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We present quantum Monte Carlo calculations of the single- and two-nucleon momentum distri-
butions in selected nuclei for A ≤ 16. We employ local chiral interactions at next-to-next-to-leading
order. We find good agreement at low momentum with the single-nucleon momentum distributions
derived for phenomenological potentials. The same agreement is found for the integrated two-
nucleon momentum distributions at low relative momentum q and low center-of-mass momentum
Q. We provide results for the two-nucleon momentum distributions as a function of both q and Q.
The large ratio of pn to pp pairs around q = 2 fm−1 for back-to-back (Q = 0) pairs is confirmed up
to 16O, and results are compatible with those extracted from available experimental data.

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have been ex-
tensively used in the past to derive properties of strongly
correlated systems, including nuclei, neutron drops, neu-
tron and nuclear matter (see Ref. [1] for a recent review).
Part of their success relies in the possibility to tackle the
nuclear many-body problem in a nonperturbative fash-
ion, by employing accurate wave functions which include
two- and three-body correlations.

Momentum distributions of individual nucleons and
nucleon pairs strongly depend on such correlations, as
they reflect features of the short-range structure of nu-
clei. While these momentum distributions are not di-
rectly observable, since they are coupled with, e.g., elec-
tromagnetic current operators, they do provide a strong
influence on some observables such as back-to-back nu-
cleons measured in quasi-elastic scattering. For instance,
it was found that the strong spatial-spin-isospin correla-
tions induced by the tensor force lead to large differences
in the pp and pn distributions at moderate values of the
relative momentum in the pair [2, 3]. These differences
have been observed in (e, e′pN) experiments on 12C at
low momentum [4] and on 4He at higher momentum [5]
at Jefferson Laboratory (JLab). Same conclusions have
been found in heavier systems, including 27Al, 56Fe, and
208Pb [6].

The variational Monte Carlo (VMC) method has been
used to calculate the momentum distributions in A ≤ 12
nuclei [2, 7–11] by employing phenomenological nuclear
interactions, i.e., Argonne v18 (AV18) nucleon-nucleon
(NN) potential combined with Urbana models (UIX-UX)
for the three-nucleon (3N) force [1]. The same family
of potentials have been employed in cluster expansion
methods, including the cluster VMC algorithm [12], to
calculate the momentum distributions of heavier systems,
such as 16O and 40Ca [3, 12–15].

In this work, we present QMC calculations of single-
and two-nucleon momentum distributions in 4He, 12C,
and 16O employing the local chiral effective field the-
ory (EFT) interactions at next-to-next-to leading order
(N2LO) developed in Refs. [16–20].

II. HAMILTONIAN AND WAVE FUNCTION

Nuclei are described as a collection of point-like parti-
cles of mass m interacting via two- and three-body po-
tentials according to the nonrelativistic Hamiltonian

H = − ~2

2m

∑
i

∇2
i +

∑
i<j

vij +
∑
i<j<k

Vijk. (1)

In this work we consider the local chiral interactions at
N2LO of Refs. [16–19].

The long-range part of the NN potential is given by
pion-exchange contributions that are determined by the
chiral symmetry of quantum chromodynamics and low-
energy pion-nucleon scattering data. The short-range
terms are given by contact interactions, described by
low-energy constants (LECs) that are fit to nucleon-
nucleon scattering data [17]. At N2LO, the two-body
local chiral potential is written as a sum of radial func-
tions multiplying spin and isospin operators, which corre-
spond to the first seven terms of the AV18 potential, i.e.,
Op=1,7
ij =

[
1, τi·τj ,σi·σj ,σi·σj τi·τj , Sij , Sij τi·τj ,L·S

]
,

where Sij is the tensor operator, and L and S are the rela-
tive angular momentum and the total spin of the nucleon
pair ij, respectively.

