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We present a detailed measurement of charged two-pion correlation functions in 0%–30% cen-140

trality
√
sNN = 200 GeV Au+Au collisions by the PHENIX experiment at the Relativistic Heavy141

Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from142

Lévy-stable source distributions. Using a fine transverse momentum binning, we extract the corre-143

lation strength parameter λ, the Lévy index of stability α and the Lévy length scale parameter R144

as a function of average transverse mass of the pair mT . We find that the positively and the neg-145

atively charged pion pairs yield consistent results, and their correlation functions are represented,146

within uncertainties, by the same Lévy-stable source functions. The λ(mT ) measurements indicate147

a decrease of the strength of the correlations at low mT . The Lévy length scale parameter R(mT )148

decreases with increasing mT , following a hydrodynamically predicted type of scaling behavior. The149

values of the Lévy index of stability α are found to be significantly lower than the Gaussian case150

of α = 2, but also significantly larger than the conjectured value that may characterize the critical151

point of a second-order quark-hadron phase transition.152
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I. INTRODUCTION153

Femtoscopy is a well-established sub-field of high energy particle and nuclear physics, that encompasses all the154

methods that allow for measuring lengths and time intervals on the femtometer (fm) scale. While the name was coined155

in 2001 [1], several earlier methods were developed in other fields of science that can be considered as predecessors. As156

femtoscopy typically deals with intensity correlations of particle pairs (or multiplets), the earliest intensity correlation157

measurements, that were performed in radio and optical astronomy to measure the angular diameters of main sequence158

stars by R. Hanbury Brown and R. Q. Twiss (HBT) [2] are considered as the experimental foundations of this field.159

The clear understanding of the HBT effect, as well as that of the lack of intensity correlations in lasers, by Roy J.160

Glauber is considered to be the opening of a new and prosperous field of science called quantum optics [3–5].161

Intensity correlations of identical pions were observed in proton-antiproton annihilation while searching for the162

ρ meson [6], and these correlations were explained by G. Goldhaber, S. Goldhaber, W-Y. Lee and A. Pais on the163

basis of the Bose-Einstein symmetrization of the wave-function of identical pion pairs [7]. Hence, in particle physics164

these correlations are also called GGLP or simply Bose-Einstein correlations. Because the two-particle Bose-Einstein165

correlation function is related to the Fourier transform of the phase-space density of the particle emitting source, by166

measuring the correlation function one can readily map out the particle source on a femtometer scale.167

The discovery of the strongly coupled quark gluon plasma (sQGP) at the Relativistic Heavy Ion Collider [8–11]168

(RHIC) relied also on the contribution from Bose-Einstein correlation studies, beyond other important observables,169

many of which were confirmed and further elaborated at the Large Hadron Collider (LHC). The approximate transverse170

mass (mT ) dependence of the measured Gaussian source radii (RGauss) is R−2Gauss ∝ a + bmT (where a and b are171

constants), which is almost universal across collision centrality, particle type, colliding energy and colliding system172

size [12, 13]. This is a direct consequence of a strong longitudinal as well as radial hydrodynamical expansion [14–173

20]. Directional Hubble flows seem to be a crucial property of the sQGP formation in heavy ion collisions, or Little174

Bangs [14–17]. The so-called RHIC HBT puzzle, the apparent contradiction between several hydrodynamical model175

predictions and the observed ratio of the HBT radii [8, 9], also turned out to be resolvable in a hydrodynamical picture176

with more realistic physics conditions and refined models of three dimensional Hubble flows [15, 18, 19, 21–23]. For177

a more detailed introduction and review of Bose-Einstein correlations and their application in high energy heavy ion178

collisions, see the review papers in Refs. [20, 24–32].179

To fully exploit the power of HBT correlations (as observables deemed to provide insight into the dynamics of180

the matter produced in heavy-ion collisions), one can and must go beyond the Gaussian parameterization and the181

Gaussian source radii, as observed in e+e− collisions at the Large Electron-Positron Collider (LEP) [33] and in p+p,182

p+Pb and Pb+Pb collisions at the LHC [34–36]. One of the observables that is rather sensitive to the actual shape183

of the Bose-Einstein correlation function is the so-called “intercept parameter” (or strength) λ of the correlation184

function, as its value depends on the result of an extrapolation of the observed correlation function to zero relative185

momentum. The experimental determination of the parameter λ for pions can provide information about the ratio186

of primordial pions to those that are decay products of long lived resonances [37, 38], and may also give insight into187

the possibility of coherent pion production [25, 27, 37]. The shape of the correlation functions, in particular their188

non-Gaussian behavior, may also hint at the vicinity of the critical point of the quark-hadron phase transition [39, 40].189

In this paper we present a precise measurement of two-pion HBT correlation functions in
√
s
NN

= 200 GeV Au+Au190

collisions by the PHENIX experiment at RHIC. We use the data recorded in the 2010 data taking period. This data191

sample allows us to use a fine transverse mass binning, and to infer the shape of the correlation function more precisely192

than was possible with earlier data sets. The significance of this will become evident when we extract the source193

parameters. It turns out that the measured correlation functions cannot be described by a Gaussian approximation194

in a statistically acceptable way. A generalized random walk or anomalous diffusion suggests the appearance of Lévy-195

stable distributions for the phase-space density of the particle emitting source [40, 41]. We have investigated whether196

a Lévy-stable generalization of the Gaussian source distributions is consistent with our measurements, and found that197

(with the proper treatment of the final state Coulomb interaction) Lévy-stable source distributions – applied here for198

the first time in heavy ion HBT analyses – give a high quality, statistically acceptable description of the measured199

correlation functions.200

The structure of this paper is as follows. Section II presents the PHENIX experimental setup with emphasis on201

the tracking and particle identification detectors that were used for this analysis. In Section III we present the202

measurement procedure of the two-pion correlation functions. In Section IV we discuss the shape analysis of the203

measured HBT correlation functions for Lévy-stable source distributions, and the procedure for determining the Lévy204

parameters. In Section VI we present our results, namely the extracted Lévy parameters of the source as a function205

of the transverse mass of the pair. We also discuss here some of the possible interpretations of these results. Finally206

we summarize and conclude.207
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II. EXPERIMENTAL SETUP208

The PHENIX experiment was designed to study various different particle types produced in heavy ion collisions,209

including photons, electrons, muons and charged hadrons, trading spatial acceptance for segmentation, good energy210

and momentum resolution, and high luminosity capability. Figure 1 shows a schematic beam view drawing of the211

PHENIX experiment during the 2010 data taking period. The detailed description of the basic experimental con-212

figuration (without the upgrades made after the early 2000s) can be found elsewhere [42]; here we give only a brief213

description of the detectors that played a role in this analysis.214
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FIG. 1. View of the PHENIX central arm spectrometer detector setup during the 2010 run.

A. Event characterization detectors215

This analysis uses the beam-beam counters (BBC) for event characterization. Its two arms (“North” and “South”)216

are located at ±144 cm along the beam axis (z axis) from the center of PHENIX, corresponding to the 3.0< |η| <3.9217

pseudorapidity interval. Each arm of the BBC comprises 64 quartz Čerenkov counters, covering 2π in azimuth. They218

provide minimum-bias (MB) triggering; the MB trigger condition requires at least two hits in coincidence in both219

BBC arms, thus capturing 92 ± 3% of the total Au+Au inelastic cross section [43]. The charge sum in both BBC220

arms is used for event centrality determination. The BBCs also measure the average hit time in the north and south221

arm photomultipliers (PMTs), thus providing collision vertex position measurements along the z direction (from the222

hit time difference) as well as initial timing information for the collision. With an intrinsic timing resolution of ≈40223

ps, the z-vertex resolution is ≈0.5 cm and ≈1.5 cm in central and peripheral Au+Au collisions, respectively.224

B. Central arm tracking225

PHENIX has two central arm spectrometers (“east” and “west”), each covering |η| < 0.35 in pseudorapidity and226

∆ϕ = π/2 in azimuth, as seen in Fig. 1. In each central arm, charged particle tracks are reconstructed using hit227

information from the drift chamber (DC), the first layer of pad chambers (PC1) and the collision z-vertex position228

measured by the BBC [44].229

The DCs are located at a radial distance of 202–246 cm from the beam axis. They provide trajectory measurement230

in the transverse plane, with an angular resolution of ≈1 mrad. The PC1s are multiwire proportional chambers with231

pad readout, located immediately behind the DCs. They provide track position measurement both in the ϕ and in232

the z direction, with a z-resolution of ≈1.7 mm.233

The PHENIX central arm spectrometer magnet generates a magnetic field approximately parallel to the beam line.234

It comprises two pairs of independently operable concentric coils, an inner and an outer coil pair, located at radial235
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distances of ≈60 cm and ≈180 cm, respectively. The DCs are positioned so that they are in the reduced field region.236

Charged-particle-momentum determination is enabled by the measurement of the bending of the track in the magnetic237

field. The transverse momentum pT is determined by the bending angle measured by the DC, while the polar angle238

of the momentum is determined by the z coordinate measured by PC1 and the z-vertex coordinate from the BBC.239

Reconstructed tracks are then projected to the outer detectors used for track verification and timing measurement.240

Because at not too low pT the momentum resolution is governed mainly by the angular resolution of the DC, high241

bending fields are desirable. Thus usually the two coil pairs are operated with currents flowing in the same direction242

(this is called “++” or “−−” mode), to achieve the designed maximum total field integral of
∫
B · dl ≈1.1 T m (this243

is the relevant quantity for the bending, and in turn for the momentum measurement).244

In 2010, the Hadron Blind Detector (HBD), a specialized Čerenkov counter located around the nominal collision245

point for the measurement of dielectron pairs, was installed [45]. The operation of the HBD required a field-free region246

around the collision point, which was achieved by running the inner and outer coils in the opposite directions (in247

“+−” or “−+” modes). This reduced the field integral to ≈40% of its maximum value. However, the present analysis248

deals with low and intermediate pT hadrons (up to pT ≈0.85 GeV/c), so high pT momentum resolution is not crucial.249

(The momentum resolution for pT in the dataset used is estimated to be δpT /pT ≈ 1.3%⊕1.2%×pT [GeV/c] [46]. The250

pz momentum resolution has, in addition, a component stemming from the BBC z-vertex resolution.) Moreover, the251

reduced magnetic field had a beneficial side effect for the present analysis. Namely, the low momentum acceptance252

of this dataset is extended to lower values of transverse momentum, enabling a relatively clean identified pion sample253

down to pT ≈0.2 GeV/c. This would have been much harder, if not impossible, with the normal ++ or −− field254

setting, because of too large bending angles and residual bending outside of the DC nominal radius, which is not255

taken into account in the standard PHENIX track projection algorithm.256

C. Particle identification detectors257

In the present analysis, we identify charged pions by their time of flight from the collision point to the outer258

detectors. We use the lead-scintillator electromagnetic calorimeter (PbSc) as well as the high resolution time-of-flight259

detectors (TOF east and TOF west) [47].260

The PbSc is a sampling calorimeter located approximately 5.1 m radial distance from the beam axis. It covers261

|η| <0.35 in both arms, and in terms of ϕ, it covers all π/2 acceptance of the west arm, and π/4 (i.e. half) of the262

east arm, as seen on Fig. 1. It is a finely segmented detector, consisting of 15,552 individual channels (“towers”).263

