-keV energy intervals, we consider fluctu-

ations in the resolved resonance region below 100 eV. Figure 2 shows the experimental cross

section for the neutron energy range 10–30 eV, with the data taken from the ENDF-VIII.0

evaluated cross section [17–19]2. The corresponding autocorrelation function calculated

from Eq. (1) is shown in Fig. 3. There is a clear peak at ε = 0. Its shape parameters are

R(0) = 4.23 and ΓHM = 0.09 eV. Table II gives the peak parameters as well as those for

other energy ranges below 100 eV. Both R(0) and ΓHW change with increasing energy E.

There is also a prominent peak at ε = 7 eV, which we interpret as a statistical fluctuation

of no physical significance.

2 The ENDF evaluation also has individual resonance parameters, but we also use the reconstructed cross

section to extract the autocorrelation function.
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FIG. 2. 235U(n,f) cross section from the ENDF/VIII.0 database. The red line shows the fitted

average cross section, σ̄ = 45.2 − 0.74(En − 20 eV) b. See Supplementary Material [20] for the

scripts used to produce the data for this Figure and for Figs. 3-6.

To see how well one can understand the peak at ε = 0, we first compare with the

prediction of the analytic model, Eq. (9). The reaction parameters for one entrance channel

are given in Table II 3. The total width Γ is the sum of the width in the entrance channel

Γn, the capture width Γγ, and the fission width Γf . The fission width be computed from the

parameters in Table II as Γf ≈ α−1Γγ = 0.064 eV. The entrance-channel width is computed

as Γn ≈ S0E
−1/2π/k2

n, where kn is the neutron momentum in the entrance channel. It is

entirely negligible compared to Γf +Γγ for energies under 1 keV. Thus, Γ ≈ Γγ +Γf = 0.102

eV over the region covered in Table I. This yields x = 0.94/(0.102π) = 2.9. We also need the

number of channels and their weights to apply Eq. 13. There are two entrance channels in

3 Note that D = 0.47 includes resonances from both entrance channels (Jπ = 3− and 4−).
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FIG. 3. Autocorrelation R(ε) for the data shown in Fig. 2 for the range 0 < ε < B/2.

the 235U(n,f) reaction at low energy, namely J = 3 and J = 4, and it is reasonable to assume

that their weights are close to equal. The situation is less clear for the fission channels. Very

likely there are only a few channels that contribute strongly. Let us assume that there are

three fission exit channels for each entrance channel, and they all contribute equally. Then

the weighting factors in Eq. 13 are
∑

i,cw
2
ic = 1/6 and

∑
i,c,c′ wicwic′ = 1/2. Inserting these

numbers in Eq. 13 we find R(0) ≈ 7.0. This overestimate arises because of our neglect of

fluctuations in the total fission width, which can be sizable if there are only three channels.

These effects are included in the equations derived in Ref. [14], but evaluating them requires

several numerical integrations and are not easy to condense to a simple formula. Apart from

that, the observed variation of R(0) over the 100 eV energy range of data set is inexplicable.

None of the compound nucleus parameters vary significantly on such a small energy scale,

and the entrance channels widths are small over the entire range.
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ENDF Mazama

Energy range σ0(b) R(0) ΓHM (eV) σ0(b) R(0) ΓHM (eV)

10 - 30 eV 45.2 4.23 0.09 51± 13 3.6± 1.4 0.10± 0.02

30 -50 44.7 2.58 0.10

50 -70 37. 2.40 0.16

70 -90 29.9 1.42 0.17 27± 6 3.2± 1.0 0.10± 0.02

TABLE I. Autocorrelation peak height and width for various energy ranges. The Mazama program

and the scripts for the entries on line 1 are included in the Supplementary Material [20].

parameter value source

D = D̄/2 0.47 eV [17]

Γ̄γ 0.038 eV [17]

S0 0.98× 10−4 eV−1/2 [17]

α−1 1.69 [21]

TABLE II. Reaction parameters for the neutron reactions on 235U at low energy. The parameter

α−1 = 〈σ(n, f)〉/〈σ(n, γ)〉 is evaluated taking the averages over the energy range En = 10–100 eV.