The 3N local chiral interaction at N2LO is written as
a sum of two-pion exchange (TPE) contributions plus
shorter-range terms, VD and VE . The LECs of the TPE
terms are the same of the two-body sector, while the
additional LECs for the shorter-range terms are fit to
few-body observables. In more details, cD and cE are fit
to the binding energy of 4He and n-α scattering P -wave
phase shifts, providing a probe to the properties of light
nuclei, spin-orbit splitting, and T = 3/2 physics [19].
According to the Fierz-rearrangement freedom, different
equivalent operator structures are possible for locally reg-
ularized three-body contact operators at N2LO [21]. We
employ here the Eτ and E1 parametrizations for VE ,
corresponding to the choice of the τi · τj isospin oper-
ator and the identity operator 1, respectively. We use
coordinate-space cutoffs R0 = 1.0 fm and R0 = 1.2 fm,
which correspond roughly to cutoffs in momentum space
of 500 MeV and 400 MeV [22, 23], respectively. As shown
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in Refs. [20, 22, 24], the use of different three-body oper-
ator structures and coordinate-space cutoffs leads to very
similar ground-state properties in light and medium-mass
nuclei.

We perform QMC calculations of the single- and two-
nucleon momentum distributions by employing the trial
wave function used in auxiliary field diffusion Monte
Carlo (AFDMC) calculations of light and medium-mass
nuclei [20, 24]. Such a wave function takes the form

〈RS|Ψ〉 = 〈RS|
∏
i<j

f1ij
∏

i<j<k

f3cijk

×

1 +
∑
i<j

6∑
p=2

fpij O
p
ij f

3p
ij +

∑
i<j<k

Uijk

 |Φ〉Jπ,T , (2)

where |RS〉 are the 3A spatial coordinates and 4A
spin/isospin amplitudes for each nucleon. The pair cor-
relation functions fpij are obtained as the solution of
Schrödinger-like equations in the relative distance be-
tween two particles, as explained in Ref. [1]. f3cijk and f3pij
are spin/isospin-independent functions introduced to re-
duce the strength of the spin/isospin-dependent correla-
tions when other particles are nearby [25]. Uijk are three-
body spin/isospin-dependent correlations, whose opera-
tor structure resembles that of the 3N potential Vijk.
The term |Φ〉 represents the mean-field part of the wave
function. It consists of a sum of Slater determinants D
constructed using shell-model-like single-particle orbitals

〈RS|Φ〉Jπ,T =
∑
n

cn

[∑
CJM D

{
φα(ri, si)

}
J,M

]
Jπ,T

,

(3)

where ri are the spatial coordinates of the nucleons, and
si represent their spinors. The Clebsch-Gordan coeffi-
cients CJM are chosen to reproduce the experimental to-
tal angular momentum, total isospin, and parity (Jπ, T )
of the nucleus, while the cn are variational parameters
multiplying different wave function components having
the same quantum numbers. Each single-particle orbital
φα consists of a radial function, bound-state solution of
a Woods-Saxon wine-bottle potential, multiplied by the
proper spherical harmonic and the spin/isospin state. For
closed-shell systems, such as 4He and 16O, the mean-field
wave function of Eq. (3) is given by a single Slater de-
terminant. In 12C, 119 determinants constructed with p-
shell single-particle orbitals need to be coupled in order
to obtain a (0+, 0) state with good binding energy [20].
However, observables like the charge radius are well de-
termined by using a reduced subset of Slater determi-
nants. A trial wave function including only 13 Slater de-
terminants provides a (0+, 0) state with the same charge
radius as the full p-shell wave function, even though the
total VMC energy is reduced by ≈ 3 MeV. Such a sim-
plified wave function has been used in this work for the
VMC estimate of single- and two-nucleon momentum dis-
tributions in 12C, calculation otherwise computationally

prohibitive. Details on the construction of the wave func-
tions can be found in Ref. [20].

