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We propose a framework to calculate the dynamics at the scission point of nuclear fission, based
as far as possible on a discrete representation of orthogonal many-body configurations. Assum-
ing axially symmetric scission shapes, we use the K orbital quantum number to build a basis of
wave functions. Pre-scission configurations are stable under mean-field dynamics while post-scission
configurations evolve to separated fragments. In this first exploratory study, we analyze a typical
fission trajectory through to scission in terms of these configurations. We find that there is a major
rearrangement of the K occupancy factors at scission. Interestingly, very different fragment shapes
occur in the post-scission configurations, even starting from the same pre-scission configuration.

I. INTRODUCTION

The dynamics around the scission point is crucial to
understand many aspects of the fission final state, in-
cluding for example the kinetic energy distribution of the
fragments and the odd-even effects in mass distributions.
At present [1], the leading tool for microscopic fission the-
ory is the generator coordinate method (GCM) applied
to mean-field wave functions derived from energy den-
sity functionals. By GCM we understand the whole set
of procedures required to carry out the method, from the
construction of the set of mean-field wave functions for
the generator states, to the calculation of the Hamilto-
nian overlaps required for both stationary (Hill-Wheeler
equation) or dynamic calculations. This has been highly
successful to map out the potential energy surface (PES)
in a space of nuclear shapes, and to describe the multi-
ple barriers and the topography needed to reproduce the
observed excitation functions and mass distributions.

However, the GCM becomes problematic for calculat-
ing the dynamics of induced fission. There is a compe-
tition between many configurations (collective and non-
collective) interacting with each other and the GCM for-
mulation becomes very complicated [5]. Also, the GCM
based on shape degrees of freedom hardly has the dis-
crimination power to follow the last state to scission [6].
We will see this very clearly in the example we examine
in this article. Finally, there is a computational issue in
the GCM associated with the non-orthogonality of the
basis functions [3, p. 475].
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This has to be contrasted with the theory of sponta-
neous fission lifetimes. There, a predictive theory is pos-
sible using a semi-classical action derived from the PES
surface and an inertial tensor also based on the GCM
approximations [3–5].

Since the GCM formulation in shape variables turns
out to be quite unwieldy, an alternative microscopic
fission theory might make use of the configuration-
interaction (CI) representation of the many-particle wave
function. In contrast to the GCM, which is formulated in
terms of continuous generator coordinates, the configura-
tion interaction method diagonalizes a discrete Hamilto-
nian in the space of Slater determinants. The CI is very
well developed for nuclear structure studies [7], but in the
fission problem there is the added complication of need-
ing at least some shape degrees of freedom. We would
like to use CI methods as far as possible but with de-
formed mean-field orbitals rather than orbitals from the
spherical shell model. Many deformed configurations can
be generated as local minima of a Hartree-Fock Hamil-
tonian. Those configurations do not need any help from
a generator coordinate to separate them. And, unlike
the GCM configurations, local minima are automatically
orthogonal if the single-particle Hamiltonian has some
symmetry to classify states by some quantum numbers.

While this approach might diminish the role of the
GCM, it can’t replace it entirely. In particular, the final
state of separated fragments cannot be reasonably rep-
resented in a space of local Hartree-Fock (HF) minima,
since the final state has no minimum at finite separation.

To explore the feasibility of a CI formalism for fission
dynamics, the following questions need to be answered.

Question 1: Can one construct a useful orthogonal ba-
sis from the orbitals of self-consistent mean-field
theory?
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Question 2: How do we represent the final state (two
fission fragments in the continuum)?

Question 3: How can we calculate the coupling between
pre- and post-scission configurations?

In this work, we only address Question 1. We shall ex-
amine in detail a typical fission trajectory produced by
the GCM using Hartree-Fock-Bogoliubov (HFB) mean-
field states. We then project the intermediate wave func-
tions onto a HF basis and examine properties of the states
that would go into a CI calculation of the dynamics.

