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The electromagnetic responses obtained from Green’s function Monte Carlo (GFMC) calculations
are based on realistic treatments of nuclear interactions and currents. The main limitations of this
method comes from its nonrelativistic nature and its computational cost, the latter hampering
the direct evaluation of the inclusive cross sections as measured by experiments. We extend the
applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing
the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects
in the kinematics are accounted for employing the two-fragment model. In addition, we developed a
novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic
cross section of 4He through an accurate and reliable interpolation of the response functions. A
very good agreement is obtained between theoretical and experimental cross sections for a variety
of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation
experiments that requires an accurate description of nuclear dynamics in which relativistic effects
are fully accounted for.

PACS numbers: 24.10.Cn,25.30.Pt,26.60.-c

I. INTRODUCTION

The analysis of neutrino-nucleus interactions in the
broad kinematic region relevant for the present [1–4] and
future [5, 6] generation of neutrino oscillation experi-
ments requires an accurate understanding of nuclear dy-
namics. The relevance of nuclear models is critical to
the reconstruction of the initial neutrino energy, even
in experiments where both near and far detectors are
present [7]. Recent experimental studies of neutrino-
nucleus interactions have provided ample evidence of the
inadequacy of the relativistic Fermi gas model, routinely
employed in event generators, to describe the observed
cross section. The complexity of nuclear dynamics and
the variety of reaction mechanisms are such that ab-initio
calculations of nuclear structure and electroweak interac-
tions with nuclei are necessary [8].

Within nuclear ab-initio approaches the nucleus is
treated as an assembly of nucleons interacting with each
other via two- and three-body effective potentials [9–15].
The interaction with external electroweak probes is de-
scribed by one- and two-body effective currents that are
consistent with the nuclear interaction. Hence, properties
of few-body nuclear systems, such as the nucleon-nucleon
(NN) scattering data and the binding energies of light nu-
clei, ultimately constrain the current operators [16]. This
is particularly apparent for the electromagnetic longitu-
dinal current, which is connected to the nuclear potential
through the continuity equation.

The Green’s Function Monte Carlo (GFMC) approach
is an ab-initio method that allows for a very accurate
description of the structure and low-energy transitions
of A ≤ 12 nuclei [17]. More recently, exploiting integral
transform techniques, the GFMC method has also been

applied to the calculation of the electromagnetic response
functions of 4He and 12C, giving a full account of the dy-
namics of the constituent nucleons in the quasielastic sec-
tor. Once two-body currents are accounted for, GFMC
predictions are in very good agreement with experimental
data [18, 19]. However, considering that explicit pion de-
grees of freedom are not taken into account the strength
seems to be somewhat too large beyond pion threshold.

As a matter of fact, at higher momentum transfer the
applicability of GFMC to electroweak scattering and in
particular to the analysis of neutrino-nucleus scattering
is hampered by its nonrelativistic nature. Whilst leading
relativistic corrections are included in the current opera-
tors, the quantum mechanical framework is nonrelativis-
tic. The strategy introduced in Ref. [20] to account for
relativistic kinematics in nonrelativistic calculations can
only be reliably applied to independent particle models
of nuclear dynamics.

The inclusion of relativistic corrections in a more so-
phisticated approach has been first discussed in Ref. [21].
The Authors argued that performing the nonrelativistic
calculation in a specific reference frame can minimize the
error introduced by the approximate treatment of rel-
ativistic effects. In addition, the frame dependence of
nonrelativistic results can be reduced using the so-called
“two-fragment model” to obtain, in a relativistically cor-
rect way, the kinematic inputs of the nonrelativistic dy-
namical calculation . This approach has been successfully
employed in the ab-initio calculation of the electromag-
netic longitudinal [21] and transverse [22–25] response
functions of 3He at intermediate momentum transfers (up
to |q|=700 MeV).

Following Ref. [21], in this work we gauge the role of
relativistic effects in the original GFMC electromagnetic
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response functions of 4He by studying their frame depen-
dence with and without the two-fragment model.

The GFMC calculations of the response functions and
cross sections by neutral-current scattering of neutrinos
off 12C have been recently presented in Ref. [26]. In that
work, the neutral current differential cross sections have
been computed for a single value of the momentum trans-
fer, |q| = 570 MeV, as a function of the energy loss ω.
On the other hand, experimental electron- and neutrino-
nucleus cross sections are commonly given for fixed val-
ues of the incoming beam energy and scattering angle.
Their direct evaluation requires to perform GFMC cal-
culations of the nuclear response functions for several val-
ues of |q|, whose computational cost exceeds the current
availability. In this work we developed a novel algorithm
suitable to compute the double differential cross sections
of electron-4He scattering through an efficient interpola-
tion of the available nuclear responses. The latter ex-
ploits the scaling features of the GFMC electromagnetic
response functions, which have been recently investigated
in Ref. [27]. Using this algorithm and employing the rela-
tivistic treatment mentioned above we perform an exten-
sive comparison of our results with the electron scattering
data, for initial electron energies ranging from 0.3 GeV
to 1.1 GeV.

