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Abstract

A self consistent mean-field approach within the extended Thomas-Fermi approximation with

Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei.

Landau’s concept of quasiparticles with the nucleon effective mass and the correct description of

the continuum states for the finite-depth potentials are taken into consideration. The A-dependence

and the temperature dependence of the statistical inverse level-density parameter K is obtained in

a good agreement with experimental data.
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I. INTRODUCTION

The methods of statistical physics and thermodynamics is an essential element of the

theory of highly excited nuclei. Applications of statistical methods in nuclear physics cover

many observable characteristics such as the statistical level density, the resonance energies

and widths, the average cross-sections of nuclear reactions, the yields in nuclear fission, etc.

The statistical level density ̺(Eex) for a given excitation energy Eex is the subject of many

theoretical and experimental investigations in nuclear physics [1–8]. The excitation energy

Eex is referred to the ground state energy E0 and reads Eex ≡ Eex(T ) = E(T )− E0 = aT 2,

where T is the temperature, E(T ) is the total energy and a is the statistical level density

parameter.

A key element in the study of the statistical level density ̺(Eex) is the single-particle

level density g(ǫ), associated with the nuclear mean field and the nuclear shell model of

the non-interacting nucleons [2]. The basic fact is that in a low temperature limit, where

temperature T ≪ ǫF (ǫF is the Fermi energy), the excitation energy Eex of a strongly

interacting Fermi-system is determined mainly by the variation of the occupation number

δn(ǫ) in close vicinity to the Fermi energy ǫF , see also Fig. 1 below. This fact allows us to

apply the Landau’s concept of Fermi-gas of quasi-particles [9, 10] to the strongly interacting

nucleons. The excitation energy Eex of a nucleus is then associated with the excitation of

the gas of noninteracted quasi-particles.

The spin-independent part of the statistical level density ̺(Eex) ∼ expS(Eex) is related

to the entropy S(Eex) and can be evaluated by use of the Darvin-Fowler method [1, 5, 6]

̺(Eex) =

√
π

12 a1/4 E
5/4
ex

exp
(
2
√
aEex

)
=

√
π

12 a3/2 T 5/2
exp (2aT ) . (1)

The evaluation of the excitation energy Eex(T ) of a Fermi gas is shown in Appendix A. Using

Eq. (A9) of Appendix A, one can obtain the commonly used expression for the statistical

level density parameter a [2]

a =
1

6
π2g(ǫF ) +O(T 2). (2)

The simple Fermi-gas result (2) within the traditional shell-model consideration overes-

timates the inverse level density parameter K = A/a by factor of about 2, see e.g. Ref. [8].

To improve an agreement of K with the experimental data, in many practical calculations
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one took into consideration the effects of correlated interaction, pairing effects, rotation and

vibration states, temperature dependence, etc. [2, 4, 6, 7, 11–30]. One can, however, expect

that for the highly excited nuclei at the excitation energy Eex of order of the nuclear sepa-

ration energy Eex ∝ 7÷ 8 MeV and higher, where the interlevel distance ∆E = 1÷ 10 eV is

much smaller than the effect of the strong interparticle (residual) interaction vint ≫ ∆E, the

interparticle interaction does not perturb essentially the average level distribution and the

statistical level density ̺(Eex) and only leads to interlevel mixing. Moreover, multi-particle-

hole excitations which are generated by a nuclear mean field give a full set of states and the

residual interaction provides only a redistribution of these states. Thus, it can be expected

that a reasonable results for the statistical level-density calculations can be obtained within

the shell-model [8] by the condition of an appropriate evaluation of the single-particle level

density g(ǫ). Note also that a correct use of a realistic finite depth potential well, such

as Woods-Saxon (WS) or Hartree-Fock (HF) mean fields, for calculations of the statistical

level density of highly excited nuclei requires the knowledge of the single-particle level den-

sity g(ǫ) for a wide range of ǫ, including the continuum region [8]. In particular, a proper

accounting for the continuum states is also important for determining the temperature de-

pendence of the statistical level density parameter a and the nuclear properties in the case

of the preequilibrium decay from states with a small exciton number [31, 32]. The study of

the temperature dependence of the statistical level density parameter, a, was stimulated by

experimental data [33–35] for nuclei with A ∼ 160, where the temperature dependence of a

was deduced from coincidence measurements between heavy residues, light particles and γ

-rays. In more recent publication [25, 28] for the temperature dependence of the statistical

level density parameter was extracted for nuclei close to 208Pb from neutron evaporation

spectra and proton scattering.

The microscopic description of the statistical level density can be effectively performed

within Hartree-Fock (HF) and Hartree-Fock-Bogolubov (HFB) approaches, see in particular

Refs. [26, 27]. Note however that both the HF and the HFB approaches are well-defined for

zero temperature only. Note also that the Darvin-Fowler method is not necessary ingredient

in the calculations of the statistical level density. As it was noted in the pioneering work by

Ericson [1] the combinatorial methods can be also used. Further progress in this direction

was demonstrated in Refs. [23, 29].

In the present work we use the extended Thomas-Fermi (ETF) approximation with the
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effective Skyrme nucleon-nucleon interaction to evaluate the nuclear mean field VETF(r) and

the single-particle level density g(ǫ). Our aim is to study the possibility of description of

the average statistical level density ̺(Eex) within the semiclassical ETF. Note that in the

framework of the used ETF approximation, the nuclear mean field VETF(r) is self-consistent.

Namely, the mean field VETF(r) depends on the particle density ρ(r) which is determined by

the variational principle and based on the effective nucleon-nucleon interaction only. The

ETF particle density ρ(r) and thereby the mean field VETF(r) do not contain the quantum

shell oscillations. This fact can be used for the practical applications of the ETF mean

field VETF(r) for calculations of the nuclear mass and the deformation energy within the

Strutinsky’s shell correction method. The basic elements of the shell correction method are

the liquid drop model (LDM) and the shell-model mean field V (r). The commonly used

Woods-Saxon potential VWS(r) (instead of V (r)) is a phenomenological one and it is not

consistent with the basic LDM. This defect can not be overcome by use, for example, the

selfconsistent Hartree-Fock mean field VHF(r). The Hartree-Fock mean field VHF(r) includes

the quantum shell oscillations and thereby can not be consistent with averaged characteristics

of the LDM.

Note that the ETF is a semiclassical approach and it can not be directly used to describe

the shell structure of the level density parameter a, in particular, the strong departure of

the level density parameter a from a smooth behavior for nuclei in the vicinity of closed

shells. This phenomenon was studied in detail near the nucleus 208Pb in Ref. [28], where

the back-shifted Fermi gas model was used to extract the level density parameter a from the

statistical level density.