After careful tower-by-tower and energy dependent calibration, a timing resolution of ≈ 400–600 ps (depending on264

deposited energy, incident angle, individual channel electronics imperfections, etc.) was achieved for pions. The part265

of the east arm acceptance not covered by the PbSc is covered by the lead-glass (PbGl) calorimeter, which has a much266

worse timing resolution for hadrons and thus was not used for the present analysis.267

The TOF east detector is also located at approximately a 5.1 m from the beam axis, and covers much of the PbGl268

acceptance in the east arm. It is made of 960 plastic scintillator slats, with 2 PMTs attached to each side of them.269

After calibration, the timing resolution was found to be ≈150 ps. [48]. The TOF west detector takes advantage of270

the multigap resistive plate chamber (MRPC) technology. It has two separate panels, each covering ∆ϕ ≈ π/16 in271

the west arm, at around 4.8 m radial distance from the beam pipe. Each panel comprises 64 MRPCs and has 256272

individual copper readout strips. After calibration, a timing resolution of ≈90 ps was achieved.273

III. MEASUREMENT OF TWO-PION CORRELATION FUNCTIONS274

A. Event and track selection, particle identification275

The MB-triggered data sample used in this analysis comprises ≈ 7.3×109
√
s
NN

= 200 GeV Au+Au events recorded276

by PHENIX during the 2010 running period. This sample is reduced to ≈ 2.2× 109 events when we apply a 0%–30%277

centrality selection. The event z-vertex position was constrained between ±30 cm in order to have an efficient BBC278

response as well as to avoid scattering in the central magnet steel.279

We selected tracks of good quality, i.e. those where the DC and PC1 information was unambiguously matched. To280

reduce in-flight decays as well as random associations between tracks and hits in the PbSc/TOF detectors, a track281

matching cut of 2σ was applied for the difference between the projected track position and the closest hit position in282

these detectors, in both the ϕ and z directions. As part of the systematic uncertainty investigation, we studied the283

dependence of the final results on these selection criteria.284

For the present analysis, a clean sample of identified pions was necessary. Charged pion identification was performed285

with the help of time-of-flight information (t) from the PbSc/TOF detectors and the BBC, as well as using path length286
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information (L) from the track model and the momentum value p measured by the DC/PC1. The reconstructed287

squared mass m2 of a track is then288

m2 =
p2

c2

[(
ct

L

)2

− 1

]
, (1)

and pions were selected by applying a 2σ cut in the m2 distribution of the PbSc and the TOF detectors. For the289

pT range of interest in this analysis, the contamination in the pion sample caused by misidentified kaons or protons290

is negligible. A more important contamination in the pion sample comes from the random association of tracks and291

hits in the PbSc or the TOF detectors at low momentum, reaching ≈2%–3% for the TOF detectors, and as high292

as 8%–10% for the PbSc at or below pT ≈ 0.2 GeV/c. This background quickly diminishes for even slightly higher293

pT (at pT ≈ 0.25 GeV/c), as inferred from the observed m2 distributions. However, even at low pT this is a gross294

overestimation of the contamination. Most of the tracks are pions, even those for which the track projection algorithm295

didn’t find the proper hit because of the residual bending at low momentum. The systematic uncertainty stemming296

from mis-identified particles is mapped out by varying the mentioned standard 2σ cut on the m2 spectrum of pions,297

as detailed in Section V. In this analysis, we apply a pT > 0.16 GeV/c selection, including all identified pions above298

this threshold into our sample.299

B. Construction of the correlation functions300

In general, the two-particle correlation function C2(p1, p2) is defined as301

Cspm
2 (p1, p2) =

N2(p1, p2)

N1(p1)N1(p2)
, (2)

where N1(p1), N1(p2) and N2(p1, p2) are the one- and two-particle invariant momentum distributions at four-momenta302

p1 and p2, and the superscript “spm” denotes that here the correlation function is written as a function of the single303

particle momenta.304

There can be many causes of correlated particle production, such as collective flow, jets, resonance decays, conser-305

vation laws. In heavy ion collisions, the main cause of like-sign pion pairs correlation at small relative momentum306

is the quantum-statistical Bose-Einstein or HBT correlation stemming from the indistinguishability (and thus the307

symmetrical pair wave-function) of two identical bosons. This source of correlations grows with the mean number308

of pairs at small relative momentum, which is approximately proportional to the mean multiplicity squared. Other309

possible sources of correlations (for example pion pair production from resonance decays) increase only linearly with310

the mean multiplicity. Hence, for the large multiplicity heavy ion collisions, Bose-Einstein correlations dominate the311

correlation function at small relative momenta.312

Experimentally the method of the measurement is the so called event-mixing. To discuss that in this subsection, let313

us denote any experimental choice for the measure of the two-pion relative momentum by q, defining our particular314

choice later in subsection III D. In the present subsection we discuss only those properties of the two-pion Bose-315

Einstein correlation functions that are generally valid, independently of the particular experimental choice of q for316

the measure of the relative momentum of the pion pair.317

Let us define A(q,K) as the actual q distribution of pion pairs for a given average four-momentum K, where both318

members of the pair stem from the same event. Note also that our choice for K is detailed later in Section III D. This319

A(q,K) distribution will contain effects which have to be excluded from the Bose-Einstein correlation function (such320

as resonance decay effects, kinematics, acceptance effects etc.). For this purpose, one defines a background distribution321

with pairs of pions from different events. Let us denote this background distribution with B(q,K). A usual method is322

to construct the background distribution by keeping an event pool of a predefined size, and correlating each pion of the323

investigated event with all same charged pions of the background pool. However, in this case, multiple particle pairs324

will come from the same event pair. In this analysis we use the method described in [33] that eliminates any possible325

residual correlation of this type as well. For each “actual” event, we form a “mixed” event by choosing pions (of the326

same number as in the actual event for each charge) from other randomly selected events within the background pool327

(that has to be larger than the maximal multiplicity of pions of a given charge), under the condition that no two328

tracks may originate from the same event. After this procedure, each “mixed” event comprises pions originating from329

different events. The background distribution is then created from the (same charge) pairs of this mixed event. It330

must also be noted that in order for the background event to exhibit the same kinematics and acceptance effects, one331
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has to build the background event from the same event class (i.e. from events of similar centrality and of similar z332

coordinate of the collision vertex). We used 3% wide centrality and 2 cm wide z-vertex bins to achieve that goal.333

If we now take the ratio of the actual and the background distributions, we get the prenormalized correlation334

function as335

C2(q,K) =
A(q,K)

B(q,K)
·
∫
B(q,K)dq∫
A(q,K)dq

, (3)

where the integral is performed over a range where the correlation function is not supposed to exhibit quantum336

statistical features. Let us note that the method described above is applied to pairs belonging to a given range of337

average momenta, and in that case K denotes the mean of these average momenta in the given range. Furthermore,338

in the mixing technique described above, the number of actual and background pairs is the same – aside from the339

effect of two-track cuts, which is outlined in the next subsection.340

C. Two-track cuts341

When forming pairs to construct the aforementioned actual A(q) and background B(q) pair distributions, one has342

to take into account detector inefficiencies and peculiarities of the track reconstruction algorithm which sometimes343

doubles or splits one track into two (creating so-called ghost tracks). It is also possible that two different tracks344

are not well distinguished when they approach one another too closely. To remove these possible track splitting and345

track merging effects, we studied track separation distributions in each detector involved, in each of the transverse346

momentum bins used in this analysis. Then we applied the following cuts in the ∆ϕ−∆z plane (in units of radians347

and cm, respectively) of pairs of hits in the given detector, associated with track pairs:348

∆ϕ > 0.15

(
1− ∆z

11 cm

)
and ∆ϕ > 0.025 (DC), (4)

∆ϕ > 0.14

(
1− ∆z

18 cm

)
and ∆ϕ > 0.020 (PbSc), (5)

∆ϕ > 0.13

(
1− ∆z

13 cm

)
(TOF east), (6)

∆ϕ > 0.085 or ∆z > 15 cm (TOF west). (7)

We applied these two-track cuts to both the actual and the background sample.349

In addition to these cuts, if we found multiple tracks that are associated with hits in the same tower of the PbSc,350

slat of the TOF east, or strip of the TOF west detector, we removed all but one of them. This ensured that we do351

not take into account any ghost tracks that would have remained in the sample after the above mentioned pair cuts.352

Our analysis method is somewhat different from those of earlier measurements of Bose-Einstein correlations in heavy353

ion collisions, in particular with respect to the kinematic variables and the application of Lévy-stable distributions.354

Thus we proceed carefully here and provide a thorough and detailed description of the concepts and procedures355

that we applied in the determination of the proper kinematic variables and the shape analysis of the Bose-Einstein356

correlation functions.357

D. Variables of the two-pion correlation function358

The correlation function, as defined in Eq. (2), depends on single particle and pair momentum distributions. These359

can be calculated in the Wigner function formalism, assuming chaotic particle emission, from the single particle and360

pair wave functions, as detailed in Refs. [14, 27, 49, 50]. For the pair momentum distribution, neglecting dynamical361

two-particle correlations, one obtains the Yano-Koonin formula [49]362

N2(p1, p2) = (8)∫
d4x1d

4x2S(x1, p1)S(x2, p2)|Ψ(s)
p1,p2(x1, x2)|2,
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by means of the phase-space density of the particle-emitting source S(x, p), sometimes referred to as “source dis-363

tribution” or simply as “source”, and Ψ
(s)
p1,p2(x1, x2), the symmetrized pair wave function. Neglecting final state364

Coulomb and strong interactions, as well as possible higher order wave-function symmetrization effects on the level365

of two-particle correlation functions, the pair wave-function is a properly symmetrized plane wave, i.e. in this case,366

|Ψ(s)
p1,p2(x1, x2)|2 = 1 + cos((p1 − p2)(x1 − x2)). (9)

This approximation in turn leads to the expression of the pure quantum-statistical correlation function (C
(0)
2 ) as [14,367

27, 49, 50]368

C
(0),spm
2 (p1, p2) = 1 + Re

S̃(q, p1)S̃∗(q, p2)

S̃(0, p1)S̃∗(0, p2)
, (10)

where complex conjugation is denoted by ∗, the (0) index signals that the Coulomb effect is not taken into account,369

the superscript “spm” denotes that the correlation function is written as a function of the single particle momenta,370

and from now on371

q ≡ p1 − p2 = (q0, q), (11)

stands for the difference of the four-momenta of particles 1 and 2 (q0 denotes energy difference, i.e. the zeroth372

component of the relative four-momentum q) and S̃(q, p) denotes the Fourier transform of the source373

S̃(q, p) ≡
∫
S(x, p)eiqxd4x. (12)

For source distributions and typical kinematic domains encountered in heavy ion collisions, the dependence of S̃(q, p)374

as defined in Eq. (12) is much smoother [28] in the original p momentum variable than in the relative momentum q,375

coming from the Fourier transform. Hence, it is customary to apply the p1 ≈ p2 ≈ K approximation in Eq. (10),376

where377

K ≡ 1

2
(p1 + p2) = (K0,K), (13)

is the average four-momentum of the pair (K0 denotes the average energy of the pair, i.e. the zeroth component of378

the average four-momentum K). With this,379

C
(0)
2 (q,K) ≈ 1 +

|S̃(q,K)|2

|S̃(0,K)|2
. (14)

The validity of these approximations was reviewed in Refs. [26, 27] and for typically exponential single particle spectra380

the approximation was found to be within 5% of the more detailed and substantiated calculations.381