In Section II we shortly review the formalism connect-
ing the electron-nucleus cross section to the longitudi-
nal and transverse response functions and discuss the
main elements of their calculation within the GFMC
approach. In addition we make a comparison to re-
sults obtained with the Lorentz Integral Transform (LIT)
method [28, 29]. In Section III we review the approach
of Ref. [21] to account for relativistic effects and study
the frame dependence of the GFMC responses, as well as
its reduction with the two-fragment model. Section IV is
devoted to the calculation of the electron-4He differential
cross sections and to the comparison with experiment.
Finally, in Section V we draw our conclusions.

II. FORMALISM

In the one-photon-exchange approximation, the in-
clusive double differential electron-nucleus cross section
can be written in terms of the two response functions,
RL(q, ω) and RT (q, ω), describing interactions with lon-
gitudinally (L) and transversely (T) polarized virtual
photons

d2σ

dEe′dΩe
=

(
dσ

dΩe

)
M

[
ALRL(|q|, ω)

+AT RT (|q|, ω)
]
, (1)

where

AL =
( q2
q2

)2
, AT = −1

2

q2

q2
+ tan2 θe

2
, (2)

and (
dσ

dΩe

)
M

=

[
α cos(θe/2)

2Ee′ sin2(θe/2)

]2
(3)

is the Mott cross section. In the above equation α '
1/137 is the fine structure constant, E′e and θe are the
final lepton energy and scattering angle, respectively, q
and ω are energy and momentum transferred by the elec-
tron to the target nucleus, and q2 = ω2 − q2.

The longitudinal and transverse response functions are
expressed in terms of the nuclear current matrix elements

Rα(|q|, ω) =
∑
f

〈0|j†α(q, ω)|f〉〈f |jα(q, ω)|0〉

× δ(ω − Ef + E0) (4)

where |0〉 and |f〉 represent the nuclear initial ground-
state and final bound- or scattering-state of energies E0

and Ef , and jα(q, ω) (α = L, T ) denotes the longitu-
dinal and transverse components of the electromagnetic
current. For moderate momentum transfer, correspond-
ing to |q| . 500 MeV, nonrelativistic nuclear many-body
theory can be applied to consistently describe the initial
and the final scattering states in the quasielastic peak re-
gion. To this aim, a nonrelativistic reduction of the elec-
tromagnetic currents, which includes one- and two-body
terms consistent with the nuclear Hamiltonian, is per-
formed. The explicit expressions for the electromagnetic
currents employed in this work can be found in Ref. [30]

A. The GFMC approach to Response Functions

Following the strategy adopted in Refs. [18, 19, 31], in-
stead of attempting a direct calculation of each individual
transition amplitude |0〉 → |f〉, we exploit integral trans-
form techniques to reduce the problem to a ground-state
one. In particular, we evaluate the inelastic Euclidean re-
sponses, defined through the following Laplace transform
of the electromagnetic response functions

Eα(|q|, τ) =

∫ ∞
ω+

el

dωRα(|q|, ω)e−ωτ , (5)

where ωel is the energy of the recoiling ground state.
Besides the energy-conserving δ-function, the response
functions depend upon ω through the electromagnetic
form factors of the nucleon and N -to-∆ transition in the
currents. We artificially remove these dependences by
evaluating the form factors at the quasielastic peak q2qe =

ω2
qe−q2. Exploiting the completeness of the final states of

Eq. (4), the inelastic Euclidean responses can be written
as the following ground-state expectation value

Eα(|q|, τ)=〈Ψ0|j†α(q, ωqe)e
−(H−E0)τ jα(q, ωqe)|Ψ0〉

− |Fα(q)|2e−τωel (6)
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where Fα(q) is the longitudinal elastic form factor and H
the nuclear Hamiltonian. For its potential part we use
the Argonne v18 (AV18) [32] NN potential and Illinois-
7 (IL7) [33] three-nucleon force (3NF). The Simon [34],
Galster [35], and Höhler [36] parametrizations are used
for the proton electric, neutron electric, and proton and
neutron magnetic form factors, respectively.