An advantage of our ETF approach is that it provides description for the liquid drop

properties, including nuclear mass, deformation energy, fission barrier etc., see Refs, [36–39],

the nuclear mean field VETF(r) and correspondingly the smooth behavior of the statistical

level density. This fact allows one to evaluate the quantum shell corrections consistently

with the liquid-drop mass formula within Strutinsky shell-correction method avoiding the

introducing of the phenomelogical shell-model mean field. Our results can be also considered

as a test of the ability of the ETF approach to describe the smooth statistical properties of

hot nuclei. Moreover we represent a detailed analysis of the influence of the effective nucleon

masses and the single particle state in continuum on the statistical level density parameter

in hot nuclei.
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Note that a good description of the statistical level density in a wide interval of mass

number requires to take into consideration the quantum shell effects, the pairing correlations

and the nuclear deformation. All these aspects can be studied by applying the Landau’s

conception of quasiparticles [40], which are localized near the Fermi surface, used in our

approach. In particular, the effect of pairing correlations can be reduced to the quasiparticle

description by employing the Bogolubov-Valatin transformation.

In Section II, we present the thermodynamic derivation of the statistical level density.

The evaluation of the single particle level density within Thomas-Fermi (TF) and extended

Thomas-Fermi (ETF) approximations is discussed in Section III. The numerical results for

the nuclear excitation energy and the statistical level density parameter are given in Sections

IV and V. The discussion of results and the conclusion are presented in Section VI.

II. STATISTICAL LEVEL DENSITY AND LANDAU’S CONCEPTION OF

QUASIPARTICLES.

Considering the heated nuclei and the corresponding definition (1) of the statistical level

density ̺(Eex), one assumes high enough excitation energy Eex such that the temperature

T can be introduced in a small finite Fermi-system. In the low temperature limit T ≪ ǫF ,

the excitation energy Eex(T ) is given by the calorimetric relation Eex(T ) = aT 2 which can

be used for a simple thermodynamic derivation of the level density parameter

a = Eex(T )/T
2. (3)

As mentioned above, evaluating the excitation energy Eex of strongly interacting Fermi-

system one can apply the Landau’s conception of Fermi-gas of quasiparticles. This con-

ception includes, in particular, the presence of the effective mass of nucleon m∗
q (q = n for

neutron and q = p for proton) [10]. The excitation energy Eex of Fermi-gas of nucleons of

sort q is written as

Eex,q(T ) = Eq(T )− Eq(T = 0) =

∫
dǫ ǫ gq(ǫ) δnq(ǫ, T ), (4)

where δnq(ǫ, T ) = nq(ǫ, T )−Θ(ǫF,q − ǫ), see Appendix A. The effective mass m∗
q enters into

the derivation of the nuclear one-body Hamiltonian and thereby the single-particle level

density gq(ǫ).
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FIG. 1. The integrand fn(ǫ) = ǫ gn(ǫ) δn(ǫ, T ) in Eq. (4) for the neutron excitation energy Eex for

the nucleus 208Pb. Solid line for T = 1 MeV and dashed line for T = 5 MeV. The single-particle

level density gn(ǫ) was calculated using Eqs. (7) and (27) and the mean field Vn(r) from Fig. 4.

The Landau’s concept of quasiparticles requires that the integrand f(ǫ) = ǫ g(ǫ) δn(ǫ, T )

in Eq. (4) should be localized near the Fermi energy ǫF . In Fig. 1 we have plotted the

integrand f(ǫ) for the nucleus 208Pb for two temperatures T = 1 MeV and T = 2 MeV.

As can be seen from Fig. 1, the integrand f(ǫ) of Eq. (4) is localized near the Fermi energy

ǫF,n (ǫF,n ≈ − 8 MeV in Fig. 1) quite well. This fact confirms the Landau’s conception of

quasiparticles and allows one to use Eq. (4) to evaluate the excitation energy of a nucleus.

Note also that for higher temperatures the integrand f(ǫ) in Eq. (4) penetrates into the

region of continuum states ǫ > 0 and the continuum effect on the single-particle level density

(see also Sect. V) has to be taken into account (see dashed line in Fig. 1). Note that the

excitation energy Eex,q as well as Fermi energy ǫF,q(T ) are different for both the neutron and

proton components. The expression (4) contains the single-particle level density gq(ǫ) which

is energy-dependent and the final result for a, in the case of finite depth potentials, can be
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sensitive to the single-particle level distribution near the Fermi surface.

III. SINGLE PARTICLE LEVEL DENSITY WITHIN THE EXTENDED

THOMAS-FERMI APPROXIMATION WITH SKYRME INTERACTION

Let us consider the number of particles N(ǫ) embedded in a potential well V (r) with

energy below ǫ. Using the Wigner distribution function in phase space f(r,p), one can

write

N(ǫ) = 2

∫
dr dp

(2π~)3
f(r,p)|p≤pǫ

, (5)

where the factor 2 in front of integral is due to the spin degeneracy and pǫ ≡ pǫ(r) is derived

by the following relation
p2ǫ
2m

≡ p2ǫ (r)

2m
= ǫ− V (r). (6)

Note that the expression (5) must be written for both the neutrons and the protons. The

single-particle level density g(ǫ) is obtained from N(ǫ) by

g(ǫ) =
d

dǫ
N(ǫ). (7)

A. Thomas-Fermi approximation

In the case of the Thomas-Fermi (TF) approximation, the distribution function

fTF(r,p)|p≤pǫ
is given by a simple expression

fTF(r,p)|p≤pǫ
= Θ

[
p2ǫ
2m

−
(

p2

2m
+ V (r)

)]

and the number of particles N(ǫ) takes the form

NTF(ǫ) = 2

∫
dr dp

(2π~)3
Θ

[
p2ǫ
2m

−
(

p2

2m
+ V (r)

)]
. (8)

Integrating in Eq. (8) over p, one obtains

NTF(ǫ) =
1

3π2

(
2m

~2

)3/2 ∫
dr[ǫ− V (r)]3/2Θ [ǫ− V (r)] (9)
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and the corresponding single-particle level density

gTF(ǫ) =
1

2π2

(
2m

~2

)3/2 ∫
dr [ǫ− V (r)]1/2Θ [ǫ− V (r)] (10)

The value of NTF(ǫ) taken at ǫ = ǫF gives the total number of particles A in a Fermi system.