According to the VMC method, given the trial wave
function ΨT = 〈RS|Ψ〉Jπ,T , the expectation value of the
Hamiltonian is given by

EV = 〈H〉 =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

≥ E0, (4)

where E0 is the energy of the true ground state with the
same quantum numbers as ΨT . The equality in the above
equation is only valid if the wave function is the exact
ground-state wave function Ψ0, i.e., the variational en-
ergy is always an upper bound to the true ground-state
energy. EV depends in general on the employed wave
function. By minimizing the energy expectation value
of Eq. (4) with respect to changes in the variational pa-
rameters of ΨT , one obtains an optimized wave function,
i.e., the best approximation of Ψ0, which can be used to
calculate other quantities of interest, such as the momen-
tum distributions. We optimize our trial wave functions
for local chiral interactions at N2LO. During the opti-
mization a constraint is used in order to approximatively
obtain the experimental charge radii, which are reported
in Table I. Note that these are VMC results only, while
the charge radii of Ref. [20] correspond to the extrapo-
lated results from mixed estimates: 2 〈rAFDMC

ch 〉−〈rVMC
ch 〉.

Differences between extrapolated and VMC results are
however within statistical uncertainties. The true ground
state of the system can finally be obtained by using the
AFDMC method. The imaginary time propagation is
used to project out the lowest energy state with the sym-
metry of the trial wave function ΨT

Ψ0 = lim
τ→∞

e−(H−ET )τ ΨT , (5)

where ET is a parameter that controls the normalization
(see Ref. [20] for more details). Although the imaginary
time propagation allows to access properties of the true
ground state of the system, the AFDMC calculation of
two-nucleon momentum distributions is at present com-
putationally prohibitive. For this reason, in this work
we present VMC results only, providing an example of
AFDMC calculation for single-nucleon momentum dis-
tribution in Section IV.

Table I. VMC charge radii (in fm) for the optimized wave
function of Eq. (2) and different N2LO local chiral potentials.
Experimental results are also shown.

Nucleus VE , R0 (fm) VMC Exp
4He (0+, 0) Eτ, 1.0 1.67(1) 1.680(4) [26]

E1, 1.2 1.64(1)

12C (0+, 0) Eτ, 1.0 2.48(2) 2.471(6) [27]

16O (0+, 0) Eτ, 1.0 2.77(3) 2.730(25) [28]
E1, 1.2 2.57(3)
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III. SINGLE- AND TWO-NUCLEON
MOMENTUM DISTRIBUTIONS

The probability of finding a nucleon with momentum
k in a given isospin state is proportional to the density

ρN (k) =
1

A

∑
i

∫
dr1 · · · dr′i dri · · · drA

×Ψ†(dr1, . . . , dr
′
i, . . . , drA)× e−ik·(ri−r

′
i)

× PN (i) Ψ(dr1, . . . , dri, . . . , drA), (6)

where

PN (i) =
1± τzi

2
, (7)

is the isospin projection operator for the nucleon i, and
Ψ is the optimized wave function of Eq. (2). The nor-
malization is

NN =

∫
dk

(2π)3
ρN (k), (8)

where NN is the number of protons or neutrons.
The Fourier transform of Eq. (6) can be computed

by following a Metropolis Monte Carlo walk in the
dr1 . . . drA space and one extra Gaussian integration over
dr′i at each Monte Carlo configuration, as done in early
VMC calculations of few-nucleon momentum distribu-
tions [7]. It is however convenient to rewrite Eq. (6)
as

ρN (k) =
1

A

∑
i

∫
dr1 · · · dri · · · drA

∫
dΩx

∫ xmax

0

x2dx

×Ψ†(r1, . . . , ri +
x

2
, . . . , rA) e−ik·x

× PN (i) Ψ(r1, . . . , ri −
x

2
, . . . , rA). (9)

In the above equation, the position ri is symmetrically
shifted by x/2 in both left- and right-hand wave func-
tions, instead of simply moving the position r′i in the
left-hand wave function with respect to a fixed position ri
in the right-hand wave function. A Gaussian integration
is performed over x by choosing a grid of Gauss-Legendre
points xi and sampling the polar angle dΩx, with a ran-
domly chosen direction for each particle in each Monte
Carlo configuration. This procedure has the advantage
of drastically reduce the large statistical errors originat-
ing from the rapidly oscillating nature of the integrand
for large values of k [9]. For the systems considered in
this work, we obtain good statistics up to k = 10 fm−1

integrating to xmax = 12 fm using 120 Guass-Legendre
points.

