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In Ref. [1], K. Tanabe and K. Sugawara-Tanabe claim
that the transverse wobbling mode, suggested in Ref. [2],
does not exist. In Refs. [1, 3] they suggest an alternative
model to explain the observed rotational bands. This
comment exposes my concerns about their work.

The appearance of wobbling excitations has been sug-
gested as a hallmark for quantal rotation of triaxial nuclei
[4]. Experimental evidence for wobbling in the presence
of an odd i13/2 proton has been found in 163Lu [6] and

in the presence of an odd h11/2 proton in 135Pr [7]. The
observations have been interpreted by coupling the odd
proton with a triaxial rotor that describes the even-even
core [1–3, 7, 8]. The description sensitively depends on
the ratios between the three moments of inertia of the
triaxial rotor. These ratios are restricted by the indistin-
guishability of the protons an neutrons which constitute
the rotor core. Quantal rotation about a symmetry axis
is not possible [4], i. e. the moment of inertia of a symme-
try axis is zero. More generally, the larger the deviation
of the density distribution from symmetry with respect
to one of its principal axes the larger the moment of in-
ertia. This implies that the medium axis has the largest
moment of inertia. This fundamental property of the
quantal many body system is in stark contrast with the
classical rigid body values of the moments of inertia of
the triaxial density distribution
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are in accordance (β and γ are the standard defor-
mation parameters in Lund convention [4]). Here
J0 = (5/3)MR2/3 is the moment of inertia of a rigid
sphere. Its value is not relevant for the following, only
the ratios between the three moments are important.

Fig. 1 shows the ratios given by two expressions as
functions of the triaxiality parameter. Also shown are
the ratios calculated by means of the microscopic crank-
ing model [9] based on the modified oscillator potential.
Calculations based on the Woods-Saxon potential give
essentially the same results. The microscopic ratios fol-
low the irrotational ones, where the moment of inertia
of the short axes is systematically larger. The deviation
increases with reduction of the pair correlations. It is

to be underlined that without pairing the ratios strongly
deviate from the rigid body ones, such that they are in
accordance with the fundamental properties of the sys-
tem that require a zero moment of inertia for a symmetry
axis. The systematic study of the 2+2 states in even-even
nuclei by Allmond and Wood [10] provides experimental
evidence for a γ dependence of the moment of inertia ra-
tios that is close to the irrotational flow one (2) shown in
Fig. 1 (a), where J0 is about one half of the rigid sphere
value. The lower value is attributed to pair correlations
[4] and shell structure [5].

Frauendorf and Dönau [2] classified the particle-
triaxial rotor system as, respectively, transverse or longi-
tudinal when the triaxial potential of the rotor aligns the
angular momentum of the particle with a principal axes
that is perpendicular to or parallel with the axis with the
largest moment of inertia. Transversality or longitudinal-
ity are reflected by a respective decrease or increase of the
excitation energy of the wobbling band with the total an-
gular momentum of the system. Accordingly, 163Lu and
135Pr are transverse, because the odd proton’s angular
momentum tends to be aligned with the short axis while
the medium axis has the maximal moment of inertia. Us-
ing the order Jm > Js > Jl found by the microscopic
calculations, Frauendorf and Dönau were able to account
for the observed energies and transition probabilities.

For their version of the particle-triaxial-rotor model
[1, 3], Tanabe and Sugawara-Tanabe assume the rigid
body ratios (1), which assign the largest moment of in-
ertia to the short axis. This scenario (longitudinal ac-
cording to [2]) results in an increase of the wobbling fre-
quency with angular momentum. An angular momentum
dependent scaling factor is multiplied to all three mo-
ments of inertia, such that the experimentally observed
decrease of the wobbling frequency is achieved. Adjust-
ing the triaxiality parameter γ the authors are able to
fairly well describe the experimental information on tran-
sition probabilities. However, the striking contradiction
with the preceding discussion of the ratios between the
three moments of inertia raises serious concerns about
the suggested scenario. As seen in Fig. 1 (c), the three
rigid body moments of inertia are almost the same for
the core of 135Pr. The γ dependence of the rigid-body
moments of inertia is obviously wrong for weakly triaxial
and axial nuclei.

In Ref. [1], Tanabe and Sugawara-Tanabe use a small
amplitude approximation to the full particle rotor system
to study the stability of transverse wobbling for irrota-
tionlal flow ratios between the moments of inertia. They
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conclude with: ” There is no wobbling mode around the
axis with medium MoI in the particle-rotor model even
with the hydrodynamical MoI...” (that is no transverse
wobbling). Such a general conclusion is incorrect. The
authors considered only weakly deformed nuclei as 135Pr,
for which they find instability of transverse wobbling for
I > 13/2. In Ref. [2], Frauendorf and Dönau estimated
the critical angular momentum Jc where tranverse wob-
bling becomes unstable assuming that the angular mo-
mentum of the odd particle j is aligned with the short
axis (”frozen alignment approximation”),

Jc = j
Jm

Jm − Js
. (3)

For j = 11/2 and the ratio Jm/Js = 4 by Eq. (2) at
γ = 30◦ , the estimate gives instability for I > Jc ≈ 15/2,
where for the exact particle rotor solution transverse

wobbling becomes only unstable for I > 19/2 (see Fig. 16
of [2]). That is, the small-amplitude expression in Ref. [1]
underestimates the critical angular momentum Jc. More
important, when the moment of inertia of the short axis
is increased to Js = 0.6Jm the frozen alignment estimate
(3) gives Jc = 27/2. Accordingly, the instability moves
up to I = 29/2 for the exact particle rotor calculation ,
where it is observed in experiment (see Fig. 15 of [2]).
The microscopic calculations indicate a larger moment of
inertia of the short axis than irrotational flow. The full
particle rotor calculations give stable transverse wobbling
for the strongly deformed nucleus 163Lu for both irrota-
tional flow and microscopic moments of inertia.

To summarize, stable transverse wobbling does exist
and the assumption of rigid body ratios between the mo-
ments of inertia of the triaxial rotor core in Refs. [1, 3]
contradicts basic concepts of quantal rotation.
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FIG. 1: The moments of inertia of the three principal axes as function of the triaxiality parameter γ. Thick black curves:
irrotational flow values Eq. (2); thick dashed curves: rigid body values Eq. (1); colored (grey) curves: microscopic values
obtained by cranking calculations. In panel (a) ”hydro” denotes the irrotational flow values and ”cranking” the cranking
values, which are scaled by the factor J hyd

m (γ)/J crank
m (γ). The numbers in the legends quote the pairing strength. J1110

means ∆p = 1.1MeV, ∆n = 1.0MeV; J0309 means ∆p = 0.3MeV, ∆n = 0.9MeV; etc. Panels (a) and (b) show the same
calculations for Z = 68, N = 96, ε = 0.25; panel (c) for Z = 38, N = 76, ε = 0.2; and panel (d) for Z = 68, N = 96, ε = 0.4.
In panels (b-d) the three moments of inertia are shown in the three γ intervals: long −120◦ ≤ γ ≤ −60◦, with γ → γ + 120◦;
medium −60◦ ≤ γ ≤ 0◦, with γ → −γ; short 0◦ ≤ γ ≤ 60◦; compare (a) with (b). The intersections of the red (grey) vertical
lines indicate the moments of inertia of the three axes for γ = 20◦.
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