If the above approximations are justified, the two-particle Bose-Einstein correlation function is unity plus a positive382

definite function of the relative momentum q. In the
√
s
NN

= 200 GeV 0%–30% centrality Au+Au data reported in383

this analysis, we found that Eq. (14) is consistent with the data; we did not observe the nonpositive definite, oscillatory384

behavior that was observed in e+e− collisions at LEP [33], and in p+p collisions at the LHC [34, 36]. Note that in385

e+e− collisions at LEP and in p+p collisions at the LHC the smoothness approximation indicated above is not valid,386

but the Yano-Koonin formula of Eq. (8) still holds [33, 34].387

In general, as described above, the correlation function depends on four-momenta p1 and p2 or, equivalently, on q388

and K. However, the Lorentz product of q and K is zero, i.e. qK = q0K0 − qK = 0. Here q and K are defined as389

three-vector components of q and K as390

q ≡ (qx, qy, qz), K ≡ (Kx,Ky,Kz) (15)
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This in turn implies391

q0 = q
K

K0
. (16)

Based on this relation, one may transform the q-dependent correlation function to depend on q instead. If the particles392

contributing to the correlation function are similar in energy, then K is approximately on-shell; thus the correlation393

function can be measured as a function of K and q.394

As the dependence on K in heavy ion reactions is typically smoother than on q, one may think of q as the “main”395

kinematic variable. Then one may assume a parameterization of the q dependence, and explore the dependence of396

the parameters on K. Close to midrapidity, instead of K, the dependence on397

KT ≡ 0.5
√
K2
x +K2

y , (17)

or, alternatively, on the transverse mass398

mT ≡
√
m2 + (KT /c)2 (18)

may be investigated, with m being the particle (e.g. pion) mass. Note that the average four-momentum K is not on399

mass-shell, but mT would be the transverse mass of a particle with momentum K. Furthermore, mT also corresponds400

to the average transverse mass of the particle pair, MT = 0.5(mT,1+mT,2) in the limit of vanishing relative momentum401

|q| → 0. As earlier results were frequently given in terms of KT , which is a unique function of mT of Eq. (18), we402

decided to use mT instead of MT to characterize the transverse momentum of a pair of identical pions.403

Let us also note that Eq. (14) can be reinterpreted if we introduce the pair distribution as404

D(r,K) ≡
∫
S(ρ+ r/2,K)S(ρ− r/2,K)d4ρ, (19)

where r is the pair separation four-vector and ρ is the four-vector of the center of mass of the pair. Then the correlation405

function can be expressed as406

C
(0)
2 (q,K) = 1 +

D̃(q,K)

D̃(0,K)
, (20)

where D̃ is defined with the Fourier transformation as407

D̃(q,K) ≡
∫
D(r,K)eiqrd4r. (21)

Thus the two-particle Bose-Einstein correlation function is connected to the pion pair distribution D(r,K), so this408

is the quantity that can be reconstructed from two-particle correlation data directly. Different source distributions409

that keep D(r,K) invariant yield equivalent results from the point of view of two-particle Bose-Einstein correlation410

measurements.411

At any fixed value of the average pair momentum K, the correlation function C2(q,K) can be measured as a412

function of various decompositions of the components of the relative momentum q. The Bertsch-Pratt (BP) or413

side-out-longitudinal decomposition [51, 52] is frequently used. Here414

qBP ≡ (qout, qside, qlong), (22)

with qlong pointing in the beam direction, qout in the direction of the average transverse momentum (Kx,Ky), and415

the “side” direction orthogonal to these two directions. The transformation to the BP variables corresponds to a416

rotation in the transverse plane, depending on the direction of the average momentum. For the BP decomposition, it417

is particularly favorable to use the longitudinal co-moving system (LCMS) of the pair, where the average momentum418

is perpendicular to the beam axis. Here the BP decomposition of the average momentum is simply KBP ≡ (KT , 0, 0),419
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as KT = Kout, and the temporal information of the source is coupled to the out component of the Bose-Einstein420

correlation function [26, 27].421

However, the Bertsch-Pratt variables require three-dimensional Bose-Einstein correlation measurements, so a de-422

tailed shape analysis in terms of them can suffer from a lack of statistical precision. For example, it is very difficult423

to identify any non-Gaussian structure in a three-dimensional analysis of correlation functions. For this reason, some-424

times the two-particle correlation function is measured as a function of a one-dimensional momentum variable [33, 35].425

The Lorentz invariant relative momentum, corresponding to the Lorentz length of qµ, is defined as426

qinv ≡
√
−qµqµ =

√
q2x + q2y + q2z − (E1 − E2)2. (23)

In the LCMS, using the Bertsch-Pratt variables qinv is expressed as427

q2inv = (1− β2
t )q2out + q2side + q2long, (24)

where βt = 2KT /(E1 + E2) is the “average transverse speed” of the pair.428

Let us introduce also the rest frame of the pair, here referred to as pair center-of-mass system (PCMS), and define429

the relative three-momentum in this system as qPCMS. Then the variable qinv can be expressed as430

qinv = |qPCMS|. (25)

Equation (24) shows that qinv can be very small at moderate KT , even for not very small qout values. It is also431

well known that the Bertsch-Pratt radii (Rout, Rside, Rlong) are of similar magnitude in
√
s
NN

= 200 GeV Au+Au432

reactions at RHIC, so the Bose-Einstein correlation functions are nearly spherically symmetric in the LCMS frame [12,433

13, 53, 54]. This also implies that the correlation function boosted to the PCMS frame is definitely not spherically434

symmetric (especially for intermediate or high KT , i.e. for βt values approaching 1). The conclusion is that qinv is435

not a proper one-dimensional variable of Bose-Einstein correlations of pions in
√
s
NN

= 200 GeV Au+Au collisions.436

We look for a novel one-dimensional variable whose small value is only possible in the case when qout, qside, qlong437

are all small. Hence, we introduce LCMS three-momentum difference qLCMS This quantity is invariant for Lorenz438

boosts in the beam direction. For the sake of simplicity, we hereafter define439

Q ≡ |qLCMS|. (26)

which can be expressed with the lab-system components of the individual particle momenta as440

Q=
√

(p1x−p2x)2+(p1y−p2y)2+q2long,LCMS, (27)

where q2long,LCMS =
4(p1zE2 − p2zE1)2

(E1 + E2)2 − (p1z + p2z)2
. (28)

Because the correlation functions are approximately spherically symmetric in the LCMS, the measured correlation441

functions are approximately independent of the orientation of qLCMS.442

We thus conclude that Q can be introduced in a reasonable manner as the proper one-dimensional variable of the443

Bose-Einstein correlations in
√
s
NN

= 200 GeV Au+Au collisions.444

In order to perform a detailed shape analysis in the LCMS, we thus measured them as univariate functions of Q445

(for KT values in various ranges). Thus this one-dimensional analysis in the LCMS in terms of Q can be viewed as446

an approximation to a three-dimensional analysis with the approximation that the three HBT radii are equal.447

In principle, a more complete picture of the source geometry can be obtained by a three-dimensional Lévy analysis,448

utilizing Eqs. (49)-(52) of Ref. [40]. Given that the details of these studies go beyond the scope of the current449

manuscript, let us make only some general remarks here. If the source is a symmetric three-dimensional Gaussian,450

then in a one-dimensional analysis (in our Q variable, measured in the LCMS), one would obtain α = 2 for the Lévy451

shape parameter. If the source is an asymmetric 3D Gaussian, then non-Gaussian 1D correlation functions would be452

obtained, but also strong deviations from the Lévy shape could be observed. We investigated this using the method453

of Lévy expansion of the correlation functions [55] for each mT bin, and found no first order deviations from the Lévy454

shape. However, an mT averaged correlation function shows deviations from the pure Lévy shape, which may be455

attributed to the mT dependence of α. These observations suggest that the observed Lévy shapes do not originate456

from an asymmetric three-dimensional Gaussian source.457
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IV. STRENGTH AND SHAPE OF TWO-PION CORRELATION FUNCTIONS458

We recapitulate some of the important general properties of the two-pion Bose-Einstein correlation functions. First459

we discuss the strength of the correlation functions, and the main features of its interpretation, following the lines460

of Refs. [37, 38]. Then we describe the shape assumption used in this paper, and the physical interpretation of the461

relevant parameters.462

A. Correlation strength and its implications463

If the final-state-strong and Coulomb interactions can be neglected, then Eq. (14) implies that the correlation464

function takes the value 2 at vanishing relative momentum, C
(0)
2 (Q = 0,K) = 2. However, experimentally the two-465

track resolution (corresponding to a minimum value of Qmin of at least 6–8 MeV, depending on track momentum)466

prevents the measurement correlation functions at Q = 0. So the correlation function is measured at nonzero relative467

momenta and then extrapolated to Q = 0. This extrapolated value in general can be different from the exact value468

at Q = 0, and this can be quantified by defining469

λ ≡ lim
Q→0

C2(Q,K)− 1. (29)

where λ may depend on average momentum K.470

In our analysis we measure the C2 correlation functions as a ratio of actual and background distributions A and B,471

and we have carefully checked in our dataset that limQ→0A(Q,KT ) = 0 and limQ→0B(Q,KT ) = 0 in every transverse472

momentum range, indicating that the split tracks have been removed from our data sample. The two-track resolution,473

embodied into the values of two-track cuts as seen in Section III C, corresponds to a maximum spatial resolution of474

Rmax ≈ h̄/Qmin ≈ 25 − 30 fm. In our analysis, source details on spatial scales larger or equal to Rmax cannot be475

experimentally resolved.476

This (perhaps with different Rmax values) is a general feature of any similar experiment, and it leads to the core-477

halo picture of Bose-Einstein correlations in high energy heavy ion reactions [37, 38]. The core-halo picture treats the478

particle emitting source as a composite one, corresponding to particle emission from a hydrodynamically behaving479

fireball-type core, surrounded by a halo of long-lived resonances. Such a picture is particularly relevant for pion480

production. Several long-lived resonances with decay widths of Γ� Qmin (like the η, η′, K0
S mesons, and, depending481

on the experimental two-track resolution, maybe the ω meson) decay to pions that contribute to the halo region. The482

general structure of the core-halo model may hold not only for pion production but for the production of other mesons483

as well.484

In short, limQ→0 C2(Q,K) = 1 +λ(K) is in general different from the exact value of C2(Q = 0,K) which (indepen-485

dently of K) is 2 for a thermal, fully chaotic particle source. In most data sets, λ < 1 holds, see again the overview486

papers in Refs. [20, 24–32].487

In the core-halo picture, for thermal particle emission, the intercept λ, the extrapolation of the measured resolvable488

part of the correlation function to zero relative momentum, is the square of the fraction of pions coming from the489

core, defined as490

fc ≡
Ncore

Ncore +Nhalo
, (30)

because both pions have to come from the core if they are to contribute to the resolvable correlation function. This491

requires a physical assumption, that the phase-space density of the pion emitting source is made up of two components,492

i.e.493

S = Score + Shalo, (31)

each component having a Fourier transform defined as494

S̃core(q,K) ≡
∫
Score(x,K)eiqxd4x, (32)

S̃halo(q,K) ≡
∫
Shalo(x,K)eiqxd4x, (33)



13

where we again used the four-vector variables q = p1−p2 and K = (p1+p2)/2. Then each component has a space-time495

integral corresponding to the contribution of the given component to the momentum distribution. We then may define496

Ncore(K) ≡
∫
Score(x,K)d4x = S̃core(0,K), (34)

Nhalo(K) ≡
∫
Shalo(x,K)d4x = S̃halo(0,K). (35)

Here the first equation in Eq. (34) and Eq. (35) represents our physical assumption about the phase-space density of497

the core and the halo, while the second equation in Eq. (34) and Eq. (35) indicates a mathematical identity about498

the Fourier transform. Taking these and Eq. (31) into account, we obtain499

S̃(0,K) = Ncore(K) +Nhalo(K). (36)

For the experimentally resolvable q values, this system of physical assumptions yields the approximation500

S̃(q,K) ≈ S̃core(q,K), (37)

thus the correlation function (C
(0)
2 (q,K)) shown in Eq. (14) can be expressed as501

C
(0)
2 (q,K) ≈ (38)

1 +

(
Ncore(K)

Ncore(K) +Nhalo(K)

)2 |S̃core(q,K)|2

|S̃core(0,K)|2
.

