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I. INTRODUCTION

Time reversal invariance violating (TRIV) effects in nuclear reactions which can be mea-

sured in the transmission of polarized neutrons through a polarized target[1, 2] attract

interest since they can be enhanced [3, 4] by a factor as large as 106. Similar enhancement

[5, 6] was already observed for parity violating (PV) effects related in neutron transmission

through nuclear targets. For example, the PV asymmetry in the 0.734 eV p-wave resonance

in 139La has been measured to be (9.56 ± 0.35) · 10−2 (see, for example [7] and references

therein). The recent proposals for searches TRIV in neutron-nucleus scattering (see, for

example [8] and references therein) demonstrated the existence of a class of experiments

that are free from false asymmetries, which can have a discovery potential of 102−104 more

sensitive compared with current limits due to the enhancement of TRIV effects for neu-

tron energies corresponding to p-wave resonances in the compound nuclear system. Also,

a search for TRIV in neutron transmission gives the opportunity to use many different nu-

clear targets. This provides assurance that possible “accidental” cancellation of T-violating

effects due to unknown structural factors related to the strong interactions in the particu-

lar nucleus can be avoided. Taking into account that different models of the CP-violation

may contribute differently to a particular T/CP-odd observable, which may have unknown

theoretical uncertainties, TRIV nuclear effects could be considered complementary to elec-

tric dipole moment (EDM) measurements, whose status as null tests of T invariance is more

widely known. It has been shown [4, 9] that the ratio of TRIV effects to PV effects measured

at the same p-wave resonance has almost complete cancelation of nuclear reaction effects

resulting in a ratio of TRIV to PV matrix elements taken between the same states with

opposite parities. This eliminates a bulk of nuclear model uncertainties in TRIV effects [10].

The coefficient of proportionality between the observables and the corresponding matrix

elements involves neutron partial widths with different channel spins, which are unknown

and must be determined from independent measurements of angular correlations in neutron

induced reactions (see, for example [11]). Since these coefficients have a “natural” value of

an order of one, they were mostly ignored in previous studies of TRIV effects in neutron

scattering. However, for development of experimental proposals, it is very important to

know exact spin structure in the relation of PV and TRIV effects to be able to choose the

optimal target for TRIV experiments and for the further analysis of the experimental data.
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II. GENERAL FORMALISM

TRIV and parity violating (PV) effects, related to the T-odd correlation, ~σ · (~̂k × ~̂I) can

be observed in the transmission of polarized neutrons through the polarized target, where ~σ,

~̂I and ~̂k are unit vectors parallel to the neutron spin, the target nuclear spin and the incident

neutron momentum. This correlation leads to a P-odd and T-odd difference between the

total neutron cross sections [2] ∆σPT for ~σ parallel and anti-parallel to ~̂k × ~̂I

∆σPT =
4π

k
Im(f↑ − f↓). (1)

Here, f↑,↓ are the zero-angle scattering amplitudes for neutrons polarized parallel and anti-

parallel to the ~k × ~I axis, respectively. These TRIV effects can be enhanced [3] by a factor

as large as 106. Similar enhancement was already observed for PV effects related to (~σ · ~̂k)
correlation in neutron transmission through unpolarized nuclear targets. This PV and TRI-

conserving difference of total cross sections ∆σP can be written in terms of differences of

zero angle elastic scattering amplitudes with negative and positive neutron helicities as:

∆σP =
4π

k
Im(f− − f+). (2)

To obtain the explicit spin depended coefficients for these two observables we consider

the reaction matrix T̂ , which is related to the scattering matrix Ŝ and the matrix R̂ as

2πiT̂ = 1̂− Ŝ = R̂. (3)

It is convenient to relate this matrix to the matrix R̂ in the integral of motion represen-

tation of the S-matrix [12]

〈

S ′l′α′
∣

∣S
J
∣

∣Slα
〉

δJJ ′δMM ′δ(E ′ − E), (4)

where J and M are the total spin and its projection, S is the channel spin, l is the orbital

momentum, and α represents the other internal quantum numbers. Taking into account

that the spin channel is a sum of the neutron spin ~s nucleus spin ~I

~S = ~s+ ~I, (5)

and the total angular momentum is

~J = ~l + ~S. (6)
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Then choosing quantization axis along axis z, one can write T -matrix elements for elastic

forward scattering as

2πi
〈

~kµ
∣

∣

∣
T
∣

∣

∣

~kµ
〉

=
∑

JMJ lml′m′SmsS′m′

s

Yl′m′(θ, φ) 〈sµIM |S ′m′
s〉 〈l′m′S ′m′

s|JMJ〉

×
〈

S ′l′α′
∣

∣RJ
∣

∣Slα
〉

〈JMJ |lmSms〉 〈Sms|sµIM〉Y ∗
lm(θ, φ), (7)

where angles (θ, φ) describe the direction of the neutron momentum ~k, and µ is the projection

of the neutron spin along the axis of quantization.