Note that the procedure described above cannot be ap-
plied in AFDMC calculations, where left- and right-hand
wave functions are different (see Ref. [20] for details). In
this case, Eq. (6) must be used, and a significant com-
putational effort is needed to achieve statistical errors

comparable to the corresponding VMC calculation. An
example of an AFDMC calculation of single-nucleon mo-
mentum distribution is shown in Fig. 5.

The probability of finding two nucleons in a nucleus
with relative momentum q = (k1 − k2)/2 and total
center-of-mass momentum Q = k1+k2 in a given isospin
state is given by

ρNN (q,Q) =
2

A(A− 1)

∑
ij

∫
dr1· · · dr′i dridr′j drj · · · drA

×Ψ†(dr1, . . . , dr
′
i, dr

′
j , . . . , drA)

× e−iq·(rij−r
′
ij) e−iQ·(Rij−R

′
ij)

× PNN (ij) Ψ(dr1, . . . , dri, drj , . . . , drA),

(10)

where rij = ri − rj , Rij = (ri + rj)/2, and PNN (ij) is
the isospin projector operator for the nucleon pair ij

PNN (ij) =
1± τzi

2

1± τzj
2

. (11)

The normalization is

NNN =

∫
dq

(2π)3
dQ

(2π)3
ρNN (q,Q), (12)

where NNN is the number of pp, pn, or nn nucleon pairs.
Note that integrating ρNN (q,Q) over Q only gives the
probability of finding two nucleons with relative momen-
tum q regardless their center-of-mass momentum Q, and
vice versa.

The integral of Eq. (10) can be evaluated in a similar
fashion to Eq. (9)

ρNN (q,Q) =
2

A(A− 1)

∑
ij

∫
dr1 · · · dri drj · · · drA

×
∫
dΩx

∫ xmax

0

x2dx

∫
dΩX

∫ Xmax

0

X2dX

×Ψ†(r1, . . . , rij +
x

2
,Rij +

X

2
, . . . , rA)

× e−iq·x e−iQ·X PNN (ij)

×Ψ(r1, . . . , rij −
x

2
,Rij −

X

2
, . . . , rA),

(13)

where now a double Gauss-Legendre integration for each
nucleon pair in each Monte Carlo configuration must be
evaluated. This makes the two-nucleon momentum dis-
tribution much more computationally expensive than the
single-nucleon. For the nuclei considered in this work we
obtain good statistics up to q = 5 fm−1 and Q = 3 fm−1

integrating x to xmax = 12 fm using 120 Guass-Legendre
points, and X to Xmax = 8 fm using 80 Guass-Legendre
points. Note that, because the employed wave functions
are eigenstates of the total isospin T , small effects due
to isospin-symmetry-breaking interactions are ignored.
T = 0 in all nuclei considered in this work, so it fol-
lows that, for a given system, pp, nn, and T = 1 pn
momentum distributions are identical.