In order to reduce the computational cost and to eval-
uate the terms in the currents that depend upon the
momentum of the nucleon, we use our best variational
trial wave function |ΨT 〉 for |Ψ0〉. Hence, the response
functions are those obtained from |ΨT 〉 rather than those
from the evolved GFMC wave function. However, the
sum rule results of Ref. [37] indicate that this is indeed
a good approximation.

The calculation of this ground-state expectation value
is carried out in two steps. At first the unconstrained
imaginary-time propagation of |ΨT 〉 is performed and
stored. Then, the states obtained from jα(q, ωqe)|ΨT 〉
are propagated in imaginary-time and the scalar prod-
uct of e−(H−E0)τ jα(q, ωqe)|ΨT 〉 with 〈ΨT |j†α(q, ωqe) is
performed on a grid of τi values (for more details see
Refs. [18, 31, 38]).

The inversion of the Laplace transform, needed to re-
trieve the response functions, is performed exploiting
maximum entropy techniques, as described in Ref. [19].

B. Comparison with Lorentz Integral Transform
results

To test the reliability of the GFMC calculation and
in particular of the inversion procedure, in Fig. 1 we
compare the longitudinal response function of 4He di-
vided by the proton electric form factor squared with
that obtained in Ref. [39, 40], employing the LIT method.
The latter has been computed representing |0〉 and the

LIT states Ψ̃ (see Ref. [28]) in terms of hyperspherical
harmonics. The Hamiltonian used in that case was the
NN AV18 potential and the Urbana IX (UIX) 3NF. The
agreement with experimental data, taken from Ref. [31]
is remarkably good. The two theoretical curves are also
in very good agreement. The small discrepancies can be
ascribed to: i) the different 3NF models employed, ii)
the very narrow isoscalar monopole resonance contribu-
tion (see [41]) that has been subtracted from the LIT,
iii) the spin-orbit correction in the longitudinal current
operator that is only included in the GFMC results, iv)
the use of a variational Monte Carlo ground state. Fi-
nally, it has to be noted that resolving the low-energy
transfer region of the response requires imaginary-time
evolution to large values of τ , which is hampered by the
Fermion sign problem.
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FIG. 1. Longitudinal electromagnetic response functions of
4He at |q| = 300 MeV obtained inverting the Laplace and
Lorentz integral transforms compared to the experimental
data of Ref. [31].

At |q| = 500 MeV the difference between LIT and
GFMC results becomes somewhat more pronounced. It
mainly consists in a slightly shifted quasielastic peak po-
sition. We checked that the origin of the difference is
not due to an inversion problem. In fact, in addition
to the standard LIT inversion method [42], we used the
maximum entropy technique to invert the LIT. We did
not find significant differences in the resulting RL. It re-
mains object of further future investigations whether the
differences can be explained by the items i)-iv) mentioned
above.
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FIG. 2. GFMC longitudinal electromagnetic response func-
tion of 4He at |q|=700 MeV. Experimental data are from
Ref. [31].

III. INCLUSION OF RELATIVISTIC EFFECTS

In Fig. 2 we compare the GFMC longitudinal response
function of 4He divided by the proton electric form factor
of Ref. [36] squared with the corresponding experimen-
tal data for |q| = 700 MeV. We notice a slight shift of
the position of the quasielastic peak to higher ω and an
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overestimation of its width. Here one has to take into
account that although relativistic corrections up to order
q2/m2, where m is the mass of the nucleon, are included
in the current operator for RL, the quantum mechanical
approach – and hence the kinematics – is nonrelativistic.
Strategies allowing to tackle relativistic corrections do
exist in mean field approaches [20], however, an inclusion
of relativistic effects in a fully interacting nuclear many-
body system is highly non-trivial. In order to cope with
this problem, in the following, we will use the approach
mentioned in the Introduction.

In Refs. [21–25], it was proposed that one should per-
form the nonrelativistic calculation in a specific reference
frame, where relativistic effects are as small as possible.
For example, in electron nucleon scattering one prefers
the Breit system, where the initial nucleon is moving
with −q/2. A generalization to the quasielastic region
in electron nucleus scattering, which is dominated by a
one-nucleon knock-out, leads to the so-called active nu-
cleon Breit (ANB) frame, where the target nucleus moves
with a momentum of -Aq/2. In this frame, any of the
A nucleons composing the nucleus in the initial state
has a momentum of about −q/2, while the knocked-out
nucleon carries a momentum ' q/2 after the reaction.
In any other reference frame the involved momenta are
higher. For example, in the laboratory (LAB) system the
knocked-out nucleon has a momentum of about q, hence
relativistic effects can be minimized using the ANB sys-
tem.