An ultimate goal is to gain a theoretical understand-
ing of the competition between inertial and dissipative
dynamics in fission. Statistical models without any dy-
namic evolution at all have been fairly successful [8, 9].
There are also a number of studies investigating the dy-
namics in the strongly dissipative limit, e.g. Refs. [10–
12]. We also note recent work including both Newtonian
inertial dynamics and dissipative effects via Langevin
stochastic force [13]. On the other hand, purely quan-
tum Hamiltonian treatments can also exhibit the fluctu-
ations seen in fragment mass distributions [14, 16–18].
So far, there have been few attempts to combine statis-
tical and quantum dynamics in fission, but see Ref. [19].
It should be possible to determine the qualitative char-
acter of the dynamics from our present knowledge of the
nucleon-nucleon interaction, given a broad enough calcu-
lational scheme.

II. THE TRAJECTORY

We model the fission of 236U by following a single
trajectory of GCM-constrained HFB configurations. We
take the quadrupole operator

Q̂20 = 2ẑ2 − x̂2 − ŷ2 (1)

as the generator in a HFB calculation of the constrained
configurations. Starting from an initial configuration,
which could be the ground state, we increase the con-
strained Q20 expectation value by 2 - 4 b, and solve for
the new HFB minimum with the previous one as the
starting configuration. The energy functional is based on
the Gogny D1S interaction [20], with Coulomb exchange
treated in the Slater approximation and center-of-mass
energy subtracted out of the total kinetic energy. Two
codes were used to carry out the HFB minimizations,
namely the HFBaxial code by LMR and a similar code by
WL [21]. These codes assume that the HFB mean field
is axially symmetric, which seems reasonable past the
second barrier. Both codes use an axially deformed har-
monic oscillator basis; the included h.o. quantum num-
bers (nz, nr,Λ) are selected according to the formula [23]

nz/q + 2nr + Λ ≤ Nr (2)

with q = 1.7 and nr = 12. The codes only treat con-
figurations invariant under time reversal, permitting an
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FIG. 1: Solid circles: points on the HFB potential energy sur-
face (PES) constrained by the Q20 operator; solid squares: the
same PES calculated in the HF approximation as described
in Sect. III.

additional truncation Λ ≥ 0. The single-particle Hamil-
tonian is block-diagonal with the largest block (K = 1/2)
having a dimension of 140. Finally, the h.o. length pa-
rameters were fixed at bz = 2.97 fm and br = 1.9 fm. Of-
ten some deformation-dependent optimization is carried
out on the length parameters [24], but since our purpose
here is largely a qualitative understanding of the config-
uration space we keep them fixed.

Fig. 1 shows the energy of the GCM states along the
computed trajectory. One sees a plateau at high defor-
mation leading to a cliff near Q20 ∼ 310 b. The points
beyond that are lower in energy by about 10 MeV. Fur-
thermore, the neck size precipitously drops to a small
value [25]. The sudden jump at the cliff edge highlights
the problem of understanding scission dynamics. Other
measures of the shape are discontinuous as well. Fig. 2
shows the same trajectory in the plane of shape parame-
ters Q20 and Q30 = 〈r3

√
4π/7Y30〉. One sees that Q30 is

discontinuous as well. We could try to put in a constraint
on Q30 to fill in the steps along path, but this turns out
to be quite difficult [6]. In a different approach, as many
as 5 shape coordinates have been invoked to describe the
path to scission [27].

III. HF REDUCTION

By assumption, the HF mean field is axially symmetry
and the angular momentum K of the orbitals about the
symmetry axis is a good quantum number. Also, we as-
sume that the time-reversed orbitals ±K are occupied in
pairs. Therefore, we can characterize the configurations
by the number of pairs of different |K|, which we call the
K-partition. In the absence of an octupole deformation,
the particles can be partitioned further by parity, but
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FIG. 2: The PES minima from Fig. 1 in the (Q20, Q30) plane.
Lines are shown to guide the eye.

that is not possible on the outer fission landscape.

The HFB solutions of course are composed of many
HF configurations and we would like to identify the most
important ones. One choice to project onto a HF con-
figuration is to adiabatically decrease the strength of the
pairing until the wave function approaches a condition
where all the orbital occupancy factors are close to zero
or one. In the HFBaxial code of LMR, this is achieved by
adding to the density constraint an additional one on the
particle-number fluctuation. We find that requiring it to
be 〈N̂2〉 − 〈N̂〉2 ∼ 0.1 gives an unambiguous assignment
to the HF occupancies. The residual pairing correlation
energy under this constraint is less than a tenth of an
MeV.