Hence, in the core-halo picture, at any given momentum502

λ = f2c (39)

holds; see Ref. [38] for details. Thus parameter λ can be interpreted as the squared fraction of pions from the core503

with respect to the total number of pions with a given average momentum K. The q dependent part in Eq. (38), i.e.504

the shape of the Bose-Einstein correlation function is connected to the core, Score. This source component is the one505

that may correspond to the perfect fluid, the hydrodynamically evolving central part of the fireball created in high506

energy heavy ion collisions.507

If we assume that the source (S) is a sum of the core and the halo components as shown in Eq. (31), then it follows508

that the pair distribution (D) shown in Eq. (19), is a sum of the three components,509

D = D(c,c) +D(c,h) +D(h,h), (40)

where subscript ‘c’ denotes the core and ‘h’ denotes the halo. It can be easily shown that the core-core component510

denoted by (c, c) is resolvable, but the core-halo or (c,h) type of pion pairs or the halo-halo or (h,h) components are511

unresolvable (i.e. the width of their Fourier transform is below the minimal resolvable momentum difference). With512

this compared to Eq. (20), the correlation function of Eq. (38) can be re-expressed as513

C
(0)
2 (q,K) = 1 + λ

D̃(c,c)(q,K)

D̃(c,c)(0,K)
. (41)

In summary, limq→0 C2(q,K) 6= 2 is an experimental finding, and so it is customary to introduce λ as an experimental514

parameter, defined as limq→0 C2(q,K) − 1, and measured by extrapolating the correlation function to zero relative515

momentum. The core-halo model is then an interpretation of the value λ. It also relates the relative momentum516

dependent, resolvable part of the Bose-Einstein correlation function to Score, the core component of particle emission517

in high energy heavy ion collisions. From this interpretation it is particularly clear that while long-lived resonance518

effects dominate the variances of the source, they lead to a peak in the unresolvable part of the Bose-Einstein519
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correlation function, with measurable effects only on λ. Particle emission from the hydrodynamically expanding520

fireball however, i.e. the core component of the source, is observable from the q-dependent shape analysis of the521

Bose-Einstein correlation functions.522

Thus one of the motivations for measuring the λ parameter is that it carries indirect information on the decays of523

long-lived resonances to the observable pion spectra. Of particular interest is the contribution of the η′ meson to the low524

momentum pion yield. It is expected [56] that in the case of chiral UA(1) symmetry restoration in heavy-ion collisions,525

the in-medium mass of the η′ meson (the ninth pseudoscalar meson, a would-be Goldstone boson) is decreased, thus526

its production cross section is heavily enhanced at low momentum. This (because the decay chain of the η′ meson527

produces many charged pions) implies that at low transverse momentum, the λ parameter decreases [57]. A recent528

study [58] of existing λ(mT ) measurements (presented in greater detail in Ref [59]) reported an indirect observation529

of a mass drop of the η′ meson in
√
s
NN

= 200 GeV Au+Au collisions at RHIC.530

However, many of the earlier λ(mT ) measurements were made with the assumption that the shape of the correlation531

function is a Gaussian one. Given the fact that the detailed analysis presented below indicates that the Gaussian532

approximation is a statistically unfavored assumption, we attempt here a precise shape analysis of the correlation533

functions. This is required for a precise measurement of the intercept parameter λ, as its value depends on the534

shape of the correlation function through the extrapolation of the measured correlation function to vanishing relative535

momentum.536

Let us note here that the modification of the observable intercept parameter λ from unity can result from various537

reasons besides the core-halo model, for example coherence in the pion production [25, 27]. If a fraction of pions538

are created in a coherent manner, then two- and three-particle Bose-Einstein correlation functions at zero relative539

momentum are simply related to the fraction of coherently produced pions and to the fraction of pions coming from540

the core [27]. Thus a simultaneous measurement of λ in two- and three-pion correlation functions offers the possibility541

of separating the component of a possibly coherent pion production, in addition to the resonance decay contribution.542

Such a simultaneous analysis of second, third and higher order correlations was recently reported at the LHC [60].543

Also, more exotic quantum statistical effects like squeezed coherent states may modify the values of the intercept544

parameter (however, in the present analysis we have no compelling reason to consider this possibility). Hence, one of545

the goals of the paper is to measure λ(mT ) precisely, without any physical assumption about the mechanism of the546

pion production.547

In the following, we utilize a generalization of the usual Gaussian shape of the Bose-Einstein correlations, namely548

we analyze our data using Lévy-stable source distributions. We have carefully tested that this source model is in549

agreement with our data in all the transverse momentum regions studied. All the Lévy fits were statistically acceptable,550

as discussed in Section VI. We note that using the method of Lévy expansion of the correlation functions [55], we551

investigated deviations from the Lévy shape. We have found that the coefficient of the first correction term is within552

uncertainties consistent with zero. Hence, we restrict the presentation of our results to the analysis of the correlation553

functions in terms of Lévy-stable source distributions.554

B. Lévy-type correlation functions and critical behavior555

Past measurements of two-pion Bose-Einstein correlation functions in Au+Au collisions that went beyond the556

Gaussian approximation show that the precise shape of Bose-Einstein correlations is indeed not Gaussian [54, 61]. The557

shape exhibits a power-law-like long-range component. In expanding systems, a generalized form of the central limit558

theorem and investigation of generalized random walk (also called anomalous diffusion) suggests the appearance of559

Lévy distributions as source functions [40, 41]. The one-dimensional, symmetric Lévy distribution is the generalization560

of the Gaussian distribution defined by the Fourier transform561

L(α,R, r) =
1

(2π)3

∫
d3q eiqre−

1
2 |qR|

α

. (42)

Here R is called the Lévy length scale parameter, and α is called the Lévy index of stability. In the α = 2 case we562

recover a Gaussian form; in the α = 1 case, we have a Cauchy distribution. For α < 2, the Lévy distributions have a563

power-law-like tail, L(α,R, r) ∝ (r/R)−(3+α) for r/R→∞ (with r ≡ |r|). Equivalently, for the angle-averaged Lévy564

distribution one gets565

r2L(α,R, r) ∝ r−1−α. (43)

Thus Lévy distributions for α < 2 have an infinite second moment or root-mean-square (RMS) radius. However,566

even in this case, the scale parameter R provides a measure of the characteristic size of the system. In particular,567



15

the integral of the Lévy distribution is finite and proportional to R3. Note also that if the core part of the source568

(Score) has a Lévy shape, then the core-core pair distribution (D(c,c)) also has a Lévy shape, due to the fact that the569

autocorrelation of two identical Lévy distributions is also a Lévy distribution with the same index of stability α,570

Score(r) = L(α,R, r)⇒ D(c,c)(r) = L(α, 2
1
αR, r). (44)

Thus the Lévy-type source distributions offer a more general description of the shape of the correlation function571

than a Gaussian would do. They provide a better handle on the λ intercept parameter as well. The Gaussian limit572

corresponds to the special α = 2 case, so one can experimentally check how far given data are from the Gaussian573

limit. We illustrate the shape of Lévy-type source distributions (Score = L(α,R, r)) with various α values in Fig. 2.574

There is yet another motivation for Lévy distributions. Namely, the exponent α of the Lévy distribution (that575

determines the power-law-like behavior of the distribution at large distances) is related to the critical exponent η of576

a system at a second order phase transition [62]. This exponent characterizes the power-law structure of the spatial577

correlation at the critical point. If an order parameter φ is introduced, its correlation function (in three dimensions,578

as a function of distance r) will be579

〈φ(r)φ(0)〉 ∝ r−1−η. (45)

As noted above in Eq. (43), the Lévy source distribution has the same limiting behavior, thus in this case, η = α.580

According to lattice quantum chromodynamics (QCD) [63–65] the quark-hadron transition is analytic (cross-over) at581

vanishing baryochemical potential µB = 0, and is expected to be a first order phase transition at high values of µB .582

There may be a critical endpoint (CEP) at certain intermediate values of µB , where one has a second order phase583

transition, with a specific value of the η exponent. This value is 0.03631(3) in the 3D Ising model [66], and 0.50±0.05584

in the random field 3D Ising model [67]. Given that the second order QCD phase transition is expected to be in585

the same universality class as the 3D Ising model [68, 69], the QCD critical point may be signaled by Lévy sources586

with a specific α exponent. To locate and characterize the CEP is one of the most pressing present day challenges of587

experimental heavy-ion physics. It is thus desirable to measure α for various colliding systems and collision energies,588

to map various parts of the (µB , T ) plane, in a quest to find the location of the CEP of the quark-hadron transition.589

We present below the first determination of the Lévy index of stability in
√
s
NN

= 200 GeV Au+Au collisions.590

C. Coulomb effect591

Using the plane-wave approximation, and assuming a spherically symmetric, three dimensional Lévy-type source592

and using the core-halo model, the shape of the two-particle correlation function turns out to have the simple form of593

C
(0)
2 (Q,K) = 1 + λe−Q

αRα (46)

with Q being the independent variable as introduced in Eq. (26), and with three fit parameters, which may depend on594

average momentum K. The scale parameter R, the strength (intercept) λ and the Lévy index α (note that the fitting595

procedure is detailed in Section VI A). However, one cannot fit the above functional form to the measured correlation596

functions before properly taking the final state Coulomb repulsion of the identically charged pions into account.597

In the treatment of this effect, we follow the general lines of the Sinyukov-Bowler method [70, 71]. Coupling this598

with the core-halo picture, one has to average the modulus squared of the final state pair wave-function over the599

“core-core” spatial pair distribution D(c,c)(r,K), obtaining600

C2(q,K) = 1−λ+λ

∫
d3rD(c,c)(r,K)|ψ(2)

q (r)|2, (47)

where the Coulomb wave function is defined as601

ψ(2)
q (r) =

N√
2

{
eiqrF (−iη

C
, 1, i(kr − qr)) + [r → −r]

}
,

with N =
Γ (1 + iη

C
)

eπηC /2
, η

C
=
mπc

2α
f.s.