Since experiments are carried out in the LAB system,
it is necessary to transform the results from the ANB
(or any other frame where one performs the nonrelativis-
tic calculation) to the LAB frame. For reference frames
moving with respect to the LAB frame along the q direc-
tion, as it is the case for the ANB frame, the responses
transform as follows

RL(|q|, ω) =
q2

(qfr)2

√
M2
T + (Pfr

i )2

MT
RL(|qfr|, ωfr), (7)

RT (|q|, ω) =

√
M2
T + (Pfr

i )2

MT
RT (|qfr|, ωfr) . (8)

In the above equations MT is the mass of the target nu-
cleus while |qfr| and ωfr are the momentum transfer and
the energy transfer pertaining to the reference frame un-
der consideration, namely

qfr = Pfr
f −Pfr

i

ωfr = Efr
f − Efr

i (9)

where the total nonrelativistic energies Efr
i/f are given by

Efr
i =

(Pfr
i )2

2MT
+ ε0

Efr
f =

(Pfr
f )2

2MT
+ εf , (10)
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FIG. 3. Frame dependence of the GFMC longitudinal (a)
and transverse (b) electromagnetic response functions of 4He
at |q|=700 MeV.

with Pfr
i/f indicating the center-of-mass momenta in the

specified reference frame. Since in a nonrelativistic calcu-
lation the intrinsic system does not depend on the center
of mass momentum, the intrinsic energies εf and ε0 are
assumed to be frame independent.

At first, we perform GFMC calculations for a number
of momentum transfer of the intrinsic response functions,
defined as

Rint
α (|qfr|, ωint) =

∑
f

〈0|j†α(qfr, ωint)|f〉

× 〈f |jα(qfr, ωint)|0〉δ(ωint − εf + ε0) (11)

The direct calculation of the response functions in the
LAB frame is simply achieved by taking qfr = q and
ωint = ω − q2/(2MT ). On the other hand, in order to
determine the responses in the LAB frame from Eqs. (7)-
(8), |q|fr and ωfr are computed with the appropriate
Lorentz transformation from |q| and ω. If |qfr| does not
correspond to any of the tabulated momentum transfers,
the response RL/T (|qfr|, ωfr) is obtained interpolating the
intrinsic response function using the procedure described
in Sec. IV for ωint = ωfr− (Pfr

f )2/(2MT )+(Pfr
i )2/(2MT )
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FIG. 4. Same as Fig. 3, but considering two-body relativistic
kinematics for the final state energy.

The two-fragment model

Relativistic effects in the kinematics can be included
employing the two-fragment model of Ref. [21]. This re-
lies on the assumption that the quasielastic reaction is
dominated by the break-up of the nucleus into two frag-
ments, namely a knocked-out nucleon and a remaining
(A − 1) system in its ground state. This assumption
enables one to connect ωfr to the intrinsic excitation en-
ergy εf used in the nonrelativistic calculation in a rel-
ativistically correct way. It has to be noted that the
two-fragment model is adopted only for determining the
kinematic input of a calculation where the full nuclear
dynamics of the system is taken into account.

At this point, we recall that within a nonrelativistic
theory it is not possible to work simultaneously with
the correct relativistic energy and momentum of a two-
fragment system. As pointed out in [21], a clue comes
from the two-nucleon case. In fact, NN potential models
are constructed describing the two-nucleon relative scat-
tering momentum p12 in a relativistically correct way,
whereas the Schrödinger equation is solved for the “fake”
nonrelativistic kinetic energy E12 = p212/2µ12, where µ12

is the reduced mass of the two nucleons. (The same ap-
proach is also used in deuteron electrodisintegration, see,
e.g. [43]).

Proceeding analogously to the NN potential case, the

two-fragment kinematical model can be summarized by
the following points

a) The choice of the frame defines Pfr
i , and accordingly

also the initial relativistic hadron energy

Efr
i =

√
M2
T + (Pfr

i )2 (12)

b) The momenta of the knocked-out nucleon and the
spectator system are set equal to pfr

N and pfr
X , respec-

tively. The corresponding relative and center-of-mass
momenta are obtained as

pfr
f = µ(

pfr
N

m
− pfr

X

MX
) , (13)

Pfr
f = pfr

N + pfr
X , (14)

where MX and µ are the mass of the spectator system
and the reduced mass, respectively;

c) for reference frames moving with respect to the LAB
frame along the qfr direction, Pfr

f is directed along qfr. In
addition, for a quasielastic reaction one can safely assume
that also pfr is directed along qfr. Therefore pfr

f and Pfr
f

have the same direction. Under this assumption, pfrf can
be obtained from the relativistically correct final state
energy of the hadron system