The HF reduction for the HFB states described in the
last section is shown in Fig. 1 as the upper curve. The
energy difference between the two curves is the pairing
correlation energy. Going from ground state to scission,
there are about 20 changes of the K-partition along the
way. Most of them are recognizable as kinks in the
HF PES. From the second barrier on, there are about
9 changes of the K-partition. Fig. 3 shows an expanded
view of the two PES’s near the scission point, with bor-
ders between different K-partitions indicated by verti-
cal lines. The three or four K-partitions near the scis-
sion point are of most interest. We give them names
as follows: green diamonds, “Lighthouse”; black circles,
“Buenavista”; blue triangles, “Glider”; and red squares,
“Bobsled”.

Note also that the pairing is rather weak in the pre-
scission configurations Lighthouse and Buenavista, but it
is strong again in Glider and Bobsled. For the remaining
discussion, we focus on the properties of the HF-reduced
configurations. The densities distributions for the named
configurations are shown in Fig. 4. Their K-partitions
are listed in Table I. For comparison purposes, we have

FIG. 3: Expanded view of the constrained minima around
the scission point. HF energies for the configurations derived
from the HFB path are shown by the symbols in the key,
with identical symbols for configurations with the same K-
partition. The vertical lines separate the different partitions.
The originating HFB energies are shown with the small circles
connected by the lines.

included the ground state as well in the tabulation. Qual-
itatively, the major changes are in the K = 1/2 orbitals
and the high-K orbitals. The higher K becomes depop-
ulated in region where the shape is very elongated. But
then Bobsled gains back much of high-K occupancy at
the expense of the K = 1/2 orbitals. Further aspects
of the K-partition distributions near the ground state
deformations have been discussed in Ref. [26].

2K protons 2K neutrons

Name 1 3 5 7 9 11 1 3 5 7 9 11 13

G.S. 19 13 7 4 2 1 26 19 13 7 4 2 1

Lighthouse 23 13 6 3 1 0 31 20 12 6 2 1 0

Buenavista 23 13 6 3 1 0 32 20 11 6 2 1 0

Glider 22 14 6 3 1 0 31 20 11 6 3 1 0

Bobsled 20 13 7 4 2 0 28 20 12 7 3 2 0

TABLE I: K-partitions for the ground state and some of the
configurations close to scission.

Given the K-partitions, we can extend the range of
the configurations in shape space by carrying out the HF
minimization with both shape and K constraints. The
results for the range Q20 = 200− 350 b is shown in Fig.
5.

So far, there is no controlled theory for locating where
the path jumps from one K-partition to another. To see
the ambiguity, let us suppose that the fission path goes
through Lighthouse. It could make a big difference in
the final state excitation energies (and the total kinetic
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FIG. 4: Density distributions at Q20 = 288, 312, 316 and 320 b
for Lighthouse, Buenavista, Glider and Bobsled, respectively.

FIG. 5: The PES for the named K-partitions over an ex-
tended range of Q20.

energy) whether the jump goes through Bobsled at Q20 ≈
270 b or through Glider at Q20 ≈ 320 b.

To assess how difficult it is to get from one K-partition
to the next along the path, a useful measure is the num-
ber of pair jumps in the transition. We define the pair-

jump number as

NJ,σ = 1
2

∑
K,σ

∆NK,σ (3)

with

∆NK,σ = |nK,σ(i+ 1)− nK,σ(i)| (4)

and nK,σ(i) is the number of pairs in orbitals with quan-
tum number K, and σ = n or p. The configuration is
labeled by i. The total number of jumps is

NJ = NJ,p +NJ,n. (5)

Note that the application of the pairing interaction to the
wave function induces single pair jumps. Thus, if there
are two or more pair jumps the two-particle interaction
matrix element between the configurations vanishes.

For the traversal of the fission path from the second
saddle to the Glider configuration we find 15 pair jumps.
Thus, if the pairing interaction were treated as a per-
turbation, the endpoint configurations would only be
connected in 15th-order perturbation theory. Up until
Glider, configuration changes mostly take place by single
pair jumps with a few double jumps. One can visual-
ize single jumps as level crossings which become avoided
crossing when the pairing interaction is included in the
Hamiltonian.

