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Background: Being able to rigorously quantify the uncertainties in reaction models is crucial to moving this field forward.
Even though Bayesian methods are becoming increasingly popular in nuclear theory, they have yet to be implemented
and applied in reaction theory problems.

Purpose: The purpose of this work is to investigate, using Bayesian methods, the uncertainties in the optical potentials
generated from fits to elastic-scattering data and the subsequent uncertainties in the transfer predictions. We also study
the differences in two reaction models where the parameters are constrained in a similar manner, as well as the impact
of reducing the experimental error bars on the data used to constrain the parameters.

Method: We use Bayes’ Theorem combined with a Markov Chain Monte Carlo to determine posterior distributions for the
parameters of the optical model, constrained by neutron-, proton-, and/or deuteron-target elastic scattering. These
potentials are then used to predict transfer cross sections within the adiabatic wave approximation or the distorted-wave
Born approximation.

Results: We study a number of reactions involving deuteron projectiles with energies in the range of 10−25 MeV/u on targets
with mass A = 48 − 208. The case of 48Ca(d,p)49Ca transfer to the ground state is described in detail. A comparative
study of the effect of the size of experimental errors is also performed. Five transfer reactions are studied, and their
results compiled in order to systematically identify trends.

Conclusions: Uncertainties in transfer cross sections can vary significantly (25-100%) depending on the reaction. While these
uncertainties are reduced when smaller experimental error bars are used to constrain the potentials, this reduction is not
trivially related to the error reduction. We also find smaller uncertainties when using the adiabatic formulation than
when using distorted-wave Born approximation.

I. INTRODUCTION

The overarching questions in nuclear physics span a
wide variety of topics including understanding how vis-
ible matter came into being and how it evolves, how
subatomic matter organizes itself and what phenomena
emerge from this organization, and whether or not the
fundamental interactions that govern these structures
and evolutions are fully known [1]. Many quantities of
interest to these goals can be extracted from experiment,
but this extraction often relies on reaction theory. Thus,
having a solid understanding of the reaction theory, in-
cluding the associated uncertainties, is crucial to prop-
erly describe the results of these experiments. There are
several sources for the uncertainties in reaction theory
[2]: the approximations made in solving the few-body
scattering problem, the use of effective interactions and
structure functions, a consequence of mapping the many-
body problem into a few-body, and finally the influence
of the degrees of freedom left out of the model space.
Systematic methods for quantifying the uncertainty in-
troduced by these various sources are needed to move the
field forward.

Recently, we used a statistical method to quantify
the uncertainty introduced by the effective interac-
tions within a given reaction model [3]. Neutron and
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deuteron optical potentials were fit to elastic-scattering
data through χ2 minimization, using both an uncorre-
lated and a correlated χ2 function. Exploring the χ2

function around the minimum, we constructed 95% con-
fidence bands for the (n,n) and (d,d) elastic cross sections
and made predictions for the corresponding (n,n′) inelas-
tic and (d,p) transfer cross sections. This work was done
within the frequentist approach.

There are many reasons to pursue uncertainty quantifi-
cation with Bayesian statistics rather than the frequen-
tist approach. With Bayesian statistics, we can system-
atically introduce our prior knowledge into the formu-
lation, and two different theories can be compared and
even mixed to provide a better prediction. Moreover, in-
stead of being able to only answer questions where there
is a choice of solutions (out of a list of options, one of
them must occur - this is the basis of frequentist statis-
tical methods), Bayesian statistics can give probabilities
to unique occurrences (such as will it rain tomorrow) [4].
This provides a more consistent interpretation based on
a single set of data, instead of needing multiple occur-
rences to interpret results in terms of a probability or
confidence level.

Although Bayesian methods have been around for cen-
turies, introduced in an essay from the mid-eighteenth
century [5], it was only within the past few decades, with
the advent of modern Monte Carlo methods, that they
became more widely implemented. In the last several
years, nuclear theory has embraced them. In Effective
Field Theories (EFTs), these methods have been partic-
ularly effective across a range of applications - parame-
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ter estimations [6–8], assessing uncertainties from model
truncations [9], understanding how well assumptions hold
[10], and through all of this, propagating uncertainties to
observables. Bayesian methods are also beginning to be
widely used in areas such as heavy ion collisions [11, 12]
and density function theory [13, 14].
Although all of these references show the power of

Bayesian techniques in nuclear theory, there are aspects
specific to few-body reaction theory that need to be stud-
ied in order to guarantee its usefulness in this subfield.
This work takes the very first step in this direction.
Our goals are: i) computing uncertainties on nucleon
and deuteron optical model parameters constrained by
elastic-scattering data using Bayes’ Theorem, ii) deter-
mining uncertainties in the elastic and (d,p) (or (d,n))
transfer angular distributions, iii) rigorously comparing
two approximations in the theory for transfer reactions,
and iv) understanding the information gain on trans-
fer observables, with improvements on elastic-scattering
measurements.
These points are addressed in the following work. In

Section II, we discuss the theoretical framework for this
article, including the Bayesian methods used and the re-
action formalism for which it is implemented. The sys-
tems that were studied are listed in Section III, along
with some numerical details that are necessary for the
work. Section IV presents the results from this study,
using one detailed case as an example and then sum-
marizing the remaining results, which are discussed in
Section V. Finally, we conclude in Section VI with an
outlook of how these methods can be further improved.

II. THEORETICAL FRAMEWORK

A. Bayes’ Theorem

Bayesian methods have become very popular recently
in nuclear theory, both because of their power and sim-
plicity (see [4, 15] for good introductions). Here we pro-
vide a brief summary of the main concepts surrounding
Bayes’ Theorem so the work is self-contained, and the
nonexpert can follow without needing additional back-
ground reading. The main idea that Bayes uses is the fact
that the probability of picking two items from a group
does not depend on whether you pick item 1 first and
then item 2 or item 2 first then item 1: p(2|1)p(1) =
p(1|2)p(2), with p(1) and p(2) being the independent
probabilities of picking either item 1 or 2 and p(2|1) be-
ing the conditional probability of picking 2 after having
first picked 1 (viceversa for p(1|2)).
When applied to our field, typically we have an hy-

pothesis H (given by a model) and some constraining
external information D (the data). Bayes’ theorem is
then written as:

p(H |D) =
p(H)p(D|H)

p(D)
, (1)

and provides a method to calculate the posterior distri-
bution, p(H |D), of the hypothesis H , conditional on a
set of data D. This gives the most likely distribution of
the parameters dependent on the given data. Translat-
ing for the application here, the hypothesis is the optical
model for scattering, which introduces many optical po-
tential parameters, and the data is elastic-scattering an-
gular distributions. The question we will try to answer
is: what is the most likely distribution for the optical
potential parameters given the elastic-scattering data.
To calculate the posterior distributions with Eq. (1),

several pieces are needed. The first is the prior distri-
bution, p(H) (the probability distributions over the vari-
ous parameters in the optical model), which summarizes
our knowledge before the data is seen. The likelihood
function, p(D|H), folds in information about how well
the model reproduces the data, typically through a χ2

function. In this work, we stick to the standard normal

distribution, e−χ2/2, for the likelihood, and the standard
definition of the χ2 distribution,