Note that the expression (9) can be written in the form which avoids the problem of the

turning point at ǫF − V (r) = 0. Generalizing the extended Thomas-Fermi (ETF) approach

[38, 39, 41], we will introduce the particle density ρǫ(r) which corresponds to the number

of particles N(ǫ) with energy ǫ ≤ ǫF . The particle density ρǫ(r) is derived by the following

relation

NTF(ǫ) = 2

∫
dr dp

(2π~)3
fTF(r,p)|p ≤ pǫ

=

∫
dr ρǫ(r), (11)

where we have used

pǫ(r) =
√

2m[ǫ− V (r)]
∣∣∣
V (r) ≤ ǫ

= (3π2
~
3)ρ1/3ǫ (r). (12)

Accordingly, in the ETF approximation, the particle density ρǫ(r) can be evaluated inde-

pendently on Eq. (12) from the relevant variational procedure, see Appendix C.

B. Extended Thomas-Fermi approximation

The Thomas-Fermi approximation is extended taking into consideration the corrections

up to order of ~2 in the Kirkwood ~-expansion of distribution function f(r,p). The corre-

sponding extended Thomas-Fermi distribution function fETF(r,p) reads [42, 43]

fETF(r,p)|p≤pǫ
= Θ

[
p2ǫ
2m

− p2

2m

]
+

~
2

8m

{
(∇2V )

d

dE
δ(E)

+
1

3
[(∇V )2 +

1

m
(p · ∇)2V ]

d2

dE2
δ(E)

}
(13)

where E = p2/2m − p2ǫ/2m = p2/2m − [ǫ − V (r)]. Substituting Eq. (13) into Eq. (5) and

integrating over p, we obtain

NETF(ǫ) = 2

∫
dr dp

(2π~)3
fETF(r,p)|p≤pǫ

(14)

= NTF(ǫ)−
1

24π2

√
2m

~2

∫
dr

[
∇2V (r)

[ǫ− V (r)]1/2
+

1

4

[∇V (r)] 2

[ǫ− V (r)]3/2

]
Θ [ǫ− V (r)](15)
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Applying the identity

(∇V )2

[ǫ− V ]3/2
= 2∇ · ∇V

[ǫ− V ]1/2
− 2

∇2V

[ǫ− V ]1/2

we will rewrite Eq. (15) as

NETF(ǫ) = NTF(ǫ)−
1

48 π2

√
2m

~2

∫
dr

[
∇2V (r)

[ǫ− V (r)]1/2
+∇ · ∇V

[ǫ− V ]1/2

]
Θ [ǫ− V (r)] . (16)

Using the relation (12), the turning point can be eliminated from the consideration and Eq.

(16) takes the following form

NETF(ǫ) = NTF(ǫ)−
1

48 π2

2m

~2

1

(3π2)1/3

∫
dr

[
ρ−1/3
ǫ (r) ∇2V (r) +∇ · ρ−1/3

ǫ (r) ∇V
]
. (17)

Using then the Gauss-Ostrogradsky theorem [44] and the fact that asymptotically on the

outlying surface V (r) ∼ ρ(r), we reduce Eq. (17) to the following form

NETF(ǫ) = NTF(ǫ)−
1

48 π2

2m

~2

1

(3π2)1/3

∫
dr ρ−1/3

ǫ (r) ∇2V (r), (18)

where NTF(ǫ) is given by Eq. (11).

C. Selfconsistent mean field V (r) within the ETF approximation

The selfconsistent mean field V (r) can be derived within the variational procedures of

ETF approximation. The total energy E of the nucleus within the ETF approximation is

given by

E = Ekin + Epot (19)

where

Ekin =

∫
dr ǫkin[ρn(r), ρp(r)], Epot =

∫
dr ǫpot[ρn(r), ρp(r)]. (20)

Here, the kinetic energy density ǫkin and the potential energy density ǫpot depend on the

particle density ρq (q = n for neutron and q = p for proton) and its gradient only. The
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standard ETF variational procedure implies that the unknown values of ρn and ρp can be

evaluated from the variational principle

δ(E − λnN − λpZ) = 0, (21)

where the variation with respect to all possible small changes of ρn and ρp is assumed. The

Lagrange multipliers λn and λp in Eq. (21) are derived from the condition of conservation for

the numbers of neutrons N and protons Z. The potential energy density ǫpot[ρn(r), ρp(r)] of

the nucleon-nucleon interaction, includes the effective nucleon-nucleon interaction (we will

use Skyrme forces ǫSk[ρn, ρp]) and the Coulomb energy density, ǫC[ρp],

ǫpot[ρn, ρp] = ǫSk[ρn, ρp] + ǫC[ρp]δqp. (22)

Within the framework of ETF approximation, the kinetic energy density ǫkin[ρn, ρp] includes

also the density-gradient terms [42, 43].

To evaluate the nucleon density ρq and solve the variational equation (21), we will apply

the direct variational method using a trial function for ρq(r) in the following form, see Refs.

[36, 38],

ρq(r) = ρ0,q

[
1 + exp

(
r −Rq

dq

)]−ηq

, (23)

where ρ0,q, Rq, dq and ηq are the unknown variational parameters which are obtained by

solving Eq. (21). In Table I we show the evaluated variational parameters ρ0,q, Rq, dq and

ηq for several spherical nuclei.

Note that the obtained particle density ρq(r) of Eq. (23) and Table I provides the bulk,

surface and symmetry energies in a good agreement with the experimental data given by

the Weizsäcker mass formula, see Ref. [36].

The nuclear mean field Vq(r) is obtained as a functional derivative of potential energy

Epot.

Vq(r) =
δ

δρq
Epot =

[
∂

∂ρq
−∇ ∂

∂(∇ρq)
+∇2 ∂

∂(∇2ρq)

]
ǫpot[ρn, ρp], (24)

where ǫpot[ρn, ρp] is the potential energy density. An explicit form of the nuclear mean field

Vq(r) for the Skyrme interaction is presented in Appendix B. In Fig. 2 we show the result

for Vq(r) from Eq. (B1) of Appendix B for the nucleus 208Pb for the SkM∗ interaction with

the nucleon density ρq(r) from Eq. (23) and Table I. The obtained selfconsistent mean field

is quite similar to the standard Woods-Saxon potential with a smaller surface region of the

potential wall.

10



TABLE I. Particle density parameters ρ0,q, Rq, dq(in fm) and ηq for spherical nuclei 40Ca, 48Ca,

90Zr, 120Sn and 208Pb obtained from the variational principle of Eq. (21) for the SkM∗ [39] and

KDE0v1 [45] interactions.