2h̄qc
. (48)
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FIG. 2. Lévy-stable source distributions with (a) Score(r) = L(α,R, r) and r = |r| for α = 1, 1.2, and 2. (b) Radial source
distributions 4πr2Score for α = 1, 1.2, and 2. In these plots, the dependence of the source distribution on Lévy scale R is scaled
out by using r → r/R and Score → R3Score. With this transformation, source distributions coincide for any R.
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Here F (·, ·, ·) is the confluent hypergeometric function, η
C

is the Coulomb-parameter, α
f.s.

is the fine structure constant,602

Γ(·) is the Gamma function, r is a spatial integration variable representing the spatial pair separation, and q is the603

three dimensional momentum difference in the pair rest frame, qPCMS. The [r → −r] term represents a term similar604

to the first one, just with a mirrored r. The above Coulomb wave function formula is a standard result in quantum605

scattering theory. Note that in Eq. (47), the right side does not depend on the direction of q if the source is spherically606

symmetric. Hence, we modified the formula of Eq. (47) slightly to make it compatible with our analysis. We substitute607

q = qLCMS, and thus obtain C2 as a function of Q = |q|. We analyzed the error coming from this approximation608

by averaging C2(qPCMS,K) values for various qPCMS momenta at a given |qLCMS|, and treated it as a source of609

uncertainty, as quantified next in Section V.610

V. SYSTEMATIC UNCERTAINTIES611

TABLE I. List of settings that are varied in order to determine the systematic uncertainties of our results. The individual cut
settings are described in Sections III A and III C.

n setting name settings (j = 0, 1, . . . )
0 PID arm east, west, both
1 PID cut 3 cut settings
2 PID det. matching cut 3 cut settings
3 PC3 matching cut 3 cut settings
4 PID det. pair cut 3 cut settings
5 DC pair cut 3 cut settings
6 Fit range (Qmax) 7 ranges
7 Fit range (Qmin) 3 ranges
8 Coulomb effect 2 versions

The extracted Bose-Einstein correlation functions depend on a number of experimental parameters and cut values,612

as discussed e.g. in subsections III C and III A. The dependence is on the cut for π± identification in the m2 spectrum613

(PID cut), the track matching cut in the PID detector and in PC3, the pair cuts in the PID detectors and in the DC,614

the choice of fit range and some other settings (like the choice of Q and mT binning, or the settings of the Coulomb-615

calculation) with negligible contributions. When performing fits to the correlation functions (note that the fitting616

procedure is detailed in Section VI A), the fit parameters also depend on these settings. Then a given fit parameter P617

(which represents here R, λ or α) takes the value P 0(i) (where i represents the number of the mT bin) if all cuts and618

settings are at their default values. However, the resulting fit parameter is P jn(i), when a different setting (indexed619

by j > 0) was chosen for the given setting (indexed by n). See a summary of the possible n and j values in Table I.620

Then the systematic uncertainty of parameter P at the given mT bin is calculated as the average deviation from the621

default value, for lower and upper uncertainties separately. This can be illustrated by the following formulas:622

δP ↑(i) =

√√√√ ∑
n=cuts

1

N j↑
n

∑
j∈J↑

n

(P jn(i)− P 0(i))2 (49)

δP ↓(i) =

√√√√ ∑
n=cuts

1

N j↓
n

∑
j∈J↓

n

(P jn(i)− P 0(i))2 (50)

where J↑n is the set of j values where P jn(i) > P 0(i), and N j↑
n is the number of elements in this set. This number may623

vary from 0 (if both changes increase the fitted value of the given parameter) to the number of possible settings (if624

all changes decrease the fitted value of the given parameter). Similarly, J↓n is the set of j values where P jn(i) < P 0(i),625

and N j↓
n is the cardinality of this set. In the above formulas, summing over j is only done if N j↓

n > 0 or N j↑
n > 0. The626

values for δP ↑(i) and δP ↓(i) were then averaged over the neighboring 5 mT bins (two bins at higher, and two bins627

at lower mT , in addition to the central, averaged value). This procedure allowed us to smooth out the apparently628

nonphysical large fluctuations in the upper or lower limits on the systematic uncertainties. Let us also note here that629

we found the different systematic uncertainty sources to be uncorrelated with each other, so the quadratic sum in the630

equation above is justified.631

In addition to settings in the correlation function measurement, we have performed fit range studies by varying the632

initial and the final Q bin locations (Qmin and Qmax). The results were remarkably stable for adding or removing the633
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first few (1–5) or the last few (10–20) data points at the beginning or the end of the fit. In fact we used this stability634

criteria to define the beginning and the end points of the fitted range. We have also investigated the stability of the635

fit results with respect to duplicating or halving the number of mT bins, and also with respect to doubling the bin636

size in Q, or splitting the bins into two equal parts. These sources of uncertainty had negligible effects on the fit637

parameters. We also analyzed the uncertainty of the fit results originating from the Coulomb calculation (as detailed638

in subsection IV C).639

Now that all the details of the formalism are described in detail, in the following we outline the experimental640

procedure of the measurement and the results on the Lévy parameters of two-pion (π+π+ and π−π−) Bose-Einstein641

correlation functions in
√
s
NN

= 200 GeV Au+Au collisions.642

VI. RESULTS643

We measured Bose-Einstein correlation functions of π+π+ and π−π− pairs in 31 bins in the pair average transverse644

mass mT , from 228 MeV/c2 to 871 MeV/c2. Our measurement was based on 2.2 billion 0%–30% centrality Au+Au645

collisions at
√
s
NN

= 200 GeV colliding energy, selected from 7.3 billion MB events. Further centrality bins and their646

analysis is outside the scope of present manuscript.647

A. Fitting procedure648

The formulas in Eqs. (47)–(48) cannot be evaluated analytically, and the numerical calculation is also cumbersome,649

so to accelerate the fitting process, we created a lookup table for this function, and used it for fitting. We denote our650

fit function based on Eqs. (47)–(48) as C2(λ,R, α;Q), and from now on we drop the notation of the K dependence,651

and explicitly write out the parameter values, i.e.652

C2(λ,R, α;Q) ≡ C2(Q,K). (51)

However, it turned out that fits using this function resulted in a numerically fluctuating χ2-landscape, so we applied653

an “iterative afterburner” where the fit function contained only analytic dependencies on the fit parameters. Our654

second round fit function was655

C
(0)
2 (λ,R, α;Q)

C2(λ0, R0, α0;Q)

C
(0)
2 (λ0, R0, α0;Q)

×N×(1+εQ), (52)

with C
(0)
2 (λ,R, α;Q) ≡ 1 + λe−R

αQα , (53)

where λ0, R0, and α0 are the fit parameters from the first round of fit. Let us call the resulting fit parameters of this656

next fit R1, λ1 and α1. If these differ substantially (more than 1% in squared sum) from R0, λ0 and α0, then we set657

R0 = R1, λ0 = λ1 and α0 = α1, and do one more round of fitting. We continued this iterative procedure with a fit658

function of659

C
(0)
2 (λ,R, α;Q)

C2(λn, Rn, αn;Q)

C
(0)
2 (λn, Rn, αn;Q)

×N×(1+εQ), (54)

until the previous parameter vector (λn, Rn, αn) and the newly obtained parameter vector (λn+1, Rn+1, αn+1) differed660

less than 1% in the squared sum. Note at this point that in the actual fits, a normalization parameter N and a661

parameter ε that represents a possible but small background long-range correlation effect were also included. In662

practice N ≈ 1 and ε ≈ 1, and these parameters converge earlier in the fit than do the physical parameters λ, R, and663

α. For this reason only the physical parameters were used in the test of the convergence criteria. In this way the664

physical source parameters were extracted from the data in a reliable manner, with a self-consistent treatment for the665

Coulomb effect. Note that our procedure is in fact rather similar to the iterative Coulomb correction method applied666

by the NA44 Collaboration in Ref. [72]. However, in our implementation, we use this iterative procedure also for667

the correction for the halo effects, by evaluating the Coulomb wave-functions only for the experimentally resolvable668

(core,core) type of pion pairs.669

Pair multiplicities allowed us to use a χ2 minimization method (in contrast to the need for log-likelihood fitting670

methods if the value of C(Q) in the given bin is obtained by the ratio of two small numbers A(Q) and B(Q); see details671
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in Ref. [73]). We applied MINUIT2 minimization libraries [74] when performing χ2 fits to the measured correlation672

functions. We accept the fit results if the following criteria are satisfied: (a) the status of the fit is “converged”673

(i.e. a valid minimum was reached), (b) the error matrix is “accurate” (i.e. fully calculable and positive definite),674

(c) the χ2/NDF values are acceptable, corresponding to a confidence level (CL) above 0.1%. Our fits satisfied these675

conditions, implying that the fit parameters represent the measurements in a statistically acceptable manner. We676

note here that fits with an α = 2 constraint, i.e. fits with a Gaussian assumption were not acceptable. The CL677

of these Gaussian fits were many orders of magnitude below 0.1%, as the χ2 values ranged from 100–600 (for the678

lowest mT bins, where NDF ≈ 100, and also for the highest bins, where NDF values are around 350) to 600–1000 (for679

mT =300–500 MeV/c2, where NDF is about 150–220). In contrast, Lévy fits resulted in χ2 values in the 1–1.3×NDF680

range. Note that the statistical acceptability of our Lévy fits to
√
s
NN

= 200 GeV Au+Au RHIC data also confirms681

the validity of the assumption about the correlation function being unity plus a positive definite function.682

We fitted the measured correlation functions with the above outlined procedure. Figure 3 shows some examples of683

the measured Coulomb-distorted two-pion Bose-Einstein correlation function, the Coulomb correction factor and the684

resulting Coulomb-corrected two-pion Bose-Einstein correlation functions, together with the fits with Eqs. (52)-(53)685

that define the parameters of the Lévy-stable Bose-Einstein correlation functions.686

In Section VI B, we present our results for the fits and for the trends of the fit parameters, versus average pair687

mT =
√
m2 + (KT /c)2 calculated from the KT of the pair.688

B. Results for the transverse momentum dependence of the fit parameters689

Parameters λ, α and R are the physical parameters of the fit, while N ≈ 1 and ε ≈ 0 are the normalization690

and background-slope parameters. The mT dependence of the physical parameters (λ,R, α) is shown in Figs. 4, 5691

and 6. The parameter values for ++ and −− pairs in 0%–30% centrality collisions are given in Table II, while the692

decomposition of their systematic uncertainties is detailed below in Table III.693

The intercept parameter λ seems to saturate at high mT . Even within the sizable systematic uncertainties of the694

measurement, a decrease of λ(mT ) is clearly visible at low values of the average transverse mass mT , where the695

uncertainties of the analysis are reduced significantly.696

The Lévy scale parameter R(mT ) indicates a characteristic decreasing trend, that is similar to the decrease predicted697

by hydrodynamical calculations of a three-dimensionally expanding source for the α = 2 Gaussian case [14–17]. Note698

that for α < 2 we are not aware of any theoretical predictions for the mT dependence of the Lévy scale parameter R.699

The values of α(mT ) are significantly below the Gaussian limit of 2. In certain measurements of two-particle Bose-700

Einstein correlations, if the α = 2 Gaussian approximation fails, the α = 1 exponential approximation is attempted.701

In our analysis, we observe that our α(mT ) data are systematically above 1. Although the case of α = 1 is closer to702

the measured α values than the case of α = 2, it also is disfavored by the data. When we repeat the fits with α = 1703

fixed, the fits become statistically unacceptable in most of the mT bins.704

Let us also note that the error contours are all narrow tilted ellipses on the two-dimensional χ2 maps in the (λ,R),705