Using the relation for a reaction amplitude f̂ : f̂ = −π(kikf)
−1/2T̂ , where ki,f are values

of initial and final momentum, respectively, we can write the elastic scattering amplitude as

f = i
2k

∑

JMJ ll′SmsS′m′

s

YLmL
(θ, φ) 〈sµIM |S ′m′

s〉 〈Sms|sµIM〉

×
〈

S ′l′α′
∣

∣RJ
∣

∣Slα
〉

(−1)J+S′+l′+l(2J + 1)

√

(2l + 1)(2l′ + 1)

4π(2S + 1)

× 〈l0l′0|L0〉 〈LmLS
′m′

s|Sms〉







l′ l L

S S ′ J







(8)

For the further calculations we assume that the direction of the target polarization ~I is

along axis z , and the direction of the momentum ~k is along the axis y. Then, for low energy

neutrons (l, l′ ≤ 1) we can obtain from Eq.(8) the differences of the amplitudes related to

TRIV correlation (~σ · [~̂k × ~̂I]) and P-odd correlation (~σ · ~̂k) as

∆fPT = f↑ − f↓ = (9)

M

√
3I

8πk
√
2I + 1

(

〈

(I − 1/2), 0
∣

∣RI−1/2
∣

∣(I + 1/2), 1
〉

−
〈

(I + 1/2), 1
∣

∣RI−1/2
∣

∣(I − 1/2), 0
〉

√
I + 1

+

〈

(I + 1/2), 0
∣

∣RI+1/2
∣

∣(I − 1/2), 1
〉

−
〈

(I − 1/2), 1
∣

∣RI+1/2
∣

∣(I + 1/2), 0
〉

√
I

)

,

and
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∆fP = f+ − f− = − i(−1)−2I

4π
√
6I + 3k

(10)

×
(

I
√
2I − 1

(〈

(I − 1/2), 0
∣

∣RI−1/2
∣

∣(I − 1/2), 1
〉

) +
〈

(I − 1/2), 1
∣

∣RI−1/2
∣

∣(I − 1/2), 0
〉)

+ 2
√
I(I + 1)

(〈

(I + 1/2), 0
∣

∣RI+1/2
∣

∣(I − 1/2), 1
〉

) +
〈

(I − 1/2), 1
∣

∣RI+1/2
∣

∣(I + 1/2), 0
〉)

− 2I
√
I + 1

(〈

(I − 1/2), 0
∣

∣RI−1/2
∣

∣(I − 1 + /2), 1
〉

) +
〈

(I + 1/2), 1
∣

∣RI−1/2
∣

∣(I − 1/2), 0
〉)

− (I + 1)
√
2I + 3

(〈

(I + 1/2), 0
∣

∣RI+1/2
∣

∣(I + 1/2), 1
〉

) +
〈

(I + 1/2), 1
∣

∣RI+1/2
∣

∣(I + 1/2), 0
〉))

.

Both TRIV and PV amplitudes can be calculated using distorted wave Born approxima-

tion to first order in the parity and time reversal violating interactions (see, for example

ref.[3]). Then for slow neutrons the PV and TRIV matrix elements in above expressions

can be written in the Breit-Wigner resonance approximation with one s-resonance and one

p-resonance as [3]

〈

S ′l′
∣

∣RJ
∣

∣Sl
〉

=

√

Γn
l′(S

′)(−iv + w)
√

Γn
l (S)

(E − El + iΓl/2)(E −El′ + iΓl′/2)
ei(δl′ (S

′)+δl(S)) (11)

where El, Γl, and Γn
l (S) are the energy, the total width, and the partial neutron width of the

l-th nuclear compound resonance, E is the neutron energy, and δl is the potential scattering

phase shift, l 6= l′, v and w are PV and TRIV nuclear matrix elements between s-wave and

p-wave compound states, correspondingly:

< ϕs|VP +WPT|ϕp >=< ϕs|VP|ϕp > + < ϕs|WPT|ϕp >= −v − iw.