The correlation widths should be equal to the total widths of the compound nucleus

resonances in the isolated resonance regime. This appears to be the case for the first two

energy ranges in Table I, taking Γ from the paragraph above. However, the extracted

experimental width increases in the higher energy ranges. Again, this is not explicable given

our understanding of how the compound nucleus parameters vary with energy.

One of us (GFB) has produced a Hamiltonian model that includes both a GOE treatment

of the resonances and an explicit Hamiltonian treatment of the entrance channel. The

code, called “Mazama”, is briefly described in the Appendix together with the Hamiltonian

parameters as applied to this work. All the fluctuations inherent in the GOE are included,

since the code operates by sampling the ensemble and calculating the full energy-dependent

cross section for each representative Hamiltonian. The parameters of the ensemble are tuned

to reproduce the experimental D, Γγ and α−1. The number of fission channels is taken to

be 3. A typical cross section produced by Mazama is shown in Fig. 4. The calculation was
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FIG. 4. Sample 235U(n,f) cross section calculated by the mazama code. The results are the average

for two entrance channels. Code parameters are given in the Appendix.

done by taking two samples from the ensemble, for the two independent entrance channels.

The extracted autocorrelation function is shown in Fig. 5. The related peak parameters

are R(0) = 4.1 and ΓHM = 0.08 eV, in fair agreement with the ENDF data shown in

Figs. 2 and 3. Of course there are uncertainties in the predicted peak parameters due to the

Porter-Thomas fluctuations. These can be estimated by taking many samples from the GOE

ensemble, evaluating the parameters for each sample, and then finding the rms dispersion

in them.

We have carried out this analysis for 100 samples to determine a mean and dispersion

of the parameters. The results are given in the leftmost columns of Table I. The error

bars on the extracted quantities are the standard deviations of the individual samples. The

ensemble averages for the 10–30 eV interval agree with the experimental numbers for the
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FIG. 5. Autocorrelation R(ε) for the data shown in Fig. 4.

cross section and R(0) value to within the error bars. The Mazama analysis confirms that

the GOE model has the potential to describe data on R(0).

The GOE model also shows that the uncertainty in the extracted R(0) can be uncom-

fortably large. The variance in the calculated R(0) is in the 30–40 % range with about

40 resonances in the energy window B = 20 eV. Assuming that standard statistics applies

for errors, we estimate that the window should include about 500 resonances to reduce the

uncertainty in R(0) to the 10% level.

One can also see from Mazama model results for the 70–90 eV interval that the theoreti-

cal quantities hardly vary at all from those of the 10–30 eV interval. This is not unexpected,

since the only real difference is the increased penetrability in the entrance channel. This

substantiates our earlier assertion that the strong energy dependence of the R(0) and ΓHM

obtained from ENDF cross sections is completely inexplicable in standard models of com-
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pound nucleus reactions. However, for the purpose of our subsequent discussion of cross

section fluctuations at multi-keV energies, we shall take the point of view that, as regards

the 10–30 eV data and its modeling by the Mazama code, a good account is given of the pri-

mary peak in R. It is unambiguously associated with fluctuations in properties of individual

compound-nucleus resonances.

IV. HIGHER ENERGY REGION

We now go to the multi-keV energy region where evidence for fluctuations on the keV

energy scale were reported. We focus on the experimental data in Ref. [1] which covers the

energy range 2–100 keV. The autocorrelation is computed in energy windows ranging in size

from 3 keV to 20 keV. It is safe to assume that the resonance spacing D in this higher-energy

region is unchanged from its value at energies below 100 eV. Then there are 3000 to 40,000

resonances in the window, giving adequate statistics for calculating R(0). The bin size in

the data is ∆E = 0.05 keV, and the autocorrelation function is computed with the same

binning. For each window, the average cross section is fitted to Eq. (14) for the data in

that window. The error bars on R(ε) are determined from an ensemble of data sets. The

members are generated by adding a random error to the measured ones, with variance of

the added error taken to be the quoted error of the tabulated experimental data. From the

ensemble of computed R(ε) values we report the mean and variance.