(λ, α) and (R,α) planes, as shown in Fig. 7. This illustrates that the parameters of the Lévy-stable fits of Eq. (52)706

are highly correlated. Typical values of the correlation coefficients for the (λ,R), (λ, α) and (R,α) coefficients are707

around 99%, −97% and −99%, respectively.708

As discussed in Section V, the extracted parameters of Bose-Einstein correlation functions depend on a number709

of experimental parameters and settings. In Figs. 4–6 and Table III, we indicate the corresponding total systematic710

uncertainty, bin by bin. A charge averaged, and (in two mT regions) mT averaged decomposition of the systematic711

uncertainties is given in Table III (both for the parameters introduced above, and those defined in the next subsec-712

tions). Let us note here that the systematic uncertainties contain both mT -correlated and uncorrelated components.713

Uncertainties coming from the variations of pair-cuts are mostly uncorrelated, while the ones from the PID arm and714

fit extrapolation are mT -correlated. As for the other sources of uncertainties, they have an mT -correlated effect on λ,715

but an uncorrelated effect on R and α. There are clear differences in the systematic uncertainties between the two mT716

regions both in relative size and in distribution among the sources of uncertainty. This translates into differences in the717

mT -correlated nature of the systematic uncertainties as well. Let us also note here that the systematic uncertainties718

are further mT -correlated because of the averaging process described in Section V.719

C. Discussion and interpretation of the results720

In this subsection we discuss more subtle physical interpretations of the measured trends of the parameters of the721

two-pion Bose-Einstein correlation functions.722
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FIG. 3. Example fits of Bose-Einstein correlation functions of (a) π−π− pair with mT between 0.331 and 0.349 GeV/c2 and of
(b) π+π+ pair with mT between 0.655 and 0.675 GeV/c2, as a function Q ≡ |qLCMS|, defined in Eq. (26). Both fits show the

measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function C
(0)
2 (Q) is

also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by C
(0)
2 (Q)/C2(Q). In this analysis we measured 62

such correlation functions (for ++ and −− pairs, in 31 mT bins), and fitted all of them with the method described in VI A. The
first visible point on both panels corresponds to Q values below the accessible range (based on an evaluation of the two-track
cuts), these were not taken into account in the fitting.
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TABLE II. Physical fit parameters λ, R and α, as a function of bin mT , for π+π+ and π−π− pairs measured in 0%–30%
centrality collisions. Statistical uncertainties (corresponding to 1σ contours, determined by Minuit’s Minos algorithm) are
indicated, followed by systematic uncertainties.

mT λ(π−) R(π−) α(π−) λ(π+) R(π+) α(π+)
(GeV/c2) (fm) (fm)

0.236 0.60+0.03+0.10
−0.03−0.12 8.2+0.3+1.2

−1.2−0.9 1.34+0.05+0.27
−0.05−0.15 0.62+0.03+0.10

−0.03−0.12 8.7+0.3+1.2
−0.3−1 1.27+0.05+0.25

−0.04−0.14

0.252 0.66+0.03+0.08
−0.03−0.10 8.5+0.3+0.8

−0.8−0.8 1.30+0.04+0.17
−0.04−0.10 0.66+0.03+0.08

−0.03−0.10 8.7+0.3+0.8
−0.2−0.8 1.28+0.03+0.16

−0.03−0.10

0.269 0.60+0.02+0.08
−0.02−0.07 7.5+0.2+0.6

−0.6−0.7 1.40+0.04+0.15
−0.04−0.09 0.68+0.03+0.09

−0.03−0.08 8.2+0.2+0.7
−0.2−0.7 1.29+0.03+0.14

−0.03−0.09

0.286 0.70+0.03+0.10
−0.03−0.08 7.9+0.2+0.6

−0.6−0.7 1.28+0.03+0.12
−0.03−0.08 0.69+0.03+0.10

−0.02−0.08 8.0+0.2+0.6
−0.2−0.7 1.28+0.03+0.12

−0.03−0.08

0.304 0.76+0.04+0.12
−0.03−0.08 8.1+0.3+0.7

−0.7−0.8 1.24+0.03+0.12
−0.03−0.08 0.73+0.03+0.12

−0.03−0.08 8.0+0.2+0.7
−0.2−0.7 1.26+0.03+0.12

−0.03−0.08

0.322 0.76+0.03+0.13
−0.03−0.08 7.7+0.3+0.7

−0.7−0.7 1.25+0.03+0.11
−0.03−0.09 0.74+0.03+0.13

−0.03−0.08 7.6+0.2+0.7
−0.2−0.7 1.26+0.03+0.11

−0.03−0.09

0.340 0.81+0.04+0.15
−0.04−0.08 7.7+0.3+0.7

−0.7−0.6 1.24+0.03+0.10
−0.03−0.09 0.80+0.04+0.14

−0.03−0.08 7.7+0.3+0.7
−0.2−0.6 1.24+0.03+0.10

−0.03−0.09

0.358 0.84+0.04+0.17
−0.04−0.09 7.6+0.3+0.7

−0.7−0.6 1.21+0.03+0.08
−0.03−0.08 0.76+0.03+0.15

−0.03−0.08 7.2+0.2+0.7
−0.2−0.6 1.27+0.03+0.09

−0.03−0.09

0.377 0.76+0.04+0.17
−0.04−0.08 6.8+0.2+0.7

−0.7−0.5 1.29+0.03+0.08
−0.03−0.09 0.83+0.04+0.18

−0.04−0.09 7.3+0.3+0.8
−0.2−0.5 1.24+0.03+0.08

−0.03−0.09

0.395 0.81+0.04+0.20
−0.04−0.09 6.9+0.3+0.8

−0.8−0.5 1.25+0.03+0.07
−0.03−0.10 0.89+0.05+0.22

−0.04−0.10 7.5+0.3+0.9
−0.3−0.5 1.18+0.03+0.07

−0.03−0.09

0.414 0.88+0.05+0.23
−0.04−0.10 7.1+0.3+0.8

−0.8−0.5 1.21+0.03+0.07
−0.03−0.10 0.86+0.04+0.23

−0.04−0.10 7.0+0.2+0.8
−0.2−0.5 1.22+0.03+0.07

−0.03−0.10

0.433 0.95+0.06+0.27
−0.05−0.11 7.2+0.3+0.9

−0.9−0.6 1.18+0.03+0.07
−0.03−0.10 0.92+0.05+0.26

−0.05−0.11 7.2+0.3+0.9
−0.3−0.6 1.18+0.03+0.07

−0.03−0.10

0.452 0.98+0.06+0.29
−0.06−0.13 7.1+0.3+0.9

−0.9−0.6 1.18+0.03+0.07
−0.03−0.10 0.80+0.04+0.24

−0.04−0.10 6.3+0.2+0.8
−0.2−0.5 1.28+0.03+0.08

−0.03−0.11

0.471 1.05+0.07+0.33
−0.06−0.15 7.2+0.3+1.0

−1.0−0.7 1.13+0.03+0.08
−0.03−0.10 0.95+0.05+0.30

−0.05−0.14 6.8+0.3+0.9
−0.2−0.6 1.19+0.03+0.08

−0.03−0.11

0.490 0.99+0.07+0.31
−0.06−0.16 6.7+0.3+0.9

−0.9−0.7 1.18+0.04+0.09
−0.04−0.11 1.01+0.07+0.32

−0.06−0.16 6.9+0.3+1.0
−0.3−0.7 1.16+0.03+0.08

−0.03−0.10

0.509 1.00+0.07+0.34
−0.06−0.17 6.5+0.3+1.0

−1.0−0.7 1.18+0.04+0.09
−0.04−0.11 1.12+0.08+0.38

−0.07−0.19 7.2+0.4+1.1
−0.3−0.8 1.10+0.03+0.09

−0.03−0.11

0.529 1.06+0.08+0.37
−0.07−0.18 6.5+0.3+1.1

−1.1−0.8 1.17+0.04+0.10
−0.04−0.12 0.92+0.06+0.32

−0.05−0.16 6.1+0.3+1.0
−0.2−0.7 1.22+0.03+0.10

−0.03−0.12

0.548 1.21+0.10+0.44
−0.09−0.21 7.0+0.4+1.3

−1.3−0.9 1.10+0.04+0.10
−0.04−0.12 1.07+0.08+0.39

−0.07−0.19 6.5+0.4+1.2
−0.3−0.8 1.17+0.04+0.11

−0.04−0.13

0.567 1.02+0.08+0.35
−0.07−0.18 6.0+0.3+1.1

−1.1−0.8 1.19+0.04+0.11
−0.04−0.13 1.18+0.10+0.41

−0.09−0.21 6.8+0.4+1.2
−0.4−0.9 1.11+0.04+0.10

−0.04−0.12

0.587 1.15+0.10+0.43
−0.09−0.21 6.4+0.4+1.3

−1.3−0.9 1.14+0.04+0.11
−0.04−0.13 1.00+0.07+0.37

−0.07−0.18 5.9+0.3+1.2
−0.3−0.8 1.19+0.04+0.11

−0.04−0.13

0.606 1.25+0.13+0.50
−0.11−0.24 6.6+0.5+1.4

−1.4−0.9 1.11+0.04+0.10
−0.04−0.13 1.39+0.15+0.56

−0.13−0.27 7.3+0.6+1.6
−0.5−1.0 1.05+0.04+0.10

−0.04−0.12

0.626 1.13+0.11+0.54
−0.10−0.22 6.0+0.4+1.5

−1.5−0.8 1.16+0.05+0.10
−0.05−0.15 1.22+0.12+0.58

−0.10−0.24 6.4+0.5+1.6
−0.4−0.9 1.11+0.04+0.10

−0.04−0.14

0.645 1.08+0.10+0.56
−0.09−0.21 5.6+0.4+1.5

−1.5−0.8 1.19+0.05+0.11
−0.05−0.16 1.30+0.14+0.67

−0.12−0.26 6.6+0.5+1.8
−0.4−0.9 1.08+0.04+0.10

−0.04−0.15

0.665 1.26+0.15+0.71
−0.13−0.25 6.2+0.5+1.8

−1.8−0.9 1.11+0.05+0.10
−0.05−0.17 1.17+0.13+0.66

−0.11−0.23 6.0+0.5+1.8
−0.4−0.8 1.13+0.05+0.10

−0.05−0.17

0.684 1.13+0.13+0.64
−0.11−0.24 5.5+0.4+1.6

−1.6−0.8 1.17+0.05+0.11
−0.05−0.18 1.23+0.15+0.70

−0.12−0.26 6.0+0.5+1.8
−0.4−0.9 1.12+0.05+0.11

−0.05−0.17

0.704 1.01+0.11+0.56
−0.10−0.25 5.1+0.4+1.5

−1.5−0.8 1.21+0.06+0.13
−0.06−0.19 1.14+0.13+0.63

−0.11−0.28 5.6+0.5+1.6
−0.4−0.9 1.14+0.05+0.12

−0.05−0.18

0.724 1.16+0.11+0.64
−0.10−0.34 5.5+0.4+1.7

−1.7−1.0 1.14+0.04+0.14
−0.04−0.18 1.31+0.13+0.73

−0.11−0.38 5.9+0.4+1.8
−0.4−1.1 1.10+0.04+0.14

−0.04−0.17

0.743 1.14+0.10+0.67
−0.09−0.39 5.2+0.3+1.7

−1.7−1.1 1.15+0.04+0.17
−0.04−0.19 1.11+0.09+0.65

−0.08−0.38 5.1+0.3+1.7
−0.2−1.1 1.17+0.04+0.18

−0.04−0.20

0.773 1.28+0.26+0.90
−0.20−0.50 5.4+0.7+2.1

−2.1−1.3 1.11+0.08+0.19
−0.07−0.22 1.15+0.21+0.81

−0.16−0.45 5.0+0.6+2.0
−0.5−1.2 1.17+0.08+0.20

−0.07−0.23

0.812 1.04+0.19+0.71
−0.15−0.39 4.6+0.6+1.8

−1.8−1.1 1.22+0.09+0.21
−0.08−0.24 0.96+0.17+0.65

−0.13−0.36 4.5+0.5+1.7
−0.4−1.0 1.23+0.08+0.21

−0.08−0.24

0.852 1.04+0.20+0.67
−0.15−0.37 4.6+0.6+1.6

−1.6−1.0 1.19+0.09+0.20
−0.08−0.21 1.17+0.23+0.75

−0.18−0.42 5.0+0.7+1.8
−0.5−1.1 1.15+0.08+0.20

−0.08−0.21

TABLE III. mT and charge averaged asymmetric systematic uncertainties of the physical parameters, separately for the
low mT bins (180–500 MeV/c2) and the high mT bins (500–850 MeV/c2). The arrows ↑ and ↓ represent the up and down
systematic uncertainties.