SkM∗ KDE0v1

40Ca 48Ca 90Zr 120Sn 208Pb 40Ca 48Ca 90Zr 120Sn 208Pb

ρ0,n 0.0874 0.0955 0.0903 0.0920 0.0914 0.0893 0.0974 0.0923 0.0940 0.0934

ρ0,p 0.0837 0.0743 0.0734 0.0684 0.0620 0.0859 0.0760 0.0754 0.0703 0.0637

Rn 5.5463 5.4760 6.6080 7.0189 8.0999 5.3333 5.2422 6.3749 6.7776 7.8455

Rp 5.3134 5.7384 6.5235 7.0135 8.0181 5.1453 5.5944 6.3831 6.8873 7.9085

dn 0.7220 0.7542 0.7379 0.7350 0.7234 0.7074 0.7059 0.6943 0.6894 0.6766

dp 0.7484 0.7109 0.6780 0.6602 0.6177 0.6837 0.6788 0.6470 0.6323 0.5944

ηn 8.4990 5.1159 6.0887 4.9526 4.0474 7.4716 4.3567 5.2556 4.2314 3.4208

ηp 6.3130 9.0405 6.5326 6.4561 5.1581 5.7986 8.5417 6.2350 6.2634 5.1160

D. Continuum effect on the single-particle level density

For a finite depth potential V (r) the single-particle level density g(ǫ) includes both the

bound-state and the continuum-state contributions. The numerical calculations of the level

density g(ǫ) requires a high accuracy to prevent a spurious contribution to the excitation

energy Eex given by Eq. (4). Such kind of spurious contribution occurs due to the free

space states which are not associated with the finite potential well V (r). The corresponding

(spurious) free-space number of states Nfree(ǫ) is obtained by integrating over the free-space

states 2drdp/(2π~)3 and it is given by [8]

Nfree(ǫ) =
1

3π2

(
2m

~2

)3/2 ∫
dr ǫ3/2 Θ(ǫ) (25)

The number of states of Eq. (18) should be corrected by subtracting the contribution

Nfree(ǫ). Below, we will restrict ourselves to a spherical mean field V (r) . The final result

for the number of states reads

ÑETF(ǫ) = ÑTF(ǫ)−
1

12π

∫ ∞

0

dr

(
2m

~2

)1/2

r2
Θ [ǫ− V (r)]

[ǫ− V (r)]1/2

[
∂2

∂r2
V (r) +

2

r

∂

∂r
V (r)

]
, (26)

where
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FIG. 2. The self-consistent mean field Vq(r) given by Eq. (B1) (see Appendix B) with the ETF

particle density ρq(r) from Eq. (23) and Table 1 for the nucleus 208Pb for the SkM∗ interaction

[39]. The solid line is the neutron mean field Vn(r) and the dashed line is for the proton one Vp(r).

ÑTF(ǫ) =
4

3π

∫
dr

(
2m

~2

)3/2

r2
{
[ǫ− V (r)]3/2Θ [ǫ− V (r)]− ǫ3/2 Θ(ǫ)

}
. (27)

Note that the procedure of subtracting of the free-space state contribution Nfree(ǫ) from

the continuum states agrees with the results of phase-shift approach and Green’s function

approach to the calculations of the single-particle levels (resonance states) in continuum,

see Refs. [8, 21, 46, 47]. In particular, the subtraction of the free-space state contribution

Nfree(ǫ) fulfils the Levinson’s theorem [48] which establishes the relation between the phase

shift at zero energy and the number of bound states.

12



E. Effective mass

As already mentioned above, we use the Landau’s conception of the quasiparticles to

derive the excitation energy Eex(T ) and thereby the level density parameter a, see Eqs. (3)

and (4). The quasiparticle conception implies that the effective mass m∗ of quasiparticle

appears in the one-body Hamiltonian h∗ = p2/2m∗ + V and the mass m in Eqs. (15) and

(18) must be replaced by the effective mass m∗. Note that the nucleon effective mass is, in

general, r-dependent m∗ ≡ m∗(r) and can include contributions caused by the non-locality

of the nucleon-nucleus interaction [49] (momentum dependent k-mass m∗
k(r)) and the long-

range correlation corrections which arise, in particular, because of the scattering of nucleons

from low-lying surface vibrations of the nucleus [50] (frequency dependent ω-mass m∗
ω(r)),

see also Refs. [8, 12, 13].

In the case of local shell-model potentials, such as Woods-Saxon, one of the consequence

of such kind of replacement m → m∗ is that the Fermi energy ǫF is shifted up. This effect

can be easily seen for the infinite square-well potential VSQ. In this case, the bulk Fermi-

momentum pF,0 ∼ ρ
1/3
0 is r-independent. The nuclear bulk density ρ0 does not depend on

m. Therefore, a shift up of the Fermi energy ǫF,0 = p2F,0/2m → ǫ∗F,0 = p2F,0/2m
∗ > p2F,0/2m

violates the mentioned consistency of the bulk Fermi-momentum and the bulk density. To

prevent such kind of violation one needs the corresponding shift of the mean field VSQ in

the one-body Hamiltonian h∗
SQ using a relevant modification of the mean field VSQ, see also

Ref. [8],

VSQ → V ∗
SQ =

m

m∗
VSQ.

A similar modification can be also applied to the phenomenological shell-model potential

such as Woods-Saxon VWS(r). Namely,

VWS(r) → V ∗
WS(r) =

m

m∗(r)
VWS(r). (28)

The expressions (26) and (27) have to be modified accordingly with replacing V (r) by V ∗(r).

For the case of the Skyrme interaction, the self-consistent mean field Vq(r) given by

Eqs. (B1), (B2) and (B7) of Appendix B includes the modification due to the momentum-

dependent effective k-mass m∗
q,k(r) = m/fq(r), where fq(r) is derived in Eq. (B4). However

the modification caused by the correlation corrections to the effective mass (frequency-
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FIG. 3. The r-dependence of the momentum-dependent effective mass m∗
n,k(r)/m generated by

the Skyrme interaction (solid line) and the frequency dependent effective mass m∗
n,ω(r)/m (dashed

line) for neutrons in the nucleus 208Pb for SkM∗ interaction [39].

dependent effective ω-mass m∗
q,ω(r)) must be added in this case. The effective mass m∗

q(r)

and the modified mean field V ∗
q (r) are then given by

m∗
q(r) = m∗

q,k(r)
m∗

q,ω(r)

m
=

m∗
q,ω(r)

fq(r)
, V ∗

q (r) =
m

m∗
q,ω(r)

Vq(r). (29)

For the effective ω-mass m∗
q,ω(r) we will use the following form [12, 13],

m∗
q,ω(r)

m
= 1− β

d

dr

ρq(r)

ρ0,q
, (30)

where β = 0.4 A1/3 fm. The numerical results for the momentum-dependent k-mass m∗
k(r)

and the frequency dependent ω-mass m∗
q,ω(r) for neutrons in the nucleus 208Pb obtained

with SkM∗ interaction are shown in Fig. 3.