The results are shown in Fig. 6. One sees a spike in the bin at ε = 0, but hardly any

structure beyond that. The corresponding R(0) values are plotted in Fig. 7. Since the

bin size is much larger than the compound nucleus resonance width, we expect Eq. (15) to

apply to the R(0) enhancement over the nearby ε bins.

With the given D and ∆E, Eq. (15) gives R(0) ≈ 0.022, indicated in the Figure by the

dashed line. The experimental R(0) agrees with the expectation for the two lowest energy

windows, but but it falls short at higher energy. A possible explanation is the finite energy

resolution of measurements. If the resolution is of the order of the bin size, the R(0) peak will

spill out into neighboring bins. For example, R(ε) for the 70-90 keV window is significantly

above the axis for all the bins up to ε = 0.25 keV. Assuming that the cause is a spill-out, we

should recover the original R(0) by summing over these bins. The summed value is shown

as the square symbol in Fig. 7. The agreement with the expected value is good enough to
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FIG. 6. Autocorrelation function for the 235U(n,f) reaction over the energy range 2 < E < 90 keV,

using the cross section data of Ref. [1] as given in Ref. [21].

ascribe the finite-width suppression to spill-out rather than new physics.

The 10-25 keV energy window shown in Fig. 6 is exceptional: there is a peak at small

ε that has no simple explanation. Fig. 8 shows the autocorrelation function with an ex-

panded vertical scale. Besides the presence of a finite-width peak beyond the R(0), the

autocorrelation function becomes negative around ε ≈ 1 keV. Theoretically, the autocorre-

lation function in Eq. (9) can be negative due to the repulsion between levels in the GOE.

However, this is a very mild effect and the compound-nucleus resonances would only affect

R(ε) on a 1 eV energy scale.
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FIG. 7. Autocorrelation spike for the data of Ref. [1], showing several energy windows, beginning

with 2–5 keV and ending with 70–90 keV. Error bars are computed from the quoted experimental

errors in the data. The dashed line shows the value expected from the compound-nucleus resonance

fluctuations. The blue square shows the reconstructed value for the 70–90 keV window as described

in the text.

V. CONCLUSION AND OUTLOOK

While we confirm the effect of compound-resonances on the autocorrelation function up

to near 100 keV in neutron bombarding energy, we see no evidence for correlations on the

scale of 1 keV, contrary to the claim of Ref. [1]. Indeed, the only structure we observe is

isolated in the 10-25 keV energy window.

Neutron-induced fission is very different below the barrier. There states in the second

well mediate barrier penetration producing broad resonances in the fission cross sections.
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FIG. 8. Autocorrelation function for the 235U(n,f) reaction over the energy range 10 < E < 25

keV, using the cross section data of Ref. [1] as given in Ref. [21].

It might be that these resonances persist above the barrier in an attenuated form. That

could be a plausible explanation of the 22 keV structure, provided the resonance spacing in

the second well is compatible with the non-observation of other structure in the 2–100 keV

energy range. Perhaps more experimental study of fission cross sections around the barrier

top would clarify the situation. In that respect photofission is a good tool, because it can

reach excitation energies below those accessible by neutron-induced fission.
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APPENDIX

A. Overview of experiments

In this work we focused on the three highest resolution absolute 235U(n,f) cross section

data sets available in the range 1–100 keV [1–3]:

• The measurement in Ref. [3] was performed at the Lawrence Radiation Laboratory

(now known as LLNL) using the Livermore 100 MeV electron linac and a 200 m flight

path.

• The measurements in Refs. [1] and [2] were performed at the ORELA facility at ORNL.