mT < 500 MeV/c2 average uncertainties [%] mT > 500 MeV/c2 average uncertainties [%]

λ R α 1/R̂ λ/λmax λ R α 1/R̂ λ/λmax

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
PID arm 8.9 9.6 8.5 5.8 9.2 4.9 5.4 6.0 12. 20. 28. 12. 17. 6.9 4.9 7.4 5.6 4.2 16. 12.
PID cut 4.4 3.8 1.8 2.2 2.0 1.3 4.0 3.8 3.8 5.9 11. 7.7 6.0 4.2 2.9 3.4 3.6 3.5 6.0 5.7
PID det. matching cut 4.0 13. 2.2 1.8 1.4 1.5 2.9 2.0 1.8 1.8 3.8 22. 2.4 4.2 2.7 1.6 1.2 0.5 2.4 1.9
PID det. paircut 4.4 3.0 2.2 1.8 1.5 1.5 3.1 2.3 8.0 4.3 7.7 7.5 4.3 5.1 3.5 2.5 2.9 2.1 4.1 4.5
PC3 matching cut 14. 0.6 4.7 2.2 1.9 3.0 8.9 0.0 0.2 19. 38. 0.1 17. 1.5 0.9 8.7 13. 0.0 9.1 7.6
DC paircut 3.0 3.4 1.9 2.5 1.9 1.5 0.7 0.7 13. 1.7 2.1 16. 7.7 9.9 7.7 0.8 0.5 4.0 10. 10.
Fit range (Qmin) 4.4 4.8 3.1 3.3 2.3 2.0 0.5 0.5 12. 5.7 7.8 14. 6.2 9.3 6.2 3.2 1.4 2.4 5.1 5.4
Fit range (Qmax) 3.2 3.2 2.2 2.2 2.0 2.0 0.2 0.2 4.3 4.3 4.5 4.5 3.2 3.2 2.1 2.1 0.5 0.5 6.6 6.6
Coulomb effect 9.4 0.0 4.2 0.0 0.0 3.4 3.8 0.0 0.0 10. 21. 0.0 13. 0.0 0.0 8.1 2.0 0.0 1.6 2.0
Total 21. 18. 12. 8.5 11. 7.8 13. 7.8 24. 31. 54. 35. 30. 18. 12. 15. 15. 7.5 24. 21.
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FIG. 4. Correlation strength parameter λ versus average mT of the pair, for 0%–30% centrality collisions. Statistical and
systematic uncertainties are shown as bars and boxes.
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FIG. 5. Lévy scale parameter R versus average mT of the pair. The graphical representation of statistical and systematic
uncertainties is the same as in Fig. 4.

Starting with the Lévy exponent, we observe that in each of the investigated cases, α values were slightly above 1.723

It is known that the value of the critical exponent of the random field 3D Ising model is 0.5 [67], much larger than724

the value of the critical exponent in the 3D Ising model [66] (without random external fields). It is also known that725

the 3D Ising model is expected to be in the same universality class as the second order QCD phase transition [68, 69].726

Therefore, we observe that the measured values of the Lévy exponent in 0%–30% centrality Au+Au collisions at727 √
s
NN

= 200 GeV do not correspond to the conjectured value (≤ 0.5) of the exponent of the two-particle correlation728

function at the QCD critical point [75]. The appearance of the critical point is not expected near
√
s
NN

= 200 GeV,729

thus we emphasize the need for similar measurements at lower collision energies.730

Hydrodynamic calculations typically predict Gaussian shapes (i.e. α = 2) for the Bose-Einstein correlation func-731

tions [15, 76–80]. We may also note that in certain cases the freeze-out criteria may alter this behavior, interference732

terms between two different extrema in the source may lead to small deviations from Gaussian Bose-Einstein corre-733
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FIG. 6. Lévy index parameter α versus average mT of the pair. Statistical and systematic uncertainties are indicated similarly
to Fig. 4. The horizontal line, α = 1.207, represents the 0%–30% centrality average value of α.
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FIG. 7. Contour lines of the χ2 map in the (a) λ,R and (b) λ, α and (c) R,α planes for fits to π−π− correlation functions of
pairs with mT between 0.331 and 0.349 GeV/c2. The horizontal and vertical lines represent the MINOS fit uncertainties.

lations [27, 81]. The measured correlation functions discussed in the present paper show large deviations from the734

Gaussian assumption. Our observations show that the source of charged pions in the investigated momentum range735

is a Lévy distribution with an average index of stability of α ≈ 1.2, see Fig. 6.736

Various scenarios may lead to such a source with a long power-law like tail, e.g. rescattering in an expanding medium737

with time-dependent mean free path, which is also called anomalous diffusion or Lévy flight. In such a scenario, the738

smaller the cross section, the longer the mean free path (at a given time), thus the longer the tail of the source739

distribution. This might be tested by comparing the Lévy source distributions for pions, kaons and protons [82, 83].740

As the Lévy scale parameter R defines the length scales of the particle-emitting source for particle emission with741

heavy tails, the mT dependence of these parameters is worth investigating in greater detail. It turns out (shown in742

Fig. 8) that a hydrodynamical type of 1/R2 ∝ mT scaling holds approximately, especially in the low mT region. This743

corresponds to the scaling predictions for the HBT radii from hydrodynamical calculations [14–17, 76–80]. Although744

these predictions assumed α = 2, the scaling seems to hold remarkably even in this case of α < 2. We also show a745

linear AmT + B fit to 1/R2 versus mT , taking into account only the statistical uncertainties when determining the746

best values and the statistical errors of the fit parameters. The resulting parameters turned out to be747
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FIG. 8. Inverse square of the Lévy scale parameter 1/R2 versus average mT of the pair. Statistical and systematic uncertainties
shown as bars and boxes, respectively.

A = 0.034± 0.002 (stat)
+0.020
−0.027 (syst)

c2

fm2GeV
, (55)

B = 0.006± 0.001 (stat)
+0.012
−0.007 (syst)

1

fm2 , (56)

as noted in Fig. 8. Systematic uncertainties of the fit parameters were determined by performing a linear fit to748

1/R2 versus mT obtained from measurements and fits with varied settings (listed e.g. in Table III). The A and B749

parameters above can be converted to a simple750

R(mT ) =
Rξ√

mT /mπ + ξ
(57)

dependence, where one then gets Rξ = (14.55± 0.43) fm and ξ = 1.27± 0.22.751

Because the estimators of Lévy parameters α, R and λ are strongly correlated, reasonably good (although not752

necessarily statistically acceptable) fits can be obtained with multiple sets of co-varied parameters. This motivated us753

to search for less correlated combinations of these parameters. Unexpectedly, and without any theoretical motivation754

for this new scaling law except perhaps the suggestions of Ref. [84], we indeed found such a parameter, defined as755

R̂ =
R

λ(1 + α)
. (58)

If this parameter is used as a fit parameter instead of the Lévy scale parameter R (which is calculated as R =756

R̂λ(1 + α)), the obtained λ, R and α parameters are the same as before, but the correlation coefficients for (λ, R̂)757

and (R̂, α) are reduced substantially, to the region of 20%–30%, which indicates small correlation as compared to the758

≈95% values of the correlation coefficients between (λ,R) and (R,α) (and all of them are negative in this case). The759

error contours obtained on the two-dimensional χ2 maps in the (λ, R̂), (λ, α) and (R̂, α) planes for one example fit760

are shown in Fig. 9. Also note that due to the reduction of the correlation, the uncertainty of R̂ is also significantly761

reduced compared to that of R, as indicated in Fig. 10 and Table IV.762

It is interesting to observe that 1/R̂ scales linearly with mT , as shown in Fig. 10. The parameters of the linear763

1/R̂(mT ) = ÂmT + B̂ fit to the charge averaged 1/R̂ data are764
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FIG. 9. Contour lines of the χ2 map in the (a) λ, R̂ and (b) λ, α and (c) R̂, α planes for fits to π−π− correlation functions of
pairs with mT between 0.331 and 0.349 GeV/c2. The horizontal and vertical lines represent the MINOS fit uncertainties.
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FIG. 10. New scale parameter R̂ versus average mT of the pair, with a linear fit. Statistical and systematic uncertainties shown
as bars and boxes, respectively.

Â = (0.591± 0.003 (stat)
+0.142
−0.041 (syst))

c2

GeVfm
, (59)

B̂ = (0.031± 0.001 (stat)
+0.018
−0.030 (syst))

1

fm
, (60)

Statistical and systematic uncertainties were determined similarly to the fits to 1/R2 versus mT and λ/λmax versus765

mT .766

The physical cause and possible interpretation of this remarkable affine linear dependence of 1/R̂ (not its square,767

as in the case of the scale parameter R) on mT is entirely unknown to us.768

One still may try to explain the newly observed mT scaling of R̂ by a simple mT scaling law for λ, based on the769

observation that both 1/R2 and 1/R̂ scale linearly with mT , while α is approximately constant. It is important to770

note however that both of these scalings are affine linear, thus the ratio of the two is not constant. In particular, the771

linear parameters of Eq. (59) can be converted to a simple dependence of772
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TABLE IV. Value of R̂ as a function of bin mT , for π+π+ and π−π− pairs, in fits where it replaced R as a fit parameter. The
other parameters of these fits (α,λ) are the same as given in Table II, and if one calculates R from R̂, one also obtains the same
R value. Also note that in this case, all statistical uncertainties turned out to be symmetric, so we denoted both of them by a
single uncertainty, followed by systematic uncertainties.

mT (GeV/c2) R̂(π−) (fm) R̂(π+) (fm)