Here ϕs and ϕp are compound states wave functions, and VP and WPT are PV and TRIV

interactions nuclear operators. Therefore (see for example [3, 4, 8, 9]), at each resonance

the ration of TRIV and PV effects is related to the ration of TRIV and PV nuclear matrix

elements multiplied by a spin dependent factor κ

∆σPT

∆σP

= κ
w

v
. (12)

The important point is that the factor κ includes amplitudes of the partial neutron widths

which depend on spin channels. To see this dependence let us consider the ratio of TRIV

and PV effects at resonances with a total spin J = I + 1/2 and J = I − 1/2 separately,

assuming 100% polarization of the target for TRIV effect (M = I) and unpolarized target
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for PV effect. Then, using Eqs. (9), (10), and (11) we obtain

κ(J = I + 1/2) =

(

∆σPT

∆σP

)

J=I+1/2

(13)

= (−1)2I

(

3
√
I(2I + 1)

2(I + 1)

)

√

Γn
p(I − 1/2)

[
√
2I + 3

√

Γn
p(I + 1/2)− 2

√
I
√

Γn
p(I − 1/2)]

,

and

κ(J = I − 1/2) =

(

∆σPT

∆σP

)

J=I−1/2

(14)

= (−1)2I
(

3(2I + 1)

2
√
I + 1

)

√

Γn
p(I + 1/2)

[2
√
I + 1

√

Γn
p(I + 1/2)−

√
2I − 1

√

Γn
p(I − 1/2)]

.

For the further analysis it is convenient a ratio of (Γn
p (I + 1/2)/Γn

p(I − 1/2))1/2 ≡ γ and

relative fractions of the amplitudes of the neutron decay widths

xS = (Γn
p(I − 1/2)/Γn

p)
1/2 (15)

yS = (Γn
p(I + 1/2)/Γn

p)
1/2, (16)

where Γn
p = Γn

p(I + 1/2) + Γn
p(I − 1/2) is a total p-wave neutron width. Then, the eqs.(13)

and (14) can be written as[13]

κ(I + 1/2) = (−1)2I

(

3
√
I(2I + 1)

2(I + 1)

)

1

[γ
√
2I + 3− 2

√
I]

κ(I − 1/2) = (−1)2I
(

3(2I + 1)

2
√
I + 1

)

1

[2
√
I + 1−

√
2I − 1/γ]

(17)

Unfortunately, the parameters γ, xS and yS are unknown, and must be obtain from

additional experiments, for example from the measurements of different angular correlations

in (n, γ) reactions. The complete analysis angular correlations in (n, γ) reactions for low

energy neutrons have been done in [11], where a different spin coupling scheme was used:

~J = (~s + ~l) + ~I. The relations between these two spin coupling schemes are given in

Appendix. In the coupling scheme used in [11] one can define the corresponding fractions

of the amplitudes of neutron widths as

x = (Γn
p1/2/Γ

n
p)

1/2 (18)

y = (Γn
p3/2/Γ

n
p)

1/2, (19)
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where Γn
pj correspond j = 1/2 and j = 3/2 with ~j = ~s+~l, and Γn

p = Γn
p1/2 + Γn

p3/2.

Then, taking into account that for J = I + 1/2:

[Γn
p1/2]

1/2 =
1

√

3(2I + 1)
(−2

√
I[Γn

p(I − 1/2)]1/2 +
√
2I + 3[Γn

p(I + 1/2)]1/2), (20)

and for J = I − 1/2:

[Γn
p1/2]

1/2 =
1

√

3(2I + 1)
(−

√
2I − 1[Γn

p(I − 1/2)]1/2 + 2
√
I + 1[Γn

p(I + 1/2)]1/2), (21)

we can rewrite eqs.(13) and (14) as

κ(I + 1/2) = (−1)2I

(

√

3I(2I + 1)

2(I + 1)

)√

Γn
p(I − 1/2)

Γn
p1/2

κ(I − 1/2) = (−1)2I

(

√

3(2I + 1)

2
√

(I + 1)

)√

Γn
p(I + 1/2)

Γn
p1/2

, (22)

or as

κ(I + 1/2) = (−1)2I

( √
I

2(I + 1)

)

[−2
√
Ix+

√
2I + 3y]

x

κ(I − 1/2) = (−1)2I

(

1

2
√

(I + 1)

)

[2
√
I + 1x+

√
2I − 1y]

x
. (23)

Since the parameter κ is a coefficient of proportionality between the observed value of PV

effect and the unknown value of TRIV effect, it is very important to know κ for the estimation

of the accuracy of TRIV effects in the proposed experiments. The lager value of the κ leads

to better statistics in the measurements of TRIV effects. The obtained expressions for the κ

parameter gives us the opportunity to calculate explicitly the ratio of TRIV and PV effects

at each p-wave nuclear compound resonance in terms of the amplitudes of neutron widths,

or in terms of two sets of parameters: x and y or xs and ys, which satisfy the constrains

x2 + y2 = 1 and x2
s + y2s = 1, correspondingly. The values of amplitudes of neutron widths

are randomly fluctuated on different p-wave compound resonances for the same nuclear,

which may lead to different sensitivities of TRIV effects for different resonances at the same

nuclear target. However, there is one exceptional case for J = 0 p-wave resonances for

nuclei with spin 1/2 where the parameter κ does not depend on neutron partial widths at

all, and, as a consequence, can be calculated exactly as κ = −1 (see eq.(23)). Another

interesting observation from eq.(23) is related to the fact that PV effects are proportional

to the parameter x (or to Γn
p1/2), while TRIV effects to the linear superposition of x and y
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parameters (or to Γn
p(I ± 1/2)). Therefore, TRIV effects can be observed even on p-wave

resonances which do not show visible PV effects.