χ2 =
1

N

N
∑

i=1

(σth − σexp)2

∆σ2
. (2)

The denominator in Eq. (1) is the Bayesian evidence,
p(D), which typically contains a sum over all possible
hypotheses each weighted by their own likelihood func-
tion.
In Bayesian statistics, 95% confidence intervals are de-

fined by the smallest interval [a, b] for which

b
∫

a

p(Hi|D)dxi = 0.95, (3)

for a given quantity of interest xi. In practice, for our nu-
merically drawn posteriors, the integral becomes a sum.
For example, to calculate the 95% confidence inter-

vals for the prior distributions of the constrained and
predicted cross sections, at each angle that the calcula-
tion was performed, we find the smallest range of cross
section values that contains 95% of the posterior draws.
The minimum and maximum cross section values at each
angle define the upper and lower bounds of the 95% con-
fidence interval. These intervals then represent the belief
that the real value of the cross section of interest has a
95% chance of falling within that region. This can be
equally calculated for each parameter posterior, which
would then define a distribution of the values that the
given parameter is most likely to take.

B. Markov Chain Monte Carlo

While Bayes’ theorem is simple in principle, in prac-
tice, there can be added complications. In many cases,
calculating the Bayesian evidence numerically is either
computationally intractable or impossible. Then, it is
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necessary to sample the posterior distribution through
a Monte Carlo method. The longer the sampling,
the closer the pulled distribution comes to reproduc-
ing the exact posterior distribution. For this work, we
use a Metropolis-Hastings Markov Chain Monte Carlo
(MCMC) [16, 17]. Because we are interested in calcu-
lating free parameters in our model, our hypothesis is a
set of parameters, x, that define the interaction between
projectile and target nuclei. At each step of the MCMC
method, we obtain a set of parameters, xi, from which
the prior, p(Hi), and likelihood, p(D|Hi) for the next it-
eration are obtained. A new set of parameters, xf , are
randomly chosen such that xf ∼ N (xi, ǫx0) where N
represents the normal distribution, ǫ is a scaling factor
which controls the step size in parameter space, and x0 is
some fixed set of initial parameters; the prior, p(Hf ), and
likelihood, p(D|Hf ), are also calculated with this second
set of parameters. If the condition

p(Hf )p(D|Hf )

p(Hi)p(D|Hi)
> R (4)

(where R is a random number between 0 and 1) is sat-
isfied, the new parameter set is accepted and becomes
the initial parameter set of the next iteration. If Eq.
(4) is not fulfilled, the parameter set is rejected, and a
new random set of parameters is drawn from N (xi, ǫx0).
This process is continued until a predefined number of
parameter sets is accepted.
There is no guarantee that the initial parameters are

within the posterior distribution that we are interested
in sampling. For this reason it is important to have a
burn-in process, by rejecting a number of the initial sets
obtained with the condition Eq. (4), Nburn−in [18]. Sig-
natures of a good burn-in and healthy sampling are likeli-
hoods and parameter distributions that oscillate around
a mean. Following the burn-in, each accepted parameter
set is dependent on the previously accepted set. To re-
move this dependence, one needs to reject Njump sets in
between each accepted set, so erroneous correlations are
not introduced. More details on implementing MCMC
can be found in [18, 19].

C. Optical model

In this work, we constrain the parameters within the
optical model, which describe the scattering of a projec-
tile on a target by solving the single-channel scattering
equation, in the center of mass system, with an effective
interaction U(r), r being the relative coordinate between
projectile and target. The so-called optical potentials are
characterized by both real and imaginary terms,

U(r) = V (r) + iW (r). (5)

The imaginary term takes into account flux that leaves
the elastic channel and is not explicitly described by the
reaction model.

These potentials generally have volume and surface
parts which are written asWoods-Saxon shapes or deriva-
tives of Woods-Saxon shapes. Regardless of whether the
real volume term

V (r) = −
VV

1 + exp( r−RV

aV
)
, (6)

or imaginary volume term

W (r) = −
WV

1 + exp( r−RW

aW
)
, (7)

is considered, each term contains three free parameters,
a depth, radius and diffuseness. The radii of the opti-
cal potential terms are often parameterized in terms of
a radius parameter ri, and for the cases we here con-
sider, Ri = riA

1/3 with A being the mass number of the
target. The surface term is typically purely imaginary
and written as the derivative of a Woods-Saxon. These
three terms, real volume, imaginary volume, and imagi-
nary surface, introduce 9 parameters.
In additional to the nuclear central potential, there is

a spin-orbit term, typically parameterized by a Woods-
Saxon derivative and, for charged projectiles, a Coulomb
potential. Because the spin-orbit does not strongly in-
fluence the elastic scattering cross section for nucleons
and deuterons, in this work, we fix the parameters for
the spin-orbit term at chosen initial values. We consider
the standard finite-size Coulomb potential, (e.g. [20]),
parametrized by a Coulomb radius, which we also keep
fixed throughout this work.

D. Describing transfer reactions

There are two reaction models that we consider. The
first is the adiabatic wave approximation (ADWA) which
starts from a three-body description of n + p + A and
relies on the separation between a fast and a slow vari-
able, namely the fast center of mass of a projectile-target

system, ~R, compared to the slow internal motion of the
deuteron, ~r [21](Chapter 7.1). This approximation con-
sists of exactly solving

[TR + VpA + VnA − (E − ǫ0)]Ψ
ad(~r, ~R) = 0, (8)

where TR is the kinetic energy of the center of mass,
VpA and VnA are the optical potentials that describe the
proton-target and neutron-target interactions, and E is
the incoming beam energy. The term ǫ0 is the ground
state energy of the deuteron and arises from the adia-
batic approximation where the deuteron breakup states
can be made degenerate with the ground state. In the
adiabatic method, breakup of the deuteron is treated to
all orders [22]. A discussion of breakup and finite-range
effects in ADWA can be found in [23]. The adiabatic wave
function is then introduced in the post-form T-matrix for
the A(d,p)B transfer process [21]:

T
ADWA
post = 〈ΦnA(~rnA)χp(~Rf )|Vnp|Ψ

ad(~r, ~R)〉, (9)
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where ΦnA is the bound-state wave function of B = n+
A, χp is the outgoing proton wave function, Vnp is the
deuteron binding potential, and the remnant term ∆,
corresponding to the difference between the A + p and
B+p optical potentials, is neglected. From the T-matrix,
angular distributions for the (d,p) cross sections can be
readily obtained [21].

A simpler approach is the distorted wave Born approx-
imation (DWBA), often used when interpreting A(d, p)B
data. This is a perturbative approach, which, when taken
to first order, assumes the reaction takes place in one-
step and only includes breakup effectively through the
elastic deuteron channel. Then, the elastic scattering
of the deuteron is described by an effective deuteron-
target interaction, UdA (as opposed to ADWA that uses
the individual nucleon-target interactions). Solving the
single-channel scattering equation with UdA provides the
distorted wave χd for the deuteron relative to the target.
The post-form DWBA T-matrix for the A(d,p)B is given
by [21]:

T
DWBA
post = 〈ΦnA(~rnA)χp(~Rf )|Vnp|Φnp(~rnp)χd~ki

(~Ri)〉,

(10)
where the initial three-body state is replaced by the
elastic deuteron channel, namely the product of the
initial deuteron bound state, Φnp(~rnp), and the distorted

wave of the deuteron relative to the target χd~ki
(~Ri).