Ref. [1] reported a conventional (n,f) measurement using a 150 m flight path. The

experiment of Ref. [2] was unconventional, using a polarized neutron beam impinging

on a polarized target. This permitted the determination of the spins of individual

resonances. A much shorter flight path of approximately 14 m was used in Ref. [2],

but the decrease in energy resolution from the reduced flight path was more than

compensated by cryogenically cooling the polarized target to 0.1 K.

In all three cases, the neutrons were produced by photonuclear reactions induced by

incident electron bremsstrahlung emission and then passed through a light water moderator.

In each experiment, the targets were enriched in 235U. Contaminants (either 238U or 16O for

the oxide targets) were properly accounted for.

There are other experiments reporting data in the energy range of interest to us, but we

found them less informative for a variety of reasons:

• The experiments of Refs. [24–28] all have inferior energy resolution. The data in

Ref. [27] were actually taken as a scoping study for the experiment in Ref. [28]. There

are other experiments in this energy range that have substantially worse energy reso-

lution and are not listed in Table III.
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• Ref. [32] lacks adequate published documentation.

• The uncertainty data needed for evaluation purposes was either missing or not un-

derstandable from the experiments reported in Refs. [30, 31, 34, 35]. The data in

Ref. [30] were actually taken as a scoping study for the experiment in Ref. [3] used in

our analysis.

• Ref. [33] was withdrawn.

• Refs. [29, 32, 36, 37] used a nuclear explosive as the neutron source and therefore have

unquantifiable uncertainties in both the flight path used and the neutron fluence.

Table III summarizes these experiments. As is usual for neutron resonance measurements,

the incident neutron energy in all cases was determined using time of flight (ToF).

Fröhner and Haddad [39] performed a detailed study of sources of uncertainty in ToF

measurements. They argue that the uncertainty on the determined incident energy is given

by ∆E/E =
√
a+ bE with constants a and b. Here, a depends on overall flight path

length, the neutron production target thickness and the moderator thickness surrounding

the neutron production target. The constant b depends on the rescattering time in the

neutron source, moderator and target (including thermally induced jitter) and the overall

flight path length. In all of the experiments considered, these effects were carefully considered

and we believe the reported energy resolutions for the experiments are reasonable.

Leal et al. [40] additionally advocate a cross section normalization factor of the form

a + b
√
E. Given the limited energy range over which we considered cross section data, the

additional
√
E dependence was not found to be needed.

B. Simplified formula for C(0)

Equation (11) was obtained by stitching together the two expressions valid in the limits

x� 1 and x� 1. The effectiveness of this approximation is illustrated by the plot of Cicc′(0)

versus Γ/D̄ in Fig. 9. The approximation is poorest when the magnitude of Γ approaches

that of D̄, as is to be expected. Figure 10 contains complementary information on the extent

to which the ε-dependence of Cicc′(ε) is reproduced when the approximation to Cicc′(0) is

good.
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Ref. Pub.

Year

Author EXFOR

(sub)Entry

Facility/Laboratory Flight Path Energy reso-

lution (keV)