4

IV. RESULTS: SINGLE-NUCLEON
MOMENTUM DISTRIBUTIONS

The proton momentum distributions ρp(k) normalized
to the proton number Z for the N2LO Eτ potential with
cutoff R0 = 1.0 fm are reported in Fig. 1. The VMC
and cluster VMC results for the AV18+UIX potential
of Refs. [9, 10, 12] are also shown for comparison. Up
to ≈ 1.0 − 1.5 fm−1, local chiral interactions and phe-
nomenological potentials provide a similar description of
the proton momentum distributions. Differences appear
at higher momentum, as one would expect being the chi-
ral potentials derived from a low-energy EFT of the nu-
clear force. This is also evident by looking at Fig. 2,
where the integrated strength of the proton momentum
distribution is shown as a function of k. At low mo-
mentum, chiral and phenomenological results are simi-
lar for all nuclei. At 2 fm−1, most of the strength for
chiral interactions is already accounted for: 95.1(1)%
in 4He, 96.3(4)% in 12C, and 97.0(4)% in 16O. At
≈ 3.5 fm−1 all the strength for chiral interactions is satu-
rated, while phenomenological potentials still contributes
until ≈ 4.5− 5.0 fm−1, as indicated by the higher tail of
ρN (k) at high momentum (Fig. 1). The kinetic energy
derived from the single-nucleon momentum distribution

KN = − ~2

2m

∫
dk

(2π)3
k2 ρN (k), (14)

in general saturates at higher momentum. For both local
chiral interactions and phenomenological potentials, KN

is consistent with the direct VMC calculation for k &
6 fm−1. Local chiral interactions result however in ≈ 20%
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Figure 1. Proton momentum distribution in 4He, 12C, and
16O. Solid symbols are the results for the N2LO Eτ potential
with cutoff R0 = 1.0 fm. Discontinuous lines are the VMC
results for 4He and 12C [9, 10], and cluster VMC results for
16O [12] employing the AV18+UIX potential. Solid magenta
(black) line is the deuteron result for AV18 [9, 10] (N2LO with
cutoff R0 = 1.0 fm [22]).
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Figure 2. Integrated strength of the proton momentum dis-
tributions of Fig. 1 (the same legend is used). The vertical
line indicates the Fermi momentum kF .

to ≈ 35% less kinetic energy than the phenomenological
counterparts.

It is interesting to observe that at high momentum,
the tail of the momentum distribution manifests the ex-
pected universal behavior, i.e., the independence of the
high-momentum component of ρN (k) upon the specific
nucleus. Such universality has been discussed at length in
a number of works, see for instance Refs. [14, 15, 29, 30].
We show here (see Fig. 1) that, depending on the choice
of the potential, the universal behavior itself is different.
This is a consequence of the nature of the high momen-
tum components of the momentum distribution, which
are determined by short-range correlations, i.e., by the
short-range structure of the employed Hamiltonian. Lo-
cal chiral interactions and phenomenological potentials
are characterized by different short-range physics, that
reflects in a different tail of the momentum distribution.

We show in Fig. 3 the effect of correlations to the pro-
ton momentum distribution in 16O. Blue down triangles
refer to the calculation employing the mean-field wave
function of Eq. (3). Brown up triangles, red circles, and
green diamonds are results for the correlated wave func-
tion of Eq. (2) including spin/isospin-independent two-
body, full two-body, and two- plus three-body correla-
tions, respectively. Results have been obtained by opti-
mizing the different wave functions so as to obtain the
same charge radius reported in Table I. Similarly to the
case of phenomenological potentials [13, 31], the mean-
field part of the wave function dominates the momentum
distribution for k . 1.3 fm−1 ≈ kF . Correlations are
fundamental for the construction of higher momentum
components of ρN (k), dominated, in particular, by two-
body spin/isospin correlations. Three-body correlations
have a small effect on the momentum distribution for chi-
ral interactions, enhancing ρN (k) around 2 fm−1 and at
higher momentum, k > 4 fm−1.
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Figure 3. Proton momentum distribution in 16O. |Φ〉 is the
result for the mean-field wave function of Eq. (3). |Ψ〉c, |Ψ〉2b,
and |Ψ〉2b+3b are the results for the correlated wave function
of Eq. (2) employing spin/isospin-independent two-body, full
two-body, and two- plus three-body correlations, respectively.