In the equations for ADWA and DWBA presented
above we have assumed (d,p) reactions. These can be
trivially reformulated for (d,n) reactions. In this case,
B = A + p, and χp is replaced by the distorted wave of
the outgoing n+B system.

III. NUMERICAL DETAILS

For this work we studied five transfer reactions us-
ing both ADWA and DWBA as described in Section
II: 48Ca(d,p)49Ca at 24 MeV, 90Zr(d,p)91Zr at 22 MeV,
90Zr(d,n)91Nb at 20 MeV, 116Sn(d,p)117Sn at 44 MeV
and 208Pb(d,p)209Pb at 32 MeV. These were chosen
specifically because, in addition to the transfer data,
there were all relevant elastic-scattering data to constrain
the optical potentials both in the entrance and exit chan-
nel. Table I gives a list of the relevant elastic-scattering
reactions, along with the reference to the experimental
data. The starting potentials for the nucleon elastic scat-
tering was taken from Becchetti and Greenlees [24], and
the starting potentials for the deuteron elastic scattering
were from An and Cai [25].
For the ADWA calculations, we study the individual

and combined uncertainties from the incoming proton-
and neutron-target interactions as well as from the outgo-
ing nucleon-(A+1) interaction. Likewise, for the DWBA
calculations, we study the uncertainties coming from the

Target Projectile E (MeV) Data
48Ca p 14.03 [26]
48Ca n 12.0 [27]
48Ca p 24.0 [28]
48Ca d 23.3 [29]
90Zr p 12.7 [30]
90Zr n 10.0 [31]
90Zr p 22.5 [32]
90Zr n 24.0 [31]
90Zr d 23.2 [29]
116Sn p 22.0 [33]
116Sn n 24.0 [34]
116Sn p 49.35 [35]
208Pb p 16.9 [36]
208Pb n 16.0 [37]
208Pb p 35.0 [38]
208Pb d 28.8 [39]

TABLE I: Summary of elastic-scattering pairs used in this
work. Column four gives the corresponding reference for the
experimental data.

deuteron-target interaction and outgoing nucleon-(A+1)
interaction.

The interaction between the neutron and proton of the
deuteron is taken to have a Gaussian shape which repro-
duces the nucleon separation energy of the system. The
interaction describing the final bound state between the
transferred nucleon and the target is taken to be a central
potential (Woods-Saxon shape) with a spin-orbit term.
These two terms are parameterized with typical radius
and diffuseness values of 1.20 fm and 0.65 fm. The depth
of the spin-orbit term is also set to a typical value of 6.0
MeV, while the depth of the central term is fit to repro-
duce the binding energy of the nucleon-target system.

For the majority of this work, we consider a Gaussian
prior. An individual Gaussian is defined for each opti-
cal model parameter, centered on the original parameter
value (from either [24] or [25]) and with a width of the
original parameter value. This is discussed in more detail
in Section IVA.

As mentioned in Section II, the MCMC method re-
quires some specifications that must be adjusted for each
system (burn-in, step size, etc.). The step taken by each
parameter for the Monte Carlo in this work is drawn
from a Gaussian distribution, with a width defined to be
a percentage of the starting parameter value (ǫxi

0). In
this way, the step size is not dependent on the previous
parameter draw and has the appropriate scale. Through-
out this work, ǫ = 0.005, which results in a 50% rejection
of the tested parameters by the Monte Carlo method, as
typical in other applications [18].

In our work we use Nburn−in = 500, which is sufficient
to get close to a minimum in parameter space constrained
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by the prior distribution. By examining the χ2 and like-
lihood values recorded after the burn-in, we can verify
that these values are no longer changing systematically
and that the posterior distribution is being adequately
sampled. Also, to insure that each of the parameter set
is pulled independently from the previous one, we set
Njump = 10 and record one out of every ten accepted
parameter sets. A representation of a set of draws is
shown in Figure 1.
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FIG. 1: (Color online) Representation of the the MCMC sam-
plings for 90Zr(n,n)90Zr at 24.0 MeV. Different shades of gray
(different colors online) represent different processors.

For many of the experimental data sets that we use,
the quoted errors are due to the digitalization of the data
from the original publications and do not reflect the ac-
tual experimental error. When errors are quoted in the
original work, they often only include statistical errors
and not systematic ones, which tend to be larger. For
these reasons, we initially take all experimental errors
to be 10% of the experimental data. Then, we can also
systematically study the effect that the reduction of ex-
perimental error bars has on the overall transfer cross
sections and any extracted quantities.
The Monte Carlo methods and Bayesian analysis that

is discussed here is newly implemented but it makes use of
the codes fresco [40] to calculate elastic cross sections,
sfresco [40] to constrain the cross sections based on
data (using the minuit [41] minimization routine), and
nlat [42] to calculate transfer cross sections in ADWA
and DWBA.

IV. RESULTS

A. Dependence on the prior

In Bayesian statistics, there is an interplay between the
prior distributions and the likelihood (given by the data)
to produce the posteriors. In principle, well-measured
data will cause the likelihood to dominate over the prior
distribution, negating the influence of the prior [4]. In
order to understand the relevance of the prior in these
sort of reactions, it is important to investigate the effect
it has on our parameter posterior distributions and on
the resulting cross-section confidence intervals.
Before focusing on our physics cases, we com-

pared prior distributions for four elastic scattering data
sets: 48Ca(p,p) at 21.0 MeV, 90Zr(p,p) at 40.0 MeV,
120Sn(n,n) at 13.9 MeV, and 90Zr(n,n) at 24.0 MeV, but
all results shown in Figures 2, 3, 4, and 5 pertain to
90Zr(n,n). These covere a range of masses and energies,
as well as include both neutron and proton projectiles.
We tested both a linear (flat) prior and a Gaussian prior,
each one with a wide width (covering a range of param-
eter space much larger than the expected physical range
of the parameters) and a medium width (covering the
expected physical range of the parameter space). The
centers and widths of these priors are listed in Table II
specified for 90Zr(n,n)90Zr at 24.0 MeV. For this case,
we also compare these four priors to narrow linear and
Gaussian priors to illustrate the effect of stringent prior
limits on the potential and resulting observables. The
narrow priors have widths of 10% the initial value for
each parameter, medium priors have widths of 50%, and
wide priors have widths of 100%.
We first fix ǫ = 0.005 and compare the posterior distri-

butions for the priors, shown in Figure 2. Although we
studied the six priors shown in Table II, we only show
the distributions for the Gaussian priors for ease of view-
ing. The solid lines show the shape and range of the prior
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x xo ∆xN ∆xM ∆xW xoWL ∆xWL xoML ∆xML xoNL ∆xNL xoWG ∆xWG xoMG ∆xMG xoNG ∆xNG