The presence of the frequency dependent ω-mass m∗
q,ω(r) reduces strongly the effective

mean field V ∗
q (r) in the nuclear interior. The corresponding result for the nucleus 208Pb is

shown in Fig. 4.
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FIG. 4. The neutron SkM∗ mean field Vn(r) (solid line) and the corresponding reduced mean field

V ∗
n (r) from Eq. (29) (dashed line) in the nucleus 208Pb.

Due to the distortion of the mean field V ∗
n (r) in the nuclear interior in Fig. 4, the

Fermi energy ǫF,n is shifted up and the single particle levels are condensed in vicinity of

ǫF,n increasing thereby both the particle level density g(ǫF ) and the statistical level density

parameter a, see Eq. (2).

Taking into account Eqs. (26), (27) and (29), the final result for the number of states

Nq(ǫ) in the case of Skyrme interaction is given by

Ñ∗
ETF,q(ǫ) = Ñ∗

TF,q(ǫ)−
1

12π

∫ ∞

0

dr r2
(
2m∗

q(r)

~2

)1/2 Θ
[
ǫ− V ∗

q (r)
]

[
ǫ− V ∗

q (r)
]1/2

[
∂2V ∗

q (r)

∂r2
+

2

r

∂V ∗
q (r)

∂r

]

(31)

where

Ñ∗
TF,q(ǫ) =

4

3π

∫
dr

(
2m∗

q(r)

~2

)3/2

r2
{
[ǫ− V ∗

q (r)]
3/2Θ

[
ǫ− V ∗

q (r)
]
− ǫ3/2 Θ(ǫ)

}
. (32)

Using Eqs. (7) and (32), one can write the final TF expression for the single particle level

15



density as

g̃∗TF,q(ǫ) =
2

π

∫
dr

(
2m∗

q(r)

~2

)3/2

r2
{
[ǫ− V ∗

q (r)]
1/2Θ

[
ǫ− V ∗

q (r)
]
− ǫ1/2 Θ(ǫ)

}
. (33)

F. Single particle level density

Evaluating the single particle level density g(ǫ), we will apply the ETF selfconsistent

potentials Vq(r) and V ∗
q (r) derived in Eqs. (B1) and (29), see also Fig. 4. In Fig. 5 we

show the neutron single-particle level density for the nucleus208Pb obtained with Skyrme

interaction SkM∗[39] by using Eq. (33). The dashed lines are obtained without subtraction

of the free gas states.

As one can see from Fig. 5, the subtraction of the free gas states reduces significantly

the single-particle level density for ǫ > 0. Note also that, due to the finite size of the nuclear

potential well, one has for the continuum region ǫ > 0 that g(ǫ) decreases with increasing ǫ.

That means that a proper treatment of the continuum is important for determining nuclear

properties such as the level density of hot nuclei and the particle-hole level densities at high

excitation energy. The result of Fig. 5 shows also a significant change of the behavior of

level density g(ǫ) near the Fermi-energy (ǫF,n ≈ − 8 MeV) in presence of the ω-mass m∗
q,ω.

The presence of effective ω-mass leads to the condense of the single particle levels near the

Fermi surface because of the above mentioned features of the modified potential V ∗
n (r) (see

Fig. 4) and thereby enhances the level density g(ǫ) near the edge of the potential well. We

point out also that the density of free gas states (dashed lines in Fig. 5) depends on the

choice of the radius Rext of an external box. In numerical calculations in Fig. 5 and below

we have used Rext = 10 fm.

The ~
2-corrections and the corresponding ETF values of the level density g(ǫ) and the

number of particles N(ǫ) can be evaluated using Eqs. (7) and (26). For the ~
2-correction

Nq,corr(ǫ) to the number of particles one obtains (see Eqs. (26) and (27))

Ncorr(ǫ) = − 1

12π

∫ ∞

0

dr

(
2m∗

q

~2

)1/2

r2
Θ
[
ǫ− V ∗

q (r)
]

[
ǫ− V ∗

q (r)
]1/2

[
∂2

∂r2
V ∗
q (r) +

2

r

∂

∂r
V ∗
q (r)

]
. (34)
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FIG. 5. The neutron single-particle level density gn(ǫ) for the nucleus 208Pb for the ETF +SkM∗

selfconsistent potential Vn(r) with m∗
q,ω(r)/m = 1 (curve 1) and the modified potential V ∗

q (r) from

Eq. (34) use Eq. (33) (curve 2). The solid lines is obtained with subtracting of the free space

states gfree(ǫ) and the dashed lines are in presence of the spurious free-gas states.

In Fig. 6 we have plotted the number of states N(ǫ) embedded in ETF potential with

energy below ǫ evaluated within the Thomas-Fermi approximation (solid line) in comparison

with the ~
2-correction Ncorr(ǫ) from Eq. (34) (dashed line). As seen from Fig. 6, the ~

2-

correction Ncorr(ǫ) is negligibly small, i.e., the corrections due to the ETF approximation

play a minor role in the derivation as the Fermi energy ǫF well as the single-particle level

density g(ǫ) (see also Ref. [21]).
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FIG. 6. The number of neutron states Nn(ǫ) within Thomas-Fermi approximation given by Eq.

(27) (solid line) and the ~
2-correction Nn,corr(ǫ) of Eq. (34) (dashed line) for the nucleus 208Pb

for Skyrme interaction SkM∗ [39].

IV. STATISTICAL INVERSE LEVEL DENSITY PARAMETER.

Assuming the Landau’s conception of Fermi-gas of quasiparticles (see Fig. 1), we will

apply Eq. (4) to evaluate the nuclear excitation energy Eex. In the numerical calculations

of the statistical level density parameters aq we use Eq. (3) where the excitation energy Eex

for neutrons and protons are given by Eq. (4) with the Fermi’s occupation numbers

nq(ǫ, T ) =
1

1 + exp [(ǫ− ǫF,q(T ))/T ]
.

The temperature dependent Fermi-energy ǫF,q(T ) is obtained from the condition of the

conservation of the particle number

N =

∫ ∞

0

dǫ g̃∗TF,n(ǫ) nn(ǫ, T ), Z =

∫ ∞

0

dǫ g̃∗TF,p(ǫ) np(ǫ, T ). (35)
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TABLE II. The results of calculations of the level density parameters aq and K for different

spherical nuclei. The calculations were performed within the ETF approximation by use Eqs. (7)

and (32) for Skyrme interactions SkM∗ [39] and KDE0v1 [45]. In brackets, one shows the results

with the effective ω-mass m∗
q,ω(r)/m = 1.

an, SkM
∗(MeV−1) ap, SkM

∗(MeV−1) K, SkM∗(MeV) an,KDE0v1 ap,KDE0v1 K,KDE0v1

40Ca 2.47 (1.71) 2.51 (1.75) 8.03 (11.57) 2.35 (1.61) 2.38 (1.64) 8.45 (12.30)

48Ca 3.31 (2.30) 2.63 (1.80) 8.09 (11.71) 3.08 (2.12) 2.52 (1.70) 8.58 (12.57)

90Zr 5.70 (3.84) 4.98 (3.34) 8.43 (12.53) 5.32 (3.54) 4.76 (3.14) 8.94 (13.48)

120Sn 7.80 (5.21) 6.28 (4.21) 8.52 (12.73) 7.22 (4.76) 6.03 (3.94) 9.06 (13.79)

208Pb 13.67 (8.98) 10.42 (6.96) 8.64 (13.05) 12.57 (8.13) 10.07 (6.47) 9.19 (14.25)

Note that for calculations for the statistical level density parameters aq in Table II and Fig.