Ground-state properties of light and medium-mass nu-
clei, such as binding energies, charge radii, and charge
form factors, are independent of the choice of the
coordinate-space cutoff for the employed local chiral in-
teractions [20, 22, 24]. However, the effect of using softer
potentials (larger coordinate-space cutoff) is visible in
the momentum distributions, as shown in Fig. 4. For
a given system, different interactions provide a similar
description of the mean-field part of the momentum dis-
tribution (k . kF ). Higher momentum components of
ρN (k) are instead reduced for softer potentials. How-
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Figure 4. Proton momentum distribution in 4He and 16O.
Solid symbols are the results for the N2LO Eτ potential with
cutoff R0 = 1.0 fm. Empty symbols are the results for the
N2LO E1 potential with cutoff R0 = 1.2 fm.
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Figure 5. VMC and AFDMC proton momentum distributions
in 16O.

ever, as already discussed above, for a given interaction
the universality of the high-momentum components of
ρN (k) is preserved.

In 4He both parametrizations of the three-body force
(Eτ and E1) for a given cutoff provide consistent results
for the single-nucleon momentum distribution. The same
observation applies to 16O, for which, however, the Eτ
parametrization with cutoff R0 = 1.2 fm has not been
considered in this work due to the large overbinding pre-
dicted by such a potential [20, 24]. Calculations for 12C
have been performed for the Eτ R0 = 1.0 fm potential
only due to the large computational cost.

Figure 5 shows the VMC and AFDMC results for the
proton momentum distribution in 16O, where the latter
are extrapolated from mixed estimates (see Ref. [20] for
details). The AFDMC results are expected to be more ac-
curate, as they evaluate the expectation values obtained
through imaginary time propagation to the ground state.
However, the AFDMC calculation for A = 16 required
≈ 105 more computing time than that of the VMC, due
to the different scaling of the two Monte Carlo algorithms
with the number of particles, and the additional statistics
required to obtain comparable statistical errors. In 16O,
the AFDMC results are ≈ 35% higher than the VMC in
the high-momentum region (k & 2 fm−1). Similar results
are found for 4He. Improved trial wave functions, such as
those described in Ref. [20], could, in principle, bring the
VMC results in closer agreement to those of AFDMC.
However, the additional required computing time could
be prohibitive for larger systems, already at the VMC
level. Studies in this direction are in progress.
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Figure 6. Two-nucleon momentum distributions integrated over Q: (a) pn pairs (left panel), (b) pp pairs (right panel). Solid
symbols are the results for the N2LO Eτ potential with cutoff R0 = 1.0 fm. Lines are VMC results for the AV18+UX
potential [9, 11].
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Figure 7. Two-nucleon momentum distributions integrated over q: (a) pn pairs (left panel), (b) pp pairs (right panel). Solid
symbols are the results for the N2LO Eτ potential with cutoff R0 = 1.0 fm. Lines are VMC results for the AV18+UX
potential [9, 11].

V. RESULTS: TWO-NUCLEON MOMENTUM
DISTRIBUTIONS

We present in Fig. 6 the two-nucleon momentum dis-
tributions as a function of the relative momentum q (the
center-of-mass momentum Q is integrated over). Solid
symbols are the results for for the N2LO Eτ interaction
with cutoff R0 = 1.0 fm. Dotted and dashed lines refer
to results employing phenomenological potentials, where
available [9, 11]. In the left (right) panel the momen-
tum distributions for pn (pp) pairs are shown. As for the
single-nucleon momentum distributions, up to k . kF
there is little difference in the physical description of
ρNN (q) provided by chiral and phenomenological interac-

tions. Higher momentum components of ρNN (q) are in-
stead reduced for local chiral forces, in particular in heav-
ier systems. At q = 2 fm−1 97.3(2)% (98.6(1)%) of the
4 pn (1 pp) pairs are accounted for in 4He. These percent-
ages are 98.8(7)% (99.1(3)%) for the 36 pn (15 pp) pairs in
12C, and 99.1(8)% (99.4(4)%) for the 64 pn (28 pp) pairs
in 16O.