V 46.0 4.6 23.0 46.0 45.86 2.45 43.69 2.08 45.95 1.28 45.06 1.68 45.68 2.29 44.92 2.01

r 1.17 0.117 0.585 1.17 0.95 0.03 0.98 0.03 1.18 0.02 0.97 0.02 0.95 0.03 0.97 0.03

a 0.75 0.075 0.375 0.75 0.69 0.06 0.63 0.04 0.77 0.02 0.64 0.05 0.68 0.05 0.72 0.05

Ws 5.7 0.57 2.85 5.7 4.76 0.55 4.95 0.47 5.70 0.16 5.39 0.50 4.70 0.32 5.15 0.35

rs 1.26 0.126 0.63 1.26 1.06 0.07 1.03 0.05 1.27 0.03 1.01 0.05 1.05 0.05 1.09 0.06

as 0.58 0.058 0.29 0.58 0.61 0.04 0.48 0.03 0.58 0.02 0.52 0.06 0.52 0.05 0.52 0.03

W 3.7 0.37 1.85 3.7 2.15 0.22 3.00 0.17 3.66 0.10 1.34 0.35 2.64 0.40 3.39 0.28

rw 1.26 0.126 0.63 1.26 1.06 0.10 1.10 0.07 1.25 0.03 1.35 0.13 0.99 0.12 1.02 0.06

aw 0.58 0.058 0.29 0.58 0.57 0.07 0.68 0.04 0.58 0.02 0.59 0.07 0.52 0.07 0.57 0.05

TABLE II: Summary of centers (xo) and widths (∆xN , ∆xM , and ∆xW ) for the narrow, medium, and wide priors, and the
resulting means and widths for the narrow linear (NL), narrow Gaussian (NG), medium linear (ML), medium Gaussian (MG),
wide linear (WL), and wide Gaussian (WG) posterior distributions. These are given for 90Zr(n,n)90Zr at 24.0 MeV. Depths
are given in MeV, and radii and diffusenesses are given in fm.

distributions, and the histograms show the resulting pos-
terior distributions. For the real parameters, especially
V and r, (panels a and b) the posterior distributions are
nearly identical, within statistical fluctuations. This is
not necessarily the case in the imaginary terms of the
potential, especially for the volume part. For the vol-
ume depth, W in panel g, the peaks and widths of the
three distributions shown are strikingly different. For the
Gaussian priors systematic decreases in the depth lead to
increases in rw, panel h. Even so, all of the parameter
values are reasonable. These differences in the minima
lead to similar χ2 distributions, also seen in Figure 2
panel j.

These conclusions do not necessarily hold for the linear
priors (shown in more detail in Appendix A). The poste-
rior distributions for the real volume potential are similar
to those resulting from the Gaussian priors, but many of
the imaginary parameters have hard boundaries in the
posterior distributions due to the sharp cut-offs of the
prior distributions. These parameter space cut-offs can
significantly influence the resulting 95% confidence inter-
vals. The parameters constrained by the narrow linear
prior, for example, do not reproduce the elastic scattering
data. This, in part, leads to our use of Gaussian priors.

Figure 3 (a) then shows the comparison of the distribu-
tion of elastic cross section values calculated from these
parameter posteriors. The bands are constructed by cal-
culating an angular distribution from each posterior and
then computing the 95% confidence interval for each an-
gle (as in Eq. 3). They are nearly identical, except for
minor fluctuations especially at the first minimum and
backwards angles. This is perhaps unsurprising given the
similarities of the χ2 distributions, but it indicates that
parameters are not uniquely determined by the data.

A given set of optical potentials can produce consider-
ably different transfer cross section, even when they pro-
duce identical elastic scattering distributions (for exam-
ple, [2]). We thus investigate the transfer cross sections
resulting from the posteriors shown in Fig. 2. Given the

computational costs of the full calculation, we use only
DWBA and simplify the process by setting UAd = 2UAn,
since the proton- and neutron-target potentials are rather
similar. Doing this, and defining the the 90Zr− p outgo-
ing channel using [24], we calculate the resulting transfer
cross sections shown in Figure 3 (b). The transfer cross
sections show more pronounced differences than the elas-
tic. In particular, the narrow Gaussian prior produces
a cross section with a slightly reduced magnitude. We
expect that if the prior distribution is large enough, the
effect of the shape of the prior disappears entirely.

We can then fix the shape of the prior and examine
the effect of varying the scale ǫ. Even though ǫ = 0.005
gives us near the ideal relation between the number of
accepted and rejected steps, we aim to verify that this
adequately explores the parameter space: too small a
step for each parameter can result in trapping the ran-
dom walk in a local minimum near the initial param-
eterization, instead of finding a more global minimum,
which then can produce an artificially narrow posterior.
Assuming the wide Gaussian prior, we repeated the cal-
culations for ǫ = 0.001, 0.002, 0.005, 0.01, 0.05; the cor-
responding posterior distributions are shown in Fig. 4.
Our results show that, on one hand ǫ = 0.05 (black) is
too large and not able to constrain the posterior distri-
bution for the parameters, and on the other, ǫ = 0.001
and ǫ = 0.002 result in extremely narrow posterior distri-
butions, indicating that these steps do not allow enough
exploration of the parameter space.

For ǫ = 0.005 and ǫ = 0.01, the right balance is
provided: we obtain nearly the same posterior widths
for each parameter, and close to identical χ2 distribu-
tions, as seen in panel (j) (overlapping green and blue
histograms). The parameter posterior distributions are
reasonable, and although they do result in slightly differ-
ent mean values for the parameters, the 95% confidence
intervals on the elastic scattering cross sections for these
two ǫ choices are identical. Note that it is the cross sec-
tion that is the observable, not the potential; the individ-
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FIG. 2: (Color online) Comparison of the posterior distri-
butions (histograms) resulting from various prior distribu-
tions (corresponding solid lines) for a wide Gaussian (WG),
medium Gaussian (MG), and narrow Gaussian (NG) as de-
fined in Table II for 90Zr(n,n)90Zr at 24.0 MeV.

ual parameter posterior distributions are less important
than the combined effect of all of the parameters. Our
choice is to use ǫ = 0.005 throughout the rest of this
work.
These trends in parameter shape and ǫ hold for the

other three reactions that were studied. In these cases,
the posterior distributions for the flat priors had sharp
problematic cut-offs which lead to obvious differences in
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FIG. 3: (Color online) Comparison of the (a) 90Zr(n,n)90Zr
elastic scattering and (b) 90Zr(d,p)91Zr(g.s.) transfer at 24.0
MeV for the posterior distributions shown in Figure 2.

the calculated cross sections. For this reason, we dis-
card the flat priors, and only use Gaussian priors for the
remainder of this work.

B. Prior influence on the posterior

We further systematically study how the mean and
width of the posterior change with the width of the prior.
To do this, we again take the example of 90Zr(n,n)90Zr
elastic scattering at 24.0 MeV and use a Gaussian prior
for each of the parameters, with a mean value of the
starting parameter value from [24] and a varying width
- defined as a percentage of the mean value. Figure 5
shows the means (filled circles) and widths (error bars)
of the resulting posterior distributions as a function of the
width of the prior distributions for each optical potential
parameter. Clearly, the mean of the posterior distribu-
tion for each parameter stays essentially constant as the
width of the prior is increased.
However, the resulting posterior widths are signifi-

cantly narrower than the starting prior distributions -
and this width does not depend on the width of the prior.
For the following results, we take the width of the prior
distribution to be the same value as the original param-
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FIG. 4: (Color online) Same as Figure 2 for a fixed prior
shape - wide Gaussian - but varying ǫ, as given in the legend
in panel (j).

eter (∆x = xo) for each of the optical model parame-
ters that are allowed to vary. This keeps the parameters
within a physical range but does not overly constrain
them.