7, we have used the low temperature T ≤ 2 MeV to avoid the influence of the temperature

dependence of the mean field Vq(r) and the continuum effects on g(ǫ). In this case, the

temperature dependence of Fermi energy is given by ǫF (T ) = ǫF0 + ξ2 T 2 + ξ4 T 4 +O(T 6),

see Appendix A. Here, the coefficients ξ2 and ξ4 are obtained from the condition of the

conservation of the particle number (see Eqs. (A6) and (A7) in Appendix A).

Evaluating the statistical level density parameters aq from Eqs. (3) and (4), we obtain

also the statistical inverse level density parameter

K =
A

an + ap
. (36)

In Table II we show the results of calculations of the level density parameters aq and K for

the spherical nuclei 40Ca, 48Ca, 90Zr, 120Sn and 208Pb. All results were obtained within the

ETF approximation for Skyrme interactions SkM∗ and KDE0v1.

Fig. 7 shows a comparison of the experimental data (solid points) with the evaluated

values of K within the ETF approximation from Table II. The experimental trend of the

smooth inverse level-density parameter K can be be well reproduced by the following em-

pirical relation, see Refs. [25, 30],

K(A) = K0 + κ
Eex

A
, K0 = 7.8 MeV, κ = 0.00517 exp(0.0345A) . (37)

The value of κ in Eq. (37) was obtained by a fit to the light particles evaporation spectra.
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FIG. 7. Experimental values of K (solid points) from Ref. [5]. The thin solid lines represent the

ETF calculations for Skyrme interactions SkM∗ and KDE0v1 (from Table 2) with effective mass

m∗
q,ω(r) from Eq. (29). The dashed lines are for the case m∗

q,ω(r) = m. The numerical calculations

were performed by use of Eqs. (7) and (32). The thick solid line is the experimental fit from Eq.

(37).

Thick solid line in Fig. 7 shows the value of K obtained by use of Eq. (37) for Eex = 7 MeV

which is about of the neutron separation energy.

The results of Fig. 7 demonstrate a quite satisfactory description of average behavior of

A-dependence of the statistical level-density parameter K obtained within the ETF approx-

imation with Skyrme interaction. We point out two aspects which are important for the

description: (i) the Landau’s conception of quasiparticles near the Fermi surface which pro-
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vides the use of simple gas model for the single particle level density g(ǫ), (ii) the accounting

of the correlation corrections to the effective mass (frequency-dependent effective ω-mass

m∗
q,ω(r)) which enhances the level density g(ǫ) near the Fermi surface. A non-monotonic

behavior of K(A) in the experimental data in Fig. 7 is caused by the shell effects and can

not be described within the semiclassical ETF approach used in this work.

V. CALORIC PROPERTIES OF HOT NUCLEI

The contribution of the continuum states to the single-particle level density g(ǫ) does not

affect significantly the thermodynamic calculations, in particular, the statistical inverse level-

density parameter K for low temperatures T . 2 MeV. However the procedure of correct

subtracting of the free space states from g(ǫ) (see Section III) can play an appreciable role

for higher temperatures. Considering a hot nucleus, the temperature dependences of the

parameters in the particle density ρq(r) in Eq. (23) as well as the effective mass m∗
q,ω(r)

must be taken into account. All of them influence the effective mean field V ∗
q (r), see Eq.

(29), and thereby the Fermi energy ǫF,q(T ), the excitation energy Eex(T ), the entropy S(T ),

etc. Note that the temperature dependence of the effective k-mass m∗
q,k(r) occurs because

of the mean field V ∗
q (r). We point out however that the involvement of the temperature

dependence into the particle density ρq(r,T ) and the ω-mass m∗
q,ω(r) requires some caution.

Both of them affect the mean field V ∗
q (r,T ) and thereby the single-particle level density

gq(ǫ,T ). This fact violates the fundamental relation of Eq. (4) for the excitation energy

Eex,q(T ) and can lead to a decrease of the entropy S(T ) with the increasing temperature

T . To avoid this non-physical effect, the additional contribution from the temperature

broadening of the heated nucleus has to be taken into account.

Performing the evaluation of the temperature dependence of the Fermi energy ǫF,q(T ), we

will apply the conditions of Eq. (35). Fig. 8 shows the difference in the dependence of the

Fermi energy of neutrons ǫF,n(T ) on the temperature in two cases if the continuum effects

are ignored (dashed and dotted lines) and if these effects are taken into account (solid line).

The influence of the continuum corrections to the single-particle level density g(ǫ) on the

nuclear caloric curve Eex(T ) and thereby on the statistical level parameter a is shown in
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FIG. 8. The dependence of the separation energy of neutron ǫF,n(T ) in the nucleus 208Pb on the

temperature. The solid line was obtained by use Eq. (35) taking into account the continuum

effects. The dashed and dotted lines are for the case where such kind of effects are ignored: dashed

line was obtained from Eq. (35) and dotted line is the commonly used result for ǫF,n(T ) where

the correction term up to ∼ T 2 is only taken into account, see Eq. (A5) of Appendix A.

Fig. 9.

As seen from Fig. 9, the subtracting of the free-state contribution gfree(ǫ) from the contin-

uum states reduces significantly the result for the excitation energy En,ex in the case of high

enough temperatures (compare solid and dashed lines). Note that the correct description of

continuum states is especially important in the case of nuclei beyond the stability line where

the Fermi energy is located close to the edge of potential well. A comparison of the dotted

and dashed lines in Fig. 9 shows the influence of the high order terms in the T -expansion
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FIG. 9. The caloric curve Eex(T ) for the nucleus 208Pb for the SkM∗ mean field. The dashed line

is for the case without of subtracting of the free space contribution Nfree(ǫ) (see Eq. (25)) from

the continuum, the solid line represents the result where the contribution of the continuum states

were corrected according to Eqs. (7) and (32). The dotted line for a simple En,ex(T ) = aT 2 with

constant a from Eq. (2).

of the caloric curve, see Eq. (A8) in Appendix A. In Fig. 9 we have taken into account

the temperature dependence of the Fermi energy ǫF,q(T ) (see Eq. (A5) in Appendix A) but

ignored the temperature dependence of the mean field as well as the effective mass m∗
q .