An alternative way to look at two-nucleon momentum
distributions is to integrate Eq. (10) over all q, leaving
a function ρNN (Q) of the center-of-mass momentum Q
only. In Fig. 7 we show ρNN (Q) results for the N2LO
Eτ potential with cutoff R0 = 1.0 fm (solid symbols)
compared to available results for phenomenological po-
tentials (dotted and dashed lines) [9, 11]. As in Fig. 6,
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Figure 8. Two-nucleon momentum distributions as a function
of q for Q = 0 in 4He. Solid symbols are the results for the
N2LO Eτ potential with cutoff R0 = 1.0 fm. Empty sym-
bols are the results for the N2LO E1 potential with cutoff
R0 = 1.2 fm. Lines with error bands are VMC results for the
AV18+UX potential [9, 11].

left (right) panel reports pn (pp) momentum distribu-
tions. As already observed in Ref. [9] for lighter nuclei
and phenomenological potentials, ρNN (Q) for a given sys-
tem has a smaller falloff at large momentum compared
to ρNN (q). The ratio of pn to pp pair is also subject to a
smaller variation over the range of Q. Same conclusions
hold for local chiral interactions up to 16O, which results
are similar to those of phenomenological potentials up to
Q ≈ 2 fm−1.

The two-nucleon momentum distributions ρNN (q,Q)
at Q = 0 (back-to-back pairs) in 4He, 12C, and 16O
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Figure 9. Two-nucleon momentum distributions as a function
of q for Q = 0 in 12C. The N2LO Eτ potential with cutoff
R0 = 1.0 fm is used.
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Figure 10. Same of Fig. 9 but for 16O.

are shown in Figs. 8–10, respectively. Solid symbols
are the results for the N2LO Eτ potential with cutoff
R0 = 1.0 fm. Empty symbols those for the N2LO E1 po-
tential with cutoff R0 = 1.2 fm. Blue triangles (red cir-
cles) indicate pn (pp) pairs. For A = 4 the VMC results
employing phenomenological potentials [9, 11] are also re-
ported for comparison. For 12C results are available for
the harder interaction only. In all systems ρNN (q,Q = 0)
is larger for pn pairs compared to pp pairs, in particular
for relative momentum in the range q ≈ 1.5 − 2.5 fm−1.
The pp distributions present a node in this region, the
position of which sits around 2 fm−1 for all the nuclei con-
sidered in this work. pn pairs show instead a deuteronlike
distribution, with a change of slope around q = 1.5 fm−1,
as for phenomenological potentials [9, 11]. The ratio of
pn to pp pairs in the region q ≈ 1.5 − 2.5 fm−1 is & 20
in 4He and & 10 in 12C and 16O. Same conclusion holds
for both harder and softer potentials. Although there
are differences in the description of the two-nucleon mo-
mentum distributions, the pn to pp ratio in the region
q ≈ 1.5− 2.5 fm−1 is nearly independent of the employed
local chiral interactions.

In Fig. 11 we report the ratio between pp and pn pairs
as a function of q for back-to-back pairs. The N2LO
Eτ potential with cutoff R0 = 1.0 fm is used. Results
for 4He employing phenomenological potentials [11] are
shown for comparison (solid line). Empty symbols are
extracted from experimental data: circles for 4He from
Ref. [5], squares for 12C from Ref. [4], and diamonds for
27Al, 56Fe, and 208Pb from Ref. [6]. For the employed
local chiral interactions all nuclei are consistent with high
momentum data extracted from experiments.