C. Transfer reactions

For the main part of this work, we studied five transfer
reactions, four neutron transfers and one proton trans-
fer, as listed in Section III. In the next section, we will
show the example of 48Ca(d,p)49Ca in detail, first going
through the ADWA and then the DWBA calculations.
Following that, we will summarize our findings of all five
reactions, discussing specific details as well as systematic
trends.

1. Transfer using ADWA

We first calculate 48Ca(d,p)49Ca transfer (to the
ground state) using the adiabatic wave approximation
(ADWA). The incoming deuteron channel is constrained
using neutron and proton elastic scattering on 48Ca. The
outgoing proton-49Ca channel is constrained using pro-
ton scattering data on 48Ca at an energy in the center
of mass that is approximately 2ECM

d − Q(d,p). This is
appropriate because, for the nuclei considered here, the
differences in the nucleon optical potentials between the
A and the A+1 systems are typically on the order of 1%
or less.
To complete the transfer reaction, we need to calculate

the posterior distributions for each of these elastic scat-
tering cases. As discussed in the previous section, we use
an independent Gaussian prior for each parameter (xi)
centered on the starting parameterization (xi

0 for each
parameter) from [24] and the width is the same as the
center value,

p(H) ∝

Np
∏

i=1

exp

[

−
(xi − xi

0)
2

2(xi
0)

2

]

, (11)

where Np is the number of parameters that are being
constrained.
In Figures 6, 7, and 8, we show the prior (solid line) and

posterior (black histogram) distributions for each of the
variables that were constrained by data (taking the ex-
perimental error bars to be 10% of the data). These dis-
tributions were constructed from 1600 accepted MCMC
draws. Each of the posterior distributions is centered
around a physical value with a width that is significantly
narrower than the width of the prior. This demonstrated
that the data has important information content pertain-
ing these parameters.
We note that Figure 7 does not show a plot for aw, the

imaginary volume diffuseness. In this case, aw was not
included as a free parameter in the Monte Carlo simu-
lation, but was instead fixed at its initial value of 0.63
fm. When it was included as a free parameter, it was
not well constrained by the data; the posterior distribu-
tion was completely flat and outside of the range defined
by the prior (as well as outside of the physical range
for this parameter). This was not uncommon for the
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proton-scattering and deuteron-scattering data, as will
be discussed in Section V.
Figure 9 shows the 95% confidence intervals (black)

resulting from these parameter posterior distributions.
The data is well reproduced by the Monte Carlo sam-
pling under the constraint of Bayes’ Theorem, and the
confidence intervals are relatively narrow. The parame-
ter sets that make up the posterior distributions for the
elastic scattering channels can then be used to calculate
the transfer cross section. For this purpose, we randomly
draw three parameter sets, one from the incoming neu-
tron posterior, one from the incoming proton posterior,
and another from the outgoing proton posterior. These
are then combined to calculate the ADWA transfer cross
sections. It is important to remember that we use a fixed
mean field to produce the single particle bound state in
the exit channel. In order to mimic the introduction of a
spectroscopic factor into our problem, we normalize the
predicted angular distributions to the data at forward
angles. The 95% confidence interval for this calculation,
after normalization, is shown in Figure 10 (black).
We can then systematically study how the reduction

of the experimental errors changes the resulting transfer
calculation. To do this, we rerun the Monte Carlo with
the same prior distributions but assuming 5% errors on
the experimental data. The resulting mean parameter
values are approximately the same but the widths are
generally smaller - which can also be seen in Figures 6,
7, and 8 (blue histograms). The χ2 values are larger
when the experimental errors decrease; this is expected
since the χ2 is weighted by the now smaller error at each
angle. Figure 9 shows the comparison of the 95% con-
fidence intervals for the elastic-scattering cross sections
using these two errors (10% errors in black and 5% errors
in blue). As one would expect, the cross section confi-
dence intervals are narrower when smaller error bars are
used; to an extent, we can better constrain our calcula-
tions when the data is measured more precisely. Finally,
Figure 10 compares the 95% confidence intervals for the
transfer reactions using the two posterior distributions.
Reducing the error on the elastic cross section data by
50%, reduces the uncertainty in the predicted transfer
cross sections by ≈ 30%. We will come back to this issue
in Sec. V.

2. Transfer using DWBA

We can perform the same study using the deuteron
elastic scattering data to constrain the incoming channel
(through DWBA) instead of the incoming nucleon inter-
actions (with ADWA). The prior for the deuteron-target
elastic scattering also has the Gaussian form of Eq. (11)
for each parameter included in the fit, centered on the
original optical potential values, now from [25], with a
width equal to the center value. (The outgoing proton
or neutron channels are defined from the same posterior
distributions as in the ADWA study.) Similar posterior

distributions are obtained (not shown), when using 10%
and 5% error bars on the data, both in the mean values
and widths; all of the parameter posteriors are centered
around physical values. Like the nucleon elastic scatter-
ing, for deuteron elastic scattering the imaginary volume
diffuseness, aw, could not be constrained by the data
and therefore was not included in the fit. It is fixed at
its original value from [25].
The 95% confidence intervals for the deuteron elastic

scattering are shown in Figure 11. Again, we see that
these intervals are well constrained based on the data,
although the angular range covered by the data is sig-
nificantly smaller than that covered by the nucleon scat-
tering data. We then use the deuteron elastic-scattering
posterior and the outgoing proton elastic-scattering pos-
terior shown in Figure 8 for the ADWA calculation (pos-
teriors from Figure 8) to perform the DWBA calculation.
Figure 12 shows the 48Ca(d,p)49Ca(g.s.) transfer cross
sections using the 10% (black) and 5% (blue) errors, us-
ing DWBA. Here we see almost no reduction in the width
of the transfer cross section at the peak when the smaller
experimental errors are included. The reduction is on the
order of 10% and only occurs at the peak.

3. Comparison between reaction models

We can now directly compare the two reaction models.
Figure 13 overlays the confidence bands obtained using
ADWA and DWBA, for both 10% and 5% experimental
errors, all normalized to the experimental data at for-
ward angles. The reaction models produce transfer cross
sections that differ slightly in their angular dependence,
although they all peak around the same angle - close to
5◦ (this is mainly due to the same kinematic conditions
and the same angular momentum transfer in ADWA and
DWBA). At the peak of the angular distribution - where
a spectroscopic factor would typically be extracted - the
DWBA calculations have larger uncertainties than the
ADWA calculations by 25− 40%.