[3] 1971 C. D. Bowman et al. 10419.002 LRL (now LLNL) Electron

Linac

250 m 0.010-0.007

[1] 1974 R. B. Perez et al. 10302.002 ORELA, ORNL 151.9± 0.1 m 0.025

[2] 1978 M. S. Moore et al. 10629.004 ORELA, ORNL 13.40 ma,

15.28 mb

0.00005

[35] 1965 Wang et al. 40271.003 JINR, Dubna 1000 m 0.05

[36] 1966 R. D. Albert 12343.002 AGT, LRL (now LLNL) 1280 km 0.10

[32] 1966 W. K. Brown et al. 12432.002 UGT, LASL (now LANL) Unknown 0.033

[28] 1970 B. H. Patrick et al. 20461.002 Harwell 45 MeV Linac 97.5 m 0.18

[29] 1970 J. D. Cramer 10057.004 UGT, LASL (now LANL) 214.43 m 0.1

[30] 1970 C. D. Bowman et al. 10170.002,

.003

LRL (now LLNL) Electron

Linac

250 m 0.05-0.1

[37] 1971 J. R. Lemley et al. 10120.002 UGT, LASL (now LANL) Unclearc 0.004

[24] 1971 J. Blons et al. 20483.002 60 MeV Saclay LINAC 50.07 m ≈ 0.9

[27] 1972 D. B. Gayther et al. 20422.002 Harwell 45 MeV Linac 97.5 m 0.25

[31] 1975 E. Migneco et al. 20783.002 CBNM Linear Accelerator,

Geel

60.58 m 0.0007

[33] 1976 R. Gwin et al. 10267.024 ORELA, ORNL 40 m 0.009

[34] 1976 C. Wagemans,

A. J. Deruytter

20826.004 CBNM Linear Accelerator,

Geel

30 m 0.025

[25] 1980 T. A. Mostovaya et al. 40616.004 Electron Linear Accelerator

‘FAKEL’, Kiev

26 cm 0.06

[26] 1984 L. W. Weston,

J. H. Todd

12877.004 ORELA, ORNL 20 m 0.10

a Fssion monitor
b Transmission monitor
c Only distance to borehole given

TABLE III. Absolute 235U(n,f) cross section measurements in the range 10–25 keV, retrieved from

the EXFOR library [38]. Only the first three measurements, above the line in the table, are used

in the present analysis. See text for details.

Errors in the approximation of Cic 6=c′(ε) by Eq. (10) can be sizeable (≈ 100%), but only

when it is an order of magnitude smaller than Cicc(ε). The approximation of Cicc(ε) is, by

contrast, always reasonable, the percentage error being never more than 10% (even when

Γ ≈ D̄). For the reaction studied here, there are only a few fission channels and Cicc term

should dominate. Thus, Eq. (10) should suffice to approximate a calculation of C(ε) based

on Eq. (9) to within an error of 10% or so.
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FIG. 9. Plot of Cicc′(0) versus Γ/D̄ (≥ 0.4). Upper and lower curves are for c = c′ and c 6= c′,

respectively. Solid lines: evaluation of Eq. (9). Dashed lines: approximation in Eq. (10).

C. Effect of finite energy resolution

Under the assumption that cross sections are reported as averages over energy bins of

fixed width ∆E, R(ε) in Eq. (12) is replaced by

R(ε,∆E) = R(0)L
(
ε
Γ
, ∆E

Γ

)
, (16)

where [22]

L(y, z) =
1

z2

[
(y + z) arctan(y + z) + (y − z) arctan(y − z)− 2y arctan(y)

− 1
2

ln
1 + (y + z)2

1 + y2
− 1

2
ln

1 + (y − z)2

1 + y2

]
.

(17)
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With a view to establishing the properties of L(y, z), it is helpful to study L(0, z) and

l(y, z) = L(y, z)/L(0, z) separately. As noted by Gibbs [22], a simple approximation of

L(0, z) is viable (see Fig. 11), namely,

L(0, z) ≈ 1

1 + z/π
. (18)

The qualitative character of l(y, z) depends on the magnitude of z. It is the behavior for

small and large z, which is of interest to us. For z < 1
2
, l(y, z) ≈ (1 + y2)−1, i.e., as one

would expect for good energy resolution, the dependence on ε is essentially unchanged from

that in Eq. (12). For z � 1, the variable ρ = y/z is preferred to y (appropriate for z . 1);

in terms of physical parameters, this amounts to relating R(ε,∆E) to ε/∆E and ∆E/Γ,
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FIG. 10. Plot of Cicc′(ε) versus ε/Γ for x = 1 (a value of x appropriate to the resolved resonance

regime of 235U). Upper and lower curves are for c = c′ and c 6= c′, respectively. Solid lines:

evaluation of Eq. (9). Dashed lines: approximation in Eq. (10).