0.236 5.94± 0.06+0.57
−0.60 6.02± 0.06+0.58

−0.60

0.252 5.54± 0.04+0.53
−0.53 5.74± 0.05+0.55

−0.55

0.269 5.12± 0.04+0.53
−0.46 5.30± 0.04+0.54

−0.47

0.286 4.95± 0.03+0.55
−0.42 5.04± 0.03+0.56

−0.43

0.304 4.71± 0.03+0.56
−0.38 4.84± 0.03+0.57

−0.39

0.322 4.50± 0.03+0.56
−0.37 4.55± 0.03+0.57

−0.37

0.340 4.24± 0.03+0.55
−0.35 4.26± 0.03+0.55

−0.35

0.358 4.11± 0.03+0.56
−0.34 4.13± 0.03+0.56

−0.34

0.377 3.90± 0.03+0.55
−0.32 3.92± 0.03+0.56

−0.32

0.395 3.76± 0.03+0.55
−0.30 3.86± 0.03+0.56

−0.31

0.414 3.67± 0.03+0.53
−0.28 3.68± 0.02+0.54

−0.28

0.433 3.46± 0.03+0.50
−0.25 3.56± 0.03+0.51

−0.26

0.452 3.31± 0.03+0.48
−0.23 3.41± 0.02+0.49

−0.23

0.471 3.23± 0.03+0.46
−0.21 3.25± 0.02+0.47

−0.21

0.490 3.10± 0.03+0.44
−0.19 3.15± 0.03+0.45

−0.20

0.509 3.01± 0.03+0.43
−0.18 3.07± 0.03+0.44

−0.18

0.529 2.83± 0.03+0.40
−0.16 2.96± 0.03+0.42

−0.17

0.548 2.79± 0.03+0.39
−0.15 2.78± 0.03+0.39

−0.15

0.567 2.69± 0.03+0.37
−0.13 2.73± 0.03+0.38

−0.14

0.587 2.59± 0.03+0.36
−0.13 2.70± 0.03+0.38

−0.14

0.606 2.50± 0.03+0.35
−0.13 2.56± 0.03+0.36

−0.14

0.626 2.47± 0.03+0.37
−0.14 2.53± 0.03+0.38

−0.14

0.645 2.38± 0.03+0.37
−0.14 2.46± 0.03+0.38

−0.14

0.665 2.34± 0.04+0.37
−0.14 2.40± 0.04+0.38

−0.14

0.684 2.25± 0.04+0.35
−0.13 2.32± 0.04+0.36

−0.14

0.704 2.30± 0.04+0.35
−0.15 2.33± 0.04+0.36

−0.15

0.724 2.20± 0.03+0.33
−0.16 2.17± 0.03+0.32

−0.16

0.743 2.12± 0.03+0.31
−0.18 2.11± 0.03+0.30

−0.18

0.773 2.01± 0.06+0.29
−0.20 2.00± 0.05+0.29

−0.20

0.812 1.98± 0.05+0.26
−0.19 2.09± 0.05+0.28

−0.20

0.852 2.01± 0.05+0.25
−0.19 1.97± 0.06+0.24

−0.18

R̂(mT ) =
R̂ξ

mT /mπ + ξ̂
, (61)

where then one gets R̂ξ = (12.21± 0.06) fm and ξ̂ = 0.38± 0.01. This, together with the definition of R̂ and Eq. (57),773

yields774

λ(mT ) =
1

1 + α

Rξ

R̂ξ

mT /mπ + ξ̂√
mT /mπ + ξ

(62)

This (together with the assumption of α being constant in mT ) would imply that at large transverse masses λ ≈ √mT ,775

however such a scaling is not meaningful, because λ, representing the fraction of pions contributing to Bose-Einstein776

correlations, typically cannot increase ad infinitum. In fact our data indicate a saturation of λ(mT ) at large values of777

mT .778

As discussed in Section IV A and seen in Section VI B, the strength of the correlation functions is not equal to unity,779

and not even constant as a function of mT , the reason for which may be the fact that a large fraction of low mT pions780

are produced from decays of long-lived resonances (η, η′, ω, K0
S mesons, etc). The detailed shape of λ(mT ) may be781

compared to predictions based on various resonance cocktails, including models that incorporate modified in-medium782

resonance masses or calculations based on partially coherent pion production.783
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Earlier measurements or simulations were frequently done within the Gaussian approximation, usually yielding784

smaller λ values compared to a Lévy analysis. This can be explained by the anticorrelation between λ and α. If the785

correlation function has a nonzero slope at Q = 0, then a Gaussian fit with zero slope at Q = 0 artificially forces λ to786

a lower value – such fits do not capture a key feature of the data.787

As seen in Fig. 4 λ appears to increase with mT until it saturates around mT = 0.6 GeV/c2. To further study788

the dependence of λ on mT it is advantageous to use the ratio λ/λmax where λmax is the saturated value of λ,789

which we determine in the region mT > 0.55 GeV/c2. This is advantageous for two reasons: (i) the systematic790

uncertainties largely cancel in the ratio, and (ii) the ratio is less sensitive to the assumed shape of Bose-Einstein791

correlation functions [85]. Figure 11 shows the resulting λ/λmax dependence on mT .792

To quantify this dependence the distribution is fit with the function793

λ(mT )/λmax = 1−H exp(−(m2
T −m2

π)/(2σ2)) (63)

The parameters have a simple meaning. Parameter H measures the depth (intercept at mT = mπ i.e. KT = 0), while794

parameter σ measures the width of the low-mT region of decrease. The following values of the parameters (H,σ) were795

determined:796

H = 0.59± 0.02 (stat)
+0.23
−0.14 (syst), (64)

σ = (0.30± 0.01 (stat)
+0.08
−0.09 (syst)) GeV/c2. (65)

Only the statistical uncertainties of the λ/λmax points were taken into account in the fit. Here the statistical uncer-797

tainty of λmax is treated as a normalization uncertainty. This uncertainty and the systematic uncertainty caused by798

the choice of mT range when calculating λmax (both ≈1%) are negligible compared to other uncertainties. The sys-799

tematic uncertainties of the fit parameters were determined by fitting λ/λmax versus mT obtained from measurements800

and fits with varied settings (listed e.g. in Table III). It is important to note that the (H,σ) values are significantly801

different from zero, so the existence of the decrease in the λ(mT ) data is statistically significant.802

Partial coherence effects may suppress the strength of the two-pion Bose-Einstein correlation functions. However,803

in the model of Ref. [86] λ is not expected to depend on mT . An mT dependence given by Eq. (63) was derived in a804

pion-laser model [87, 88]. However this model gives an upper limit of H ≤ 0.06 given our measured values of R and805

σ. Measurements of higher order Bose-Einstein correlation functions could shed more light on the contributions of806

partial coherence.807

It has been suggested [57] that UA(1) symmetry restoration and its related in-medium mass reduction of the η′808

meson in hot, dense hadronic matter would cause a reduction in the value of λ at low mT . In Fig. 11, our data are809

compared with parameter scans from Refs. [58, 59] with the Kaneta-Xu model ratios of long-lived resonances [89],810

using different values for the in-medium η′ mass m∗η′ and the η′ condensate temperature (slope parameter) B−1η′ . Our811

data are seen to be suppressed compared to the prediction with no in-medium η′ mass modification, m∗η′ = mη′ = 958812

MeV. Within systematics, our data are not inconsistent with selected parameter scan results of Refs. [58, 59] using a813

modified in-medium η′ mass. These data thus provide strong new constraints for more detailed theoretical studies on814

UA(1) symmetry restoration in hot and dense hadronic matter.815

VII. SUMMARY AND CONCLUSION816

In this paper we presented the measurement and analysis of two-pion Bose-Einstein correlations and their Lévy817

parameters, measured in 0%–30% centrality Au+Au collisions at
√
s
NN

= 200 GeV colliding energies in the PHENIX818

experiment at the RHIC accelerator. After selecting the 2.2 billion 0%–30% centrality events from the 2010 data819

taking period, and after applying carefully chosen single track and two-track selection cuts, we performed a study of820

the proper variable and the shape of the two-pion Bose-Einstein correlation function and investigated their transverse821

mass dependence in 31 mT bins from 228 to 871 MeV/c2.822

We found that these data cannot be well represented by the usual Gaussian Bose-Einstein correlation functions.823

However, when Gaussian source distributions were generalized to Lévy-stable source distributions, and the final state824

Coulomb interaction between like-sign pions emitted from Lévy-stable source distributions was properly taken into825

account, the data could be described at a statistically acceptable level. We determined the mT dependence of the826

parameters of Lévy-stable source distributions.827

The Lévy exponent α was found to be inconsistent not only with the Gaussian case of α = 2 and the exponential828

case of α = 1, but also with α ≤ 0.5, the conjectured value at the QCD critical point. We have found, that α is weakly829
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FIG. 11. Normalized correlation strength parameter λ/λmax versus average mT of the pair. The data are compared with
parameter scans from Refs. [58, 59] using different values of in-medium η′ mass m∗η′ and slope parameter B−1

η′ . A best fit with

Eq. (63) and the resulting H and σ parameters are also shown.

dependent on the transverse momentum of the pair in 0%–30% centrality Au+Au collisions, in qualitative agreement830

with simulations based on anomalous diffusion in an expanding medium. However, a fit with a constant value of α to831

the α(mT ) data resulted in a statistically unacceptable confidence level.832

Even though these α < 2 values may indicate a nonhydrodynamical component in the pion production processes833

in
√
s
NN

= 200 GeV Au+Au collisions, the bulk of pion production still seems to be of hydrodynamical origin. A834

hydrodynamical type of 1/R2 = A+BmT scaling behavior is found to represent the measured data remarkably well,835

especially in the low mT region. However, we are not aware of theoretical predictions of R(mT ) for Lévy-stable source836

distributions with α < 2.837

We found a statistically significant decrease of the intercept parameter λ at low values of the transverse mass. Our838

new measurements are not consistent with predictions without in-medium η′ mass modification. Clearly additional839

measurements are needed in the soft (pT < 500 MeV) region, including other decay channels of the η′ meson in order840

to clarify the role of η′ mass modification.841

Surprisingly, we also found an unpredicted, empirical new scaling variable R̂ = R/(λ(1 + α)) that follows an842

1/R̂ ∝ mT affine linear scaling, which is stable against small variations of the exact value of the Lévy exponent α.843

The origin of this new empirical scaling law is unknown to us.844

The methods described in this manuscript demonstrate that it is possible to measure the Lévy exponent of the845

correlation function in high energy heavy ion reactions. Given that the value of the correlation exponent is expected846

to reach a specific value in second order phase transitions that is characteristic to the universality class of the given847

critical point, let us close this paper by proposing similar measurements at various collision energies, centralities,848

colliding system sizes and identified particle pair types, as well as analyses with two- or three-dimensional momentum849

difference variables, to improve our detailed understanding of the nature of the particle production in high energy850

heavy ion reactions, and to search for the vicinity of the critical end point of QCD, where the line of first order quark-851

hadron transitions in the (µ, T ) plane ends, corresponding to a second order phase transition. Finally we emphasize852

the need for more detailed measurements, including measuring the centrality and collision energy, system size and853

particle type dependence of the Lévy fit parameters λ, α and R.854
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[59] R. Vértesi, T. Csörgő, and J. Sziklai, “Significant in-medium η ’ mass reduction in
√
sNN = 200 GeV Au+Au collisions987

at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 83, 054903 (2011).988

[60] J. Adam et al. (ALICE Collaboration), “Multipion Bose-Einstein correlations in p p, p Pb, and Pb Pb collisions at energies989

available at the CERN Large Hadron Collider,” Phys. Rev. C 93, 054908 (2016).990

[61] S. S. Adler et al. (PHENIX Collaboration), “Evidence for a long-range component in the pion emission source in Au + Au991

collisions at
√
sNN = 200 GeV,” Phys. Rev. Lett. 98, 132301 (2007).992
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