The situation is quite different at the final transition
from Glider to Bobsled, which has NJσ = 3 for both
neutrons and protons for a total of NJ = 6. There is ob-
viously a major rearrangement at the scission point that
would be difficult to describe purely in terms of shape
variables.

When there are multiple pair jumps in the transition
between HF configurations there will be a number of pos-
sible intermediate paths, taking the jumps one by one.
For the first jump, there are NJ choices for the starting
K, if all the K’s are different. The choices for its land-
ing point depends on whether it is a proton or neutron
pair; the number of distinct configurations that can be
reached by the first proton jump is N2

Jp, provided that
all the landing K’s are different. For the second and later
jump the choices become increasingly restricted until at
the penultimate configuration there is only one possibil-
ity. The choice of making a neutron or proton jump can
also take place in any order. The total number of the
minimal-length paths NP is given by

NP = NJ !
NJp!NJn!

ΠKσ∆NKσ!
. (6)

According to this formula, there are 2160 minimal-length
paths connecting Glider and Bobsled. Many of these
paths will be energetically unfavorable and it would be
a considerable task to examine them all. As a baseline
path, we have examined the HF energies of intermedi-
ate steps along the way. Taking the lowest energy land-
ing point at each step starting from glider we obtain the
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FIG. 6: Intermediate steps from Glider to Bobsled along the
minimal-energy path.

path shown in Fig. 6. The energies along the path mono-
tonically decrease, allowing the jump to be accessed by
the HFB minimization procedure. The Hamiltonian dy-
namics would connect the endpoints most effectively if
all the configurations along the path have the same en-
ergy. If the endpoint has a much lower energy (as is the
case here), a quasi-particle excitation of the final config-
uration at an energy close to the initial energy might be
more favored.

IV. HF MINIMA AND POST-SCISSION
PROPERTIES

So far we have used both the shape constraints and the
K-partition to specify the configuration. Since the shape
constraints are continuous quantities, we would like to
release them as far as possible to construct a discrete
basis. As a first test to exploring their role, we exam-
ine how many HF local minima each configuration along
the path is attracted to when the shape constraint is re-
moved. Thus we repeat the computation of the minima,
starting with the configurations shown in Fig. 5 but with-
out any shape constraint. The K-partition will remain
the same under the HF minimization.

Applying this procedure to the named configurations,
we find that all configurations with the same K-partition
converge to the same state. The converged shape pa-
rameters are given in Table II. One sees that the neck
parameter is large for Lighthouse, intermediate for Bue-
navista, and small for Glider and Bobsled. Thus, Light-
house is a pre-scission configuration, and the last two are
post-scission. The finite values of the Q20 for Glider and
Bobsled is obviously an artifact of the finite dimensional
space. Otherwise, the fragments would separate to infin-
ity.

name Q20 (b) Q30 (b3/2) nneck

Lighthouse 262. 42.3 6.9

Buenavista 394. 65.1 1.9

Glider 416. 66.6 0.1

Bobsled 434. 42.9 ∼ 0.0

TABLE II: Converged shape parameters for the named HF
configurations. See [23, 25] for the definition of the neck pa-
rameter nneck

When the neck parameter is small, the nucleon num-
bers and shape parameters of the individual fragments
can be determined unambiguously. These parameters are
shown in Table III for Glider and Bobsled. Not surpris-
ingly, one of the configurations is anchored by the doubly
magic 132Sn. It is interesting to see that the deformation
of the light fragment is quite different for the two cases.
In one case it is strongly prolate and in the other it is
strongly oblate. In fact, the PES in the region of 100Zr
has coexisting minima at the two extremes [15], so per-
haps it also not surprising that the both can be populated
upon scission.

Configuration fragment Z N Q20 (b)

Bobsled 132Sn 50 82 0.4
104Mo 42 62 -5.3

Glider 136Te 52 84 4.0
100Zr 40 60 7.6

TABLE III: Fragment properties obtained by releasing the
shape constraints for the Bobsled and Glider configuration in
Table I.