22



not ε/Γ and ∆E/Γ.

The limit

lim
z→∞

l(ρz, z) = (1− |ρ|)Θ(1− |ρ|) (ρ fixed) (19)

forms the basis for an approximate representation of R(ε,∆E). Figure 12 demonstrates how

rapidly this limit is attained. Combining our results on L(y, z), we obtain Eq. (15).

D. Realistic Modeling

Here we provide details of the Mazama model used to compute the cross section shown

in Fig. 4 and the autocorrelation parameters listed in Table I. The model is defined by a

matrix Hamiltonian acting in a space comprising the entrance channel wave function on a
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L
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,z

)

FIG. 11. Plot of L(0, z) = [2z arctan(z) − ln(1 + z2)]/z2 versus z. Solid line: exact evaluation of

L(0, z). Dashed line: approximation in Eq. (18).
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coordinate-space mesh ri and one or more sets of internal states. Compound nucleus states

are identified with GOE Hamiltonian eigenstates. To the real GOE resonance energies

are added fixed imaginary energies associated with the gamma decay widths. In addition,

the Hamiltonian includes coupling to one or more fission channels, represented as discrete

doorway states that couple to the compound nucleus states. The inelastic S-matrix elements

are found from solving a Schrödinger equation with a boundary condition on the entrance-

channel wave function.

The key physical parameters are:

• the Woods-Saxon potential in the entrance channel sector characterized by the usual

parameters (Vws, a0, R0 = r0A
1/3);

0.0 0.5 1.0 1.5 2.0ρ  
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ρ
z,
z)

FIG. 12. Plot of l(ρz, z) versus ρ = ε/∆E for two choices of z = ∆E/Γ: z = 10 (solid line), and

z = 100 dashed line.
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• the average level spacing D̄ of the compound-nucleus states populated from an entrance

channel;

• the gamma decay width of the compound-nucleus states, assumed to be the same for

all states;

• the number of the fission doorway states (each representing a fission channel) and their

fission decay widths;

• the Porter-Thomas distributed coupling matrix elements between the entrance channel

and the compound-nucleus states;

• the Porter-Thomas distributed coupling matrix elements between the compound-

nucleus states and the fission doorway states.

For the calculations reported here, the Woods-Saxon parameters are close to those obtained

by a global fit of single-particle properties at the Fermi surface [23]. The level spacing D and

Γγ are the same as in Table I. The coupling matrix elements between the compound-nucleus

states |µ〉 and the entrance channel |n〉 are parameterized as

〈n, i|v µ〉 = vnsµ, (20)

where i is a mesh point close to the nuclear surface and sµ is a Gaussian random variable

of unit variance. The strength vn is fitted to the integrated inelastic cross section over the

energy interval 10–100 eV.

There is considerable ambiguity in choosing the parameters associated with the fission

channels. In this work we assume that there are 3 fission channels, each coupled to the

compound nucleus states with matrix element 〈µ|v|f〉 = vfsµ. The strength vf is chosen

to make the average mixing between the fission channels and the compound states uniform.

In effect, the fission channels are part of the GOE, but with different decay widths. This

leaves a single parameter to be determined, namely the decay width of the fission channels.

We determine it by fitting to α−1 from Table I. The values of the parameters are given in

Table II.
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parameter value

resonance spacing D = 0.94 eV

capture width Γ̄γ = 0.038 eV

Woods-Saxon well V0 = 44 MeV

” a0 = 0.65 fm

” r0 = 1.25 fm

n-c coupling vn = 2.2 keV

c-f coupling vf = 5.1 eV

fission width, per channel Γ̄f = 0.040 eV

no. of fission channels Nf = 3

mesh spacing ∆r = 0.5 fm

TABLE IV. Hamiltonian parameters for simulating neutron reactions on 235U with the Mazama

code. All parameters except vn are insensitive to the mesh spacing of the entrance channel.
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