Note that the caloric curve Eex(T ) (solid line in Fig. 9) behaves as ∼ T 2 (degenerate

Fermi-gas regime) at low temperatures and tends to the linear behavior ∼ T at higher tem-

peratures, as it should be for the Boltzman gas regime. This fact provides the temperature

dependence of the statistical level density parameters a(T ) and K(T ). The corresponding
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FIG. 10. The temperature dependence of the inverse statistical level-density parameter K(T )

for the nucleus with Z = 64 and A = 160 for Skyrme interactions SkM∗ and KDE0v1. The

experimental data are taken from Refs. [12, 34, 35]

result for the statistical inverse level-density parameter K(T ) for the nucleus with Z = 64

and A = 160 is shown in Fig. 10.

A reasonable agreement with the experimental data in Fig. 10 is obtained by use of the

selfconsistent mean field Vq(r) with the nucleon density ρq(r) given by Eq. (23) and Table I,

and ignoring the temperature dependence in ω-mass m∗
q,ω(r).
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VI. SUMMARY AND CONCLUSIONS

In the present work, we have applied the thermodynamical approach to a study of the

statistical level density ̺(Eex). The approach is based on the the extended Thomas-Fermi

approximation (ETF) with Skyrme forces. The adopted approach describes successfully the

basic nuclear liquid-drop properties as well as the single particle characteristics related to

the nuclear mean field. The used ETF approximation with Skyrme forces can be considered

as an unification of both fundamental nuclear models: the liquid drop model and the shell

model. In a practical sense, this approach allows us to evaluate the quantum single-particle

corrections to the bulk liquid drop characteristics, in particular, the shell corrections to the

mass formula and the deformation energy. An advantage of this approach is that the nuclear

mean field is consistent with the nuclear liquid drop because both of them are generated by

the common Skyrme forces.

To evaluate the statistical level density ̺(Eex) we need to know the excitation energy Eex

which is a complicate problem for a system of strongly interacting particles like a nucleus.

We pointed out that a significant progress is achieved by use of the Landau’s conception

of quasiparticles where the excitation energy Eex is derived within a Fermi-gas system of

noninteracting quasiparticles and thereby depends on the mean field V (r) and the effective

mass m∗ of the quasiparticle. In our consideration, the nuclear mean field V (r) and the

single-particle level density g(ǫ) are derived within the ETF with the effective SkM∗ and

KDE0v1 Skyrme interactions. Using the Wigner distribution function in phase space f(r,p),

we have presented a semiclassical derivation of the single-particle level density g(ǫ) and the

number of states N(ǫ) embedded in potential well V (r) with energy below ǫ. Analyzing the

value of N(ǫ), we have shown that the ~
2-corrections to N(ǫ) play only a minor role.

Applying the Landau’s conception of quasiparticles, we have evaluated the excitation

energy Eex and the statistical inverse level density parameter K of the nucleus. As it can

be seen from Fig. 1, the evaluation of the excitation energy Eex needs the single particle

states near Fermi energy only. This fact confirms the Landau’s conception of quasiparti-

cles and allows one to use the Fermi-gas expression (4) to evaluate the nuclear excitation

energy. Involving the effective mass m∗(r) of quasiparticles, we took into consideration

both contributions to m∗(r) caused by the non-locality of the nucleon-nucleus interaction

(k-mass m∗
k(r)) which is generated by the Skyrme interaction and the correlation correc-
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tion (frequency dependent ω-mass m∗
ω(r)) which arises from the scattering of nucleons from

low-lying surface vibrations of the nucleus [50]. We show (see Fig. 4) that the presence of

the frequency dependent ω-mass m∗
ω(r) distorts significantly the selfconsistent mean field

and leads to the enhancement of the single particle level density near the Fermi surface (see

Fig. 5). We have shown (see Fig. 7) that the ETF approximation with Skyrme interaction

provides a quite satisfactory description of average A-dependence of the statistical inverse

level density parameter K.

Using the ETF finite-depth potential V (r), we have paid a special attention to the accu-

racy of the derivation of the level density g(ǫ) in continuum at ǫ > 0. The subtraction of

the free space contribution from g(ǫ) allows one to prevent a spurious contribution to the

excitation energy Eex. A spurious contribution to Eex occurs due to the free space states

which are not associated with the potential well V (r). Our numerical calculations for the

Skyrme ETF potential show that the correct subtraction of the free-state contribution from

the continuum states reduces strongly the result for the excitation energy Eex and thereby

increases the result for K in the case of high enough temperatures, see Figs. 9 and 10.
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APPENDIX A. EXCITATION ENERGY OF A FERMI GAS

In a simplest Fermi gas model assuming that the mean field V (r) is temperature inde-

pendent, the total energy E(T ) is given by the following expression, see Ref. [40], Sect.

#58,

E(T ) =

∫ ∞

0

dǫ ǫ g(ǫ) n(ǫ, T ) =

∫ ǫF (T )

0

dǫ ǫ g(ǫ) +
π2

6

dǫg(ǫ)

dǫ

∣∣∣∣
ǫ=ǫF (T )

T 2 (A1)

+
7π4

360

d3ǫg(ǫ)

dǫ3

∣∣∣∣
ǫ=ǫF (T )

T 4 +O(T 6),
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where g(ǫ) is the single particle level density of the Fermi gas and the occupation numbers

n(ǫ, T ) are given by the Fermi function

n(ǫ, T ) =
1

1 + exp [(ǫ− ǫF (T ))/T ]
. (A2)

The Fermi energy ǫF (T ) in Eq. (A2) is temperature dependent. The temperature de-

pendence of ǫF (T ) is obtained from the condition of conservation of the particle number A

:

A =

∫ ∞

0

dǫ g(ǫ) n(ǫ, T ). (A3)

Similarly to Eq. (A1) one can rewrite Eq. (A3) as a T -expansion

A =

∫ ǫF (T )

0

dǫ g(ǫ) +
π2

6
g′[ǫF (T )] T

2 ++
7π4

360
g′′′[ǫF (T )] T

4 +O(T 6). (A4)

Keeping the terms up to T 4, we obtain from Eq. (A4)

ǫF (T ) = ǫF0 + ξ2 T 2 + ξ4 T 4 +O(T 6), (A5)

where ǫF0 = ǫF (T = 0) and (to simplify notations we will use gF = g(ǫF0), g
′
F = g′(ǫF0),

etc.)