D. Summary of results

For all but one transfer reaction calculated for this
work, we follow the same procedure as in Section IV C
and compile the results in this section (the DWBA cal-
culation was not performed for 116Sn(d,p)117Sn due to a
lack of (d, d) scattering data at the incident energy). In
Table III, we present the widths of the confidence bands
predicted for transfer reactions calculated in this work.
It lists the mean values, at the peak of the angular distri-
butions for the 95% confidence intervals (column four),
given a reaction model (ADWA or DWBA), with the
index representing the experimental error taken for the
elastic scattering cross sections (5 and 10 for 5% errors
and 10% errors, respectively). Note that the peak values
are those corresponding to the 95% confidence intervals.
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Reaction Theory θ Peak∗ SF ε95 ε68
48Ca(d,p) ADWA10 6 34.09 1.068 35.76 16.47
48Ca(d,p) ADWA5 6 33.38 1.092 24.24 11.53
48Ca(d,p) DWBA10 3 41.56 1.017 47.93 22.57
48Ca(d,p) DWBA5 4 40.73 1.016 42.03 22.36
90Zr(d,n) ADWA10 31 2.16 — 44.44 17.59
90Zr(d,n) ADWA5 31 2.13 — 20.19 9.91
90Zr(d,n) DWBA10 31 3.04 — 38.82 21.52
90Zr(d,n) DWBA5 30 3.15 — 26.35 13.29
90Zr(d,p) ADWA10 14 16.63 0.740 47.62 21.95
90Zr(d,p) ADWA5 14 17.94 0.686 30.88 14.99
90Zr(d,p) DWBA10 16 17.09 0.720 58.86 29.02
90Zr(d,p) DWBA5 16 17.41 0.707 30.61 14.26
116Sn(d,p) ADWA10 1 4.64 — 121.77 48.31
116Sn(d,p) ADWA5 1 5.93 — 101.52 55.12
208Pb(d,p) ADWA10 11 13.32 — 37.84 18.95
208Pb(d,p) ADWA5 14 13.97 — 25.48 11.42
208Pb(d,p) DWBA10 9 7.44 — 72.72 43.84
208Pb(d,p) DWBA5 7 8.38 — 63.01 30.08

TABLE III: Overview of the uncertainty in the differential
cross section for each transfer reaction. Column one lists the
transfer reaction, and column two lists the reaction theory
used (ADWA or DWBA) with 5 or 10 indicating the experi-
mental errors used. The angle (θ, in degrees) where the cross
section peaks is listed in column three, and the value of the
cross section at the peak (in mb/sr) is listed in column four.
The spectroscopic factors are given in column five (for the
reactions that have been measured experimentally). Column
six (seven) lists the percentage error at the peak assuming a
95% (68%) confidence interval.

These values may change by 5-10% at most when 68%
confidence intervals are calculated, but fall within the
95% intervals. Two percentage uncertainty widths are
listed in columns five and six are defined as

εi =
σi
max − σi

min

σ̄i
× 100% , (12)

where i indicates which confidence interval is being calcu-
lated (95% or 68%, as given by Eq. 3), σi

max (σi
min) give

the maximum (minimum) values of the cross sections de-
fined by the i% confidence interval, and σ̄i denotes the
mean value of the cross section at the peak within the
i% confidence interval. In principle, the 95% confidence
intervals should be about twice as wide at the 68% con-
fidence intervals. When this does not hold, we can make
inferences about the tails of the confidence intervals -
whether or not they are asymmetric around the mean or
how far they extend from the mean (equivalently, how
peaked the distribution is). In Table III, we see that
ε68 ≈ 0.5ε95 for nearly every reaction indicating that the
distributions are nearly symmetric and could be well de-
scribed as Gaussian.
In order to assess the gain of predictive power when

Reaction Theory (∆exp)95 (∆exp)68
48Ca(d,p) ADWA 32.22 30.03
48Ca(d,p) DWBA 12.30 0.91
90Zr(d,n) ADWA 54.58 43.69
90Zr(d,n) DWBA 32.12 38.24
90Zr(d,p) ADWA 35.15 31.68
90Zr(d,p) DWBA 47.99 50.87
116Sn(d,p) ADWA 16.63 -14.10
208Pb(d,p) ADWA 32.65 39.71
208Pb(d,p) DWBA 13.35 31.39

TABLE IV: Overview of the reduction (or increase) factor
between the 10% error calculations and the 5% error calcula-
tion for the reaction model listed in column two. This is done
for both the 95% and 68% confidence intervals. See text for
details.

Reaction Error (∆th)95 (∆th)68
48Ca(d,p) 10% 25.39 27.03
48Ca(d,p) 5% 42.33 48.43
90Zr(d,n) 10% -14.48 18.26
90Zr(d,n) 5% 23.38 25.43
90Zr(d,p) 10% 19.10 24.36
90Zr(d,p) 5% -0.88 -5.12
208Pb(d,p) 10% 47.96 56.77
208Pb(d,p) 5% 147.29 62.03

TABLE V: Overview of the reduction (or increase) factor be-
tween the DWBA calculations and the ADWA calculation for
the percent error on the experimental data listed in column
two. This is done for both the 95% and 68% confidence in-
tervals. See text for details.

increasing the precision of the experimental data, we in-
troduce:

∆exp =
εi(ADWA10)− εi(ADWA5)

εi(ADWA10)
× 100%. (13)

In Table IV, we show this ∆exp factor, for each theory
model.
Also of interest is the information gain when improving

the theoretical description of the reaction. As mentioned
earlier, ADWA is built on a three-body model for the re-
action and contains deuteron breakup to all orders, while
the standard DWBA calculations consist of the first term
of a perturbative series based on two-body multiple scat-
tering. We thus introduce the quantity:

∆th =
εi(DWBA)− εi(ADWA)

εi(DWBA)
× 100% (14)

which reflects the improvement in describing the data
when taking deuteron breakup explicitly. This is shown
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in Table V. Because the DWBA calculation was not per-
formed for 116Sn, ∆th could not be calculated for this
system.
Overall we find that reducing experimental errors and

improving the reaction theory, reduces the uncertainty
in the prediction of the transfer cross section. In the
next section, we present a thorough discussion; how-
ever we should underline two atypical results. For
116Sn(d,p)117Sn, we find that the width of the 68% con-
fidence interval increases when the experimental error is
halved (see Table IV). This is due to the non-symmetric
nature of the posterior distribution of the transfer cross
section. For the 68% confidence intervals, there is no
strong peak in the density of the cross section values at
each angle, which results in the mean being defined rather
arbitrarily. The other unusual case is 90Zr(d,n)91Nb for
which there is an increase in the theoretical uncertainty
for the ADWA calculations compared to the DWBA cal-
culations (see Table V). It turns out that the deuteron
optical potential of [25] seems to be particularly well-
defined for 90Zr-d scattering, especially compared to 48Ca
and 208Pb. In [25], the authors quote an overall χ2 of 4.03
for 90Zr over the range of energies that were investigated
(E < 183 MeV) which contrasts with 48Ca, χ2 = 123.58.
This is the reason why in some particular combination
of confidence level and experimental error bar precision,
DWBA appears to perform slightly better.

V. DISCUSSION

The three main goals of our analysis are: 1) assess
the uncertainties in the transfer cross section, within
the adiabatic formalism, when constraining the nucleon-
target optical potentials with the relevant elastic scat-
tering data, 2) understand the effect of data precision
on the resulting cross section uncertainties, and 3) sys-
tematically compare the two reaction formalisms which
introduce different approximations. These are each dis-
cussed in this section.