Note that the wave function of Eq. (2) only includes
linear spin/isospin-dependent two-body correlations, i.e.,
only one nucleon pair is correlated at a time. Improved
two-body correlations (see Ref. [20] for details) are un-
der study, but the increased computing time requested to
evaluate the full wave function will make the calculation
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tum distributions in 4He for phenomenological potentials [11].
Black empty symbols and gray bands are extracted from ex-
perimental data: 4He [5], 12C [4], 27Al, 56Fe, and 208Pb [6].

of two-body momentum distributions for medium-mass
nuclei computationally challenging. However, prelimi-
nary tests in 4He show a ≈ 8 − 18% variation of the
pp to pn ratio in the range q ≈ 2.5 − 4.0 fm−1, result
still compatible with the available data extracted from
experiments.

The electron scattering experiments necessarily in-
volve two-nucleon currents, which are not included in
this work. Here we provide comparisons to other cal-
culations of single- and two-nucleon momentum distri-
butions [9, 12, 14, 15]. These currents provide a 30 −
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Figure 12. Two-nucleon momentum distributions in 4He for
the N2LO Eτ potential with cutoff R0 = 1.0 fm. Blue trian-
gles refer to pn pairs, red circles to pp pairs.
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Figure 13. Same of Fig. 12 but for 12C.

40% constructive interference in the inclusive transverse
quasielastic electron scattering [32] and in the axial re-
sponse relevant to neutrino scattering [33]. It remains to
be investigated how they impact the back-to-back exclu-
sive measurements.

Finally, the evolution of the two-nucleon momentum
distribution as a function of Q is shown in Figs. 12–14
for 4He, 12C, and 16O, respectively. As in the previous
plots, blue triangles (red circles) are the results for pn
(pp) pairs employing the N2LO Eτ potential with cutoff
R0 = 1.0 fm. The description of ρpn(q,Q) and ρpp(q,Q)
in 4He as Q increases is analogous to that provided by
phenomenological potentials [9, 11]. The node in the pp
distribution gradually disappears, while the deuteronlike
distribution of pn pairs is maintained up to large Q. The
same physical picture holds for larger nuclei up to A =
16. For Q & 1.5 fm−1 the node in the pp momentum
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Figure 14. Same of Fig. 12 but for 16O.
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distributions is completely filled in, and the pn to pp
ratio is largely reduced.

The tables of single- and two-nucleon momentum dis-
tributions in 4He, 12C, and 16O for local chiral potentials
are available as Supplemental Material at [URL will be
inserted by publisher] and as part of the online quantum
Monte Carlo momentum distribution collection [10, 11].

VI. SUMMARY

We presented VMC calculations of the single- and two-
nucleon momentum distributions in 4He, 12C, and 16O
employing local chiral interactions at N2LO. The descrip-
tion of the momentum distributions at low and moderate
momenta up to ≈ 2kF is similar to that provided by phe-
nomenological potentials at low momentum, while higher
momentum components are typically reduced, consistent
with the lower-energy regime of chiral EFT interactions.

The effect of short-range correlations on the high-
momentum components of the single-nucleon momentum
distribution is found to be large and dominant also for
local chiral interactions. The universality of the tail of
the momentum distribution is confirmed, but only within
the same family of interactions.

The two-nucleon momentum distributions as a func-
tion of the relative momentum q of the nucleon pair,
of the center-of-mass momentum Q of the pair, and of
both q and Q are shown. The results for back-to-back
pairs confirm the large pn to pp pairs ratio in the regime
q ≈ 1.5− 2.5 fm−1 up to 16O, which appears to be inde-
pendent of the employed interaction scheme. The pp to
pn ratio for local chiral interactions is compatible with
available experimental data extracted from electron scat-

tering experiments in the range q ≈ 2.5− 4.0 fm−1 up to
A = 16.

It will be interesting to analyze the results of this
work using factorized asymptotic wave-functions and the
short-range correlations as done in Ref. [34] for phe-
nomenological potentials. This will provide information
about how sensitive are the contacts and ratios of con-
tacts to the scale and scheme of the calculations, opening
the possibility of relating a very large class of observables
to ground state calculations.
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