ξ2 = −π2

6

g′F
gF

, (A6)

ξ4 = − 1

gF

[
1

2
g′F ξ22 +

π2

6
g′′F ξ2 +

7π4

360
g′′′F

]
. (A7)

Note that the expansion of Eq. (A1) implies that the density g(ǫ) is a sufficiently smooth

function of ǫ. The subtraction of continuum states from g(ǫ) leads to a cusp at ǫ = 0 (see

Fig. 4) and the expansion of Eq. (A1) can not be applied. In this case, the numerical

solution of Eq. (A3) with respect to ǫF (T ) must be used.

Let us rewrite Eq. (A1) as

E(T ) =

∫ ǫF (T )

0

dǫ ǫ g(ǫ) +
π2

6
[g(ǫF (T )) + ǫF (T ) g

′(ǫF (T ))] T
2

+
7π4

360
[3 g′′(ǫF (T )) + ǫF (T ) g

′′′(ǫF (T ))] T
4 +O(T 6). (A8)
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Using the definition of the ground state energy E0 of a Fermi gas

E0 =

∫ ǫF,0

0

dǫ ǫ g(ǫ)

and Eqs. (A6) and (A7), one obtains the excitation energy Eex in the following form

Eex = E(T )− E0

=
π2

6
gF T 2 + gF

[
7π4

120

g′′F
gF

− π4

24

(
g′F
gF

)2
]

T 4 +O(T 6). (A9)

One can see from Eq. (A9) that the derivatives of the single particle level density g(ǫ)

influence on the excitation energy in the higher order of the temperature ∼ T 4 only. Note

also that the expression (A9) was obtained by use of the expansion (A5) for the Fermi energy

ǫF (T ) and can not be used at high temperatures where the continuum states in g(ǫ) play an

appreciable role.

APPENDIX B. ETF MEAN FIELD Vq(r) WITH SKYRME INTERACTION

We will consider the nucleon mean field Vq(r) derived by Eq. (24). Using the potential

energy Epot for Skyrme interaction [39, 41] one obtains the mean field Vq(r) in the following

form

Vq = V ρ
q + V J

q . (B1)

Here V ρ
q is given by

V ρ
q = t0

(
1 +

1

2
x0

)
ρ− t0

(
x0 +

1

2

)
ρq

+
α + 2

12
t3

(
x3 +

1

2

)
ρα+1 − α

12
t3

(
1

2
+ x3

)
ρα−1

[
ρ2n + ρ2p

]

−1

6
t3

(
x3 +

1

2

)
ραq ρq −

1

8

[
3 t1

(
1 +

1

2
x1

)
− t2

(
1 +

1

2
x2

)]
∇2ρ

+
1

8

[
3 t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]
∇2ρq

+
1

4

[
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)]
τkin −

1

4

[
t1

(
x1 +

1

2

)
− t2

(
x2 +

1

2

)]
τq,kin

−1

2
W0 (∇ · J+∇ · Jq) + δqp e2

[∫
dr′

1

|r− r′| −
(
3

π
ρp

)1/3
]
. (B2)
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Here, the factor τq,kin is related to the kinetic energy density ǫq,kin = (~2/2m)τq,kin. In the

case of the ETF approximation, the factor τq,kin is given by [39, 43]

τq,kin =
3

5
(3π2)2/3ρ5/3q +

1

36

(∇ρq)
2

ρq
+

1

3
∇2ρq

+
1

6

∇ρq · ∇fq
fq

+
1

6
ρq
∇2fq
fq

− 1

12
ρq
(∇fq)

2

f 2
q

+
1

2

(
2m

~2

)2

ρq

(
Wq

fq

)2

(B3)

where fq is related to the nucleon effective mass m∗
q,k as

fq ≡
m

m∗
q,k

= 1 +
2m

~2

×
(
1

4

[
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)]
ρ− 1

4

[
t1

(
x1 +

1

2

)
− t2

(
x2 +

1

2

)]
ρq

)
(B4)

and Wq is related to the spin-orbit interaction

Wq =
1

2
W0(∇ρ+∇ρq) (B5)

with the spin-orbit constant W0. In Eq. (B2), the spin-orbit current density Jq is derived

as

Jq =
2m

~2

ρq
fq
Wq. (B6)

We use also the notations

ρ = ρn + ρp, τkin = τn,kin + τp,kin, J = Jn + Jp.

Finally, the mean field V J
q in Eq. (B1) is given by

V J
q = −2m

~2
(Wq)

2Dq,1 −
2m

~2
(Wq̃)

2Dq̃,2 −
1

2
W0 (∇ · J +∇ · Jq) , (B7)

where

Dq,1 =
1

fq
− 2m

~2

[
1

8
t1(1− x1) +

3

8
t2(1 + x2)

]
ρq
f 2
q

, (B8)

Dq̃,2 = −2m

~2

[
1

4
t1

(
1 +

1

2
x1

)
+

1

4
t2

(
1 +

1

2
x2

)]
ρq̃
f 2
q̃

. (B9)

In Eqs. (B7), (B8) and (B9), we have used the notations q̃ = p if q = n and vice versa.
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APPENDIX C. ENERGY-DEPENDENT PARTICLE DENSITY ρǫ(r)

Considering particle density ρǫ(r), we will apply the direct variational method [36] and

assume the following form for each sort of nucleons, see Eq. (23),

ρǫ(r) = ρ0,ǫ

[
1 + exp

(
r − R

d

)]−η

, (C1)

where the profile parameters R, d and η are the same as the ones in the ρeq(r), see Eq. (23)

and Table I. In the case of the TF approximation, the value of ρ0,ǫ is normalized by the

condition (11) which provides

ρ0,ǫ =
NTF(ǫ)

D0
, (C2)

where

D0 =

∫
dr

[
1 + exp

(
r −R

d

)]−η

.

In the case of ETF approximation, the particle density ρǫ(r) is normalized by the condi-

tion

NETF(ǫ) =

∫
dr ρǫ(r). (C3)

Using Eq. (18) and Eq. (C3), we obtain

NETF(ǫ) = NTF(ǫ)−
1

48 π2

2m

~2

1

(3π2)1/3
[NTF(ǫ)/D0]

−1/3D1, (C4)

where

D1 =

∫
dr

[
1 + exp

(
r − R

d

)]η/3
∇2V (r).

Solving Eq. (C4) with respect to NETF(ǫ), one can find the correction ∆N(ǫ) = NETF(ǫ)−
NTF(ǫ) to the number of state N(ǫ) and thereby to the single-particle level density g(ǫ)

caused by the gradient terms in the semiclassical approximation. In the first order, one

obtains from Eq. (C4)

∆N(ǫ) = − 1

48 π2

2m

~2

1

(3π2)1/3
[NTF(ǫ)/D0]

−1/3D1, (C5)
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