A. Uncertainties from nucleon-target potentials

We can now examine the uncertainties from the
nucleon-target interactions. If we first focus on the un-
certainties from the 95% confidence intervals (column six
of Table III) for the ADWA calculations, we see that
these range from 20% to about 120%. Almost all of these
are larger than the 10% to 30% that is näıvely expected
to come from the parameterization of the optical model.
(We see that the uncertainties of the 95% confidence in-
tervals for the DWBA calculations are larger on average;
these differences will be discussed more in Section VC.)
Table VI shows the theoretical uncertainty as defined

in Eq. 12 - at the peak of the transfer cross section -
that is introduced when only one or two of the nucleon-
target potential posterior distributions are included in

Reaction Projectile ε10 ε5 θmax (deg)
48Ca(d,p) pin 22.90 11.82 158
48Ca(d,p) nin 15.82 7.96 143
48Ca(d,p) pout 26.70 17.37 170
48Ca(d,p) din 26.08 15.61 —
48Ca(d,p) ADquad 38.57 22.47 —
90Zr(d,n) pin 18.44 15.28 165
90Zr(d,n) nin 16.96 9.17 150
90Zr(d,n) nout 26.04 12.08 159
90Zr(d,n) din 28.72 17.17 —
90Zr(d,n) ADquad 36.14 21.53 —
90Zr(d,p) pin 17.53 12.81 165
90Zr(d,p) nin 13.78 8.92 150
90Zr(d,p) pout 38.24 19.96 154
90Zr(d,p) din 23.77 19.18 —
90Zr(d,p) ADquad 44.27 25.34 —
116Sn(d,p) pin 80.50 64.60 169
116Sn(d,p) nin 35.26 18.43 155
116Sn(d,p) pout 87.05 79.64 88
116Sn(d,p) din 88.65 64.16 —
116Sn(d,p) ADquad 123.70 104.19 —
208Pb(d,p) pin 16.42 7.76 165
208Pb(d,p) nin 22.35 12.92 154
208Pb(d,p) pout 33.00 21.41 168
208Pb(d,p) din 30.98 19.62 —
208Pb(d,p) ADquad 43.11 26.69 —

TABLE VI: Theoretical uncertainties, εi, using 10% (5%) ex-
perimental errors, extracted at the peak of the cross section,
column three (four) for a given transfer reaction (column one).
The projectile in column two indicates which part of the po-
tential was varied (while the remaining nucleon-target poten-
tials were fixed at the original parameterizations from [24].
(Here, the error on the deuteron channel comes from varying
the incoming neutron and proton potentials simultaneously,
and ADquad comes from adding the errors from the nucleon
incoming and outgoing potentials in quadrature.) Column
five shows the largest angle at which the experimental data
was measured.

the ADWA transfer calculation. For nearly all of the
calculations, the largest single channel uncertainty is in-
troduced by the outgoing nucleon-target potential. This
is an intriguing results that is not yet fully understood.
All of the scattering pairs (besides 116Sn(p,p) in the
outgoing channel) have data out to 150◦ or beyond, so
we cannot attribute this result to the lack of angular
coverage.[46] This result suggests a significant change in
the way deuteron induced transfer reactions are currently
measured. Typically the reaction is measured in inverse
kinematics with a deuterated target. We propose that
in addition, a proton target is used to capture the elas-
tic with the beam energy adjusted to match the relevant
outgoing channel kinematic conditions. This will mini-
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mize the uncertainty coming from the optical potentials
in the theoretical prediction.

Table VI also lists the total quadrature uncertainty
from the incoming and outgoing channels for the ADWA
calculations, ADquad. We find that this quadrature un-
certainty is nearly identical to the uncertainties in Table
III. The total uncertainty calculated by including the un-
certainties from all potentials simultaneously is the same
as adding in quadrature the uncertainties from each po-
tential individually. We find the same results for the
quadrature uncertainties for DWBA.

B. Effects of the experimental error

In Figures 10 and 12, we showed the comparison be-
tween the uncertainty for the ADWA and DWBA cal-
culations using 10% and 5% errors on the experimental
data for the case of 48Ca(d,p)49Ca(g.s.). In both cases,
we see a reduction in the width of the cross section at
the first peak (where a spectroscopic factor would be
extracted), when smaller errors are included. However,
this reduction is not proportional to the reduction in the
experimental error - for a 50% reduction of the experi-
mental error, we only find about a 30% reduction in the
uncertainty of the resulting transfer cross section for the
ADWA calculation and a reduction of about 10% for the
DWBA calculation.

Since we have used an exponentiated χ2 as our like-
lihood, one might näıvely argue that a reduction in the
experimental error by two should just scale the likelihood
and therefore just scale the posterior distributions. How-
ever, this is not what is obtained for our calculations. We
also do not see a consistent scaling of the widths of the
parameter posterior distributions.

As we saw for the elastic nucleon-target and deuteron-
target cross sections used in the 48Ca(d,p)49Ca(g.s.), in
all other cases here studied, reducing the experimental
error bars gives rise to similar means but smaller widths
for the posterior distributions. This also has the effect of
reducing the width of the 95% confidence intervals for the
elastic scattering (similar to what is seen in Figures 9 and
11). The reduction in the width is not always drastic, but
it is always present. Further, we always see a reduction in
the percentage error at the peak of the cross section when
the experimental errors are halved (Table IV), except for
the 68% confidence intervals for 116Sn as discussed in
Section IVD. This reduction ranges from about 10% to
55%. Therefore, while tighter constraints on the experi-
mental data allow us to more precisely extract informa-
tion from the transfer cross section, the magnitude of the
improvement in the prediction is not trivially related to
the magnitude of improvement in the experimental mea-
surement.

C. Comparison of ADWA and DWBA

In Table V, we showed the reduction in the uncertain-
ties for the transfer cross sections when going from a
DWBA description to ADWA. This is done for the two
experimental error bars considered and for both the 95%
and 68% confidence intervals. Except for those cases dis-
cussed earlier, there is a significant reduction in the per-
centage error, at the peak, when improving the physics of
the model. On average the width of the 95% confidence
band is ≈ 40% for ADWA, and ≈ 55% for DWBA when
10% error bars are included in the experiment. If instead
5% error bars are considered, then the average uncer-
tainty for the 95% confidence band is ≈ 25% for ADWA
and≈ 40% for DWBA. This result confirms expectations,
especially because the ADWA method has been shown to
reproduce the exact solution of the three-body problem
for the energies of interest in this work [44]. As shown in
Figure 13, our ADWA angular distributions appear more
in line with the experimental angular distribution but
DWBA cannot be ruled out due to the model uncertain-
ties. Although the ADWA and DWBA calculations have
different peak shapes (data at more forward angles could
distinguish between the calculations), the calculations at
backwards angles do not provide the same differentiation.
The fifth column of Table III lists the spectroscopic

factors for 48Ca(d,p) and 90Zr(d,p) (which were the only
two reactions where (d,p) data was available, from [43]
and [45], respectively). The spectroscopic factors were
calculated by normalizing the mean theoretical cross sec-
tion at the peak of the experimental angular distribu-
tion or the forward-most measured data point. For each
reaction, the spectroscopic factors between ADWA and
DWBA differ by only a few percent which is significantly
smaller than the uncertainty introduced by the optical
potentials. The differences in the spectroscopic factors
alone would not be enough to distinguish between the
two models especially considering the relatively large un-
certainties that are introduced by the free parameters
within the potential model.
One should keep in mind that, as discussed earlier in

Section VA, these uncertainties are only due to the opti-
cal potential parameterizations, and the results may de-
pend on the specifics of each set of data. Ideally, we
would like to have the same angular coverage for all rel-
evant elastic scattering and transfer data. Since ADWA
and DWBA often predict different transfer angular dis-
tributions, such a study could enable model exclusion.