V. REMAINING QUESTIONS ON EXPLOITING
THE CI BASIS

It remains for future work to examine the overlaps
between the shape-constrained configurations along the
path, as was done in Ref. [28] for the GCM based on
an HFB energy functional. If the overlaps are large, one
can use some convenient point along the path to repre-
sent all of the GCM states there. More likely, the over-
laps become too small to ignore at the end points of a
K-partition along the path, for example, the states at
Q20 = 236 and 288 b in the Lighthouse configurations.
In that case, several states of the same K-partition would
be required to span that space along the path. We note
that the overlaps can be calculated analytically in the
Nilsson harmonic oscillator model [29], but that is too
oversimplified for our purposes here.

The localization of particles on the two fragments
raises another issue in the construction of the HF ba-
sis. For well-separated fragments, the orbitals will be lo-
calized on one nucleus or the other except for accidental
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degeneracies or fission into identical fragments. Localiza-
tion to the left or the right can perhaps be used as addi-
tional quantum number to specify the HF wave function,
playing the same role as the parity of the HF orbitals
when the mean field is invariant. No such separation is
possible for the highest occupied orbits in the pre-scission
configurations. But the possibility of specifying the neu-
tron and proton numbers of the fragments within the HF
framework gives an avenue to calculate fluctuations on
a finer scale than is possible with only shape degrees of
freedom. Even when no clean separation is possible, it
may be useful to transform to a orbital basis that maxi-
mizes the separation when calculating transition matrix
elements between configurations [30]. See also Ref. [31]
for a different approach to nucleon localization.

Another issue that needs to be dealt with in the fu-
ture is the inclusion of states with unpaired particles. In
the CI shell-model language, these are the higher senior-
ity states in the generalized seniority wave function basis
[32]. It is straightforward to include any configurations
of the generalized seniority basis as wave functions in
the HF representation. In fact the K-partitions with re-
spect to the nucleons themselves rather than pairs would
give more discriminating power. The typical number of
unpaired particles ν in the initial compound nucleus for
induced fission of 236U by thermal neutrons is large. We
can estimate ν by the formula [33]

ν = (aU)1/2 log 4 (7)

where a is the usual level density parameter a ≈ A/8 and
U is the back-shifted excitation energy. The result is in
the range 15-20. This number changes a lot along the fis-
sion path, so we will need estimates of the interaction ma-
trix elements that change the number of quasi-particles,
as well as one that are diagonal in quasi-particle num-
ber. Obviously, these interaction will have to be treated
in some statistical way, perhaps by sampling.

This emphasizes the need to set up a machinery to
compute interaction matrix elements between configura-
tions. One difficulty that arises is modeling the nucleon
interaction to be employed. As is well known, the energy
functionals in use to compute mean-field wave functions
are not reliable for residual interactions [34, 35]. Per-
haps it might be adequate for the first estimates to use a
simple zero-range parameterization of the residual inter-
action, in the spirit of effective field theories.

VI. PERSPECTIVE

We believe the results presented here are promising to
build a useful wave function basis for treating the scission
dynamics. We have found two bound configurations at
the frontier of the transition, Lighthouse and Buenavista,
and two post-fission configurations, Glider and Bobsled.
Exactly how the nucleus gets from one configuration to
another is far beyond what has been achieved here, but
we can see some possible branching of the trajectories.
The deformation of the final light fragment is very differ-
ent in the two post-fission configurations, so the detailed
transition dynamics will give a non-trivial prediction for
the initial fragment shapes.

It is also of great interest to determine where on the
path the transition from the frontier to the HF-unstable
configurations takes place. In Fig. 5, Bobsled crosses
Lighthouse at Q20 = 274 b; if the transition took place
there, it would not add any internal excitation energy.
Thus, the final state would have a relatively large to-
tal kinetic energy. On the other hand, if the transition
took place at Q20 = 316 b where the HFB minimization
procedure places it, there would need to be a large in-
crease in the number of quasi-particle in the final state
to conserve the overall energy. The roughly 10 MeV en-
ergy difference between the HFB minima would appear
as increased excitation energy in the fragments (and cor-
respondingly lower total kinetic energy).

We look forward to developing this approach along the
lines discussed in the previous section to address ques-
tions like these.
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