In spite of the fact that total p-wave neutron widths are measured for many p-wave

resonances with a good accuracy [7, 14], the parameters x and y (or xs and ys) currently are

practically unknown. They cannot be calculated due to a complex structure of compound

resonances, therefore, they can be obtained only from experiments which are sensitive to the

values and signs of amplitudes of neutron widths. For example, as it was mentioned above,

they can be obtain from angular distributions of gamma-rays in resonance neutron radiative

capture reactions or by measuring of pseudomagnetic neutron spin rotation in the vicinity

of p-wave resonances[15].

III. DISCUSSIONS AND CONCLUSIONS

The obtained expressions of spin-dependent factors for TRIV and PV effects give us

the opportunity to clarify a number of issues for the proposed search for TRIV effects in

transmission of polarized neutron through polarized targets. We can see that the parameter

κ has a “natural” value of an order of unity with the possible fluctuations on different

resonances due to unknown spin-dependent partial neutron width amplitudes of p-wave

resonances. In some cases this can lead to a quite significant enhancement or suppression

of TRIV effects at different p-wave resonances. Therefore, it is very important to measure

these neutron partial widths for the choice of the optimal target. Also, one can see that,

depending on the values of the neutron partial widths, resonances with the largest PV effects

may not have the largest TRIV effects, and otherwise one can observe reasonably large TRIV

effects at p-wave resonances with a “regular” or small values of PV effects. This suggest

that all p-wave resonances with observed PV effects should be tested for the possible TRIV

experiments by measuring their partial neutron widths.

The general expressions in eqs.(9) and (1) show that TRIV effects are proportional to

the projection M of nuclear target spin on the axis of quantization. Therefore, for the case

of a target with a superposition of different polarization modes (vector, tensor, etc.), only

a vector part of the polarization leads to TRIV effects, and the value of TRIV effect is
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modified by a factor

P =
1

I

∑

M

w(M)M, (24)

where w(M) is a weight of a population for each spin projection quantum number M , or a

weight in the density operator used for the description of the general polarization in terms

of the density polarization matrix.

Finally, we would like to note again that the expressions for the parameter κ obtained

in this paper are different from the presented in a number of publications (see, for example

[4, 8, 9]) due to misprints in Eq.(3) of [9] which were propagated to different publications

without been noticed. Fortunately, the misprinted value of the κ does not change the results

reported in these publications since for all estimates it was assumed that κ is unknown

parameter of an order of unity. However, the knowledge of the exact value of the κ is

required for the choice of the target for the experiment, and for the analysis of experimental

data. In this relation, the first measurement of κ, x and y parameters has been done

recently [16] for 0.74 eV p-wave compound nuclear resonance of 139La by measuring angular

distribution of individual γ-rays in neutron-induced radiative capture.
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Appendix A: Relations between different spin-coupling schemes

The relation between two spin coupling schemes ~J = ~l + (~I + ~s) and ~J = (~s + ~l) + ~I is

given by

〈((

l,
1

2

)

j, I

)

J

∣

∣

∣

∣

(

l,

(

1

2
, I

)

S

)

J

〉

= (−1)l+1/2+I+J
√

(2j + 1)(2S + 1)







l 1
2

j

I J S







,

(A1)

where ~S = ~I + ~s and ~j = ~s+~l.
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Now, defining

x =

∣

∣

∣

∣

j =
1

2

〉

(A2)

y =

∣

∣

∣

∣

j =
3

2

〉

xs =

∣

∣

∣

∣

S = I − 1

2

〉

ys =

∣

∣

∣

∣

S = I +
1

2

〉

,

one can write for l = 1

xs = (−1)3/2+I+J
√
4I







1 1
2

1
2

I J I − 1
2







x+ (−1)3/2+I+J
√
8I







1 1
2

3
2

I J I − 1
2







y (A3)

ys = (−1)3/2+I+J
√

4(I + 1)







1 1
2

1
2

I J I + 1
2







x+ (−1)3/2+I+J
√

8(I + 1)







1 1
2

3
2

I J I + 1
2







y.
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