VI. CONCLUSIONS AND FUTURE WORK

We have used Bayesian methods to construct 95% con-
fidence intervals for five transfer reactions and relevant
elastic scattering in the range A = 48 − 208 with en-
ergies from 10 to 25 MeV/u. The aim of the study is
to quantify the uncertainties coming from the parame-
terization of the optical model potentials and to begin
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to investigate the uncertainties coming from differences
in the reaction model implemented. Nucleon-target and
deuteron-target elastic scattering data were used to con-
strain the parameters in the potential and create pos-
terior distributions for each parameter. These posterior
distributions were used to predict proton and neutron
transfer cross sections, taking for the reaction formalism
either the adiabatic wave approximation or the distorted-
wave Born approximation. The experimental errors for
each data set were defined systematically to be a fixed
percentage for all angles and data sets: we consider both
10% and 5% experimental errors. This enables a rigorous
study on their impact in the confidence intervals of the
theoretically predicted observables.
Overall, we find about 20 − 120% error being intro-

duced to the transfer angular distributions using data to
constrain optical model parameters. The uncertainties
from each two-body scattering reaction essentially add
in quadrature to produced the overall uncertainty when
the potentials of all scattering pairs are varied simulta-
neously within the constraints of their posterior distribu-
tions. The outgoing nucleon-(A+1) potential introduces
the largest uncertainty in the five cases studied here. Re-
ducing the experimental errors in the data significantly
reduces the uncertainty in the constrained elastic and
predicted transfer cross sections, however this effect is
not directly proportional to the reduction factor of ex-
perimental error bars. Finally, constraining the nucleon-
target interactions and calculating a transfer cross section
using ADWA generally introduces less uncertainty than
constraining the deuteron-target interaction and predict-
ing the transfer through DWBA. We expect that ADWA
would have less uncertainty as it explicitly takes the
breakup of the deuteron into account.
Even though we have constrained each of the incom-

ing and outgoing potentials with data and have included
these in the overall uncertainties, there are still other un-
certain elements in the theory, including the mean field
potential binding the nucleon-target system in the final
state and the np interaction binding the deuteron in the
initial state. These uncertainties should also be quanti-
fied in the future.
This work focused on the uncertainties due to the pa-

rameterization of the potentials. Given that the reactions
here considered are many-body complex scattering prob-
lems, for which we use few-body methods, there is the
larger issue of model simplifications. The ultimate goal
is to estimate the uncertainties that arise from the model
simplifications without knowing the exact solution, as
well as rigorously comparing models to understand the
information content and to what extent the increased
complexity is justified by the evidence. The Bayesian
reaction framework we have implemented provides a way
forward in this investigation.
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Appendix A: Linear Priors

Although we discussed the linear priors in the main
text, they were not shown in detail. Therefore, in Figure
14, we show a comparison of the posterior distributions
resulting from the linear priors listed in Table II, consid-
ering again 90Zr(n,n)90Zr at 24.0 MeV. Contrary to the
Gaussian priors of Section IVA, in the case of the linear
priors, the posterior distributions sharply terminate at
the boundaries of the prior for nearly all of the variables,
particularly for the narrow linear (NL) prior. Although
this is not seen in the medium and wide prior for the real
volume parameters, there is a significant effect on the
posterior distributions for the imaginary terms. This has
a large impact on the resulting 95% confidence intervals
for the elastic-scattering angular distributions, as shown
in Figure 15. Despite the stark differences in the poste-
rior distributions for the medium and wide linear priors,
the resulting angular distributions are strikingly similar.
The same is not true for the angular distribution result-
ing from the narrow prior which does not even reproduce
the experimental data.



14

0 50 100

Prior Width

50

100

150

Po
st
e
ri
o
r 
M
e
a
n

a)
V (MeV)

0 50 100

Prior Width

40

60

80

100

120

Po
st
e
ri
o
r 
M
e
a
n

b)
r (fm)

0 50 100

Prior Width

0

50

100

150

200

Po
st
e
ri
o
r 
M
e
a
n

c)
a (fm)

0 50 100

Prior Width

0

50

100

150

200

Po
st
e
ri
o
r 
M
e
a
n

d)
Ws (MeV)

0 50 100

Prior Width

40

60

80

100

120

140

Po
st
e
ri
o
r 
M
e
a
n

e)
rs (fm)

0 50 100

Prior Width

0

50

100

150

Po
st
e
ri
o
r 
M
e
a
n

f)
as (fm)

0 50 100

Prior Width

0

50

100

150

200

Po
st
e
ri
o
r 
M
e
a
n

g)
W (MeV)

0 50 100

Prior Width

0

50

100

150

Po
st
e
ri
o
r 
M
e
a
n

h)
rw (fm)

0 50 100

Prior Width

0

50

100

150

200

Po
st
e
ri
o
r 
M
e
a
n

i)
aw (fm)

FIG. 5: (Color online) Systematic study of the mean of the
posterior distribution as a function of the width of the prior
distribution for neutron elastic scattering on 90Zr at 24.0
MeV: the prior width along the x-axis is given as the per-
centage of the original parameter value from [24]; posterior
mean is given as a percentage of the prior center (full cir-
cles); the error bars show the width of the posterior mean as
a percentage of the width of the prior.
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FIG. 6: (Color online) Posterior distributions for the optical
model parameters conditional on 48Ca(n,n) elastic scattering
at 12.0 MeV. Gray (light blue) histograms show the posterior
assuming 10% (5%) error on the experimental data. Overlaid
solid line shows the Gaussian prior distribution (magnitude is
arbitrary).
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FIG. 7: (Color online) Same as Figure 6 for 48Ca(p,p) elastic
scattering at 14.03 MeV.
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FIG. 8: (Color online) Same as Figure 6 for 48Ca(p,p) elastic
scattering at 25.0 MeV.
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FIG. 9: (Color online) 95% confidence intervals for the elas-
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14.08 MeV, and c) 48Ca(p,p) at 25.0 MeV. Gray solid (light
blue dashed) lines outline the 95% intervals when 10% (5%)
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48Ca(d,p)49Ca(g.s.) at 24.0 MeV, compared to data at 19.3
MeV (extracted from [43]). Gray solid (light blue dashed) re-
gions show the intervals when 10% (5%) experimental errors
are used for the ADWA calculation.
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FIG. 11: (Color online) Same as Figure 9 for 48Ca(d,d)48Ca
at 23.2 MeV.
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