Efrf =
√
m2 + (pfr

f + (µ/MA−1)Pfr
f )2

+
√
M2
A−1 + (pfr

f − (µ/m)Pfr
f )2 ; (15)

d) for each value of ωfr and qfr, one obtains P fr
f and

Efr
f from Eq.(9). The relativistic relative momentum of

the two fragments is determined plugging Eq. (15) into
Eq. (9). This then leads to the determination of the
intrinsic energy

εf =
(pfrf )2

2µ
+ εA−10 , (16)

where (pfrf )2/2µ is the relativistically “fake” kinetic en-

ergy and εA−10 the ground-state energy of the spectator
system. Finally, the response function of the two-body
fragment model can be computed interpolating the in-
trinsic response of Eq. (11) at

ωint =
(pfrf )2

2µ
− ε0 + εA−10 . (17)

As further discussed in [21] one also has to rescale the
response functions (see Eqs. (9)-(11) therein). At this
point one transforms the results to the LAB system as
described above for the case without the two-fragment
model.

Using the LIT method, the two-fragment model has
been applied to the calculation of the 3He longitudi-
nal [21] and transverse response functions [24, 25]. Me-
son exchange and ∆ isobar currents as well as relativistic
corrections of order q2/m2 for the one-body charge and
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current operators were included. There it was shown that
the large frame dependence of the results is almost elimi-
nated by the use of the two-fragment relativistic kinemat-
ics, even considering momentum transfers up to |q| = 700
MeV. In particular a considerable shift of the quasielas-
tic peak was found for all reference frames but the ANB
one. An excellent description of experimental 3He(e, e′)
data is achieved when making the calculation in the ANB
frame supplementing it with the two-fragment model.

In this work, we have calculated the GFMC electro-
magnetic responses of the four-body system in the same
reference frames as in [21, 24, 25]. For |q|=700 MeV we
obtain the results shown in Fig. 3 for the longitudinal
(a) and transverse (b) channel, respectively. As in the
three-body case, a rather strong frame dependence can
be noticed, indicating that relativistic effects play a non
negligible role at this value of the momentum transfer.
The corresponding results obtained employing the two-
fragment model are displayed in Fig. 4. The position of
the quasielastic peak of the electromagnetic responses no
longer depends upon the reference frame and coincides
with that of the ANB frame of Fig. 3. Whilst in the lon-
gitudinal channel the different curves are almost coinci-
dent, the transverse responses still suffer a residual frame
dependence, leading to different heights of the quasielas-
tic peak. This has to be ascribed to the fact that, at
variance with Ref. [24], the sub-leading relativistic cor-
rections in the transverse current operator are neglected
in the GFMC calculations. Our results are consistent
with the findings of Ref. [44], where the role of relativis-
tic effects in the kinematics and in the current operator
is separately analyzed. In the LAB frame using relativis-
tic currents brings about a reduction of the strength of
the transverse response compared to the nonrelativistic
ones. This effect, is expected to be smaller in the ANB
frame, where the ω-dependent correction in the current
considered in Ref. [24] vanishes at the quasielastic peak.

There is a fairly good agreement between theory and
experiment for the position of the quasielastic peak, in
both the longitudinal and the transverse channels. As for
the peak heights, in the longitudinal case our calculations
slightly overestimate the experimental data, consistently
with Ref. [21] for the 3He case. In the transverse chan-
nel, for the afore-mentioned missing relativistic correc-
tions in the current operator, only the ANB predictions
can be meaningfully compared with experiments. Here,
excess strength from meson-exchange two-body currents
is needed to bring GFMC results in agreement with ex-
periments even in the quasielastic peak region.

IV. FROM RESPONSE FUNCTIONS TO CROSS
SECTIONS

The calculation of the inclusive electron-nucleus scat-
tering cross section of Eq. (1), requires the knowledge
of RL and RT for several values of ω and |q|. Hence,
due to the sizable computational effort required to accu-

rately invert the Euclidean response for a given value of
|q|, the direct evaluation Eq. (1) is not feasible within
GFMC. To circumvent these difficulties, we developed a
novel interpolation algorithm based on the scaling of the
nuclear responses. The latter has been introduced and
widely analyzed in the framework of the Global Rela-
tivistic Fermi gas (GRFG) model [45, 46]. Scaling of the
first kind occurs when the response functions divided by
an appropriate factor, which accounts for single-nucleon
physics, no longer depend on q and ω, but only upon a
specific function of them, which defines the scaling vari-
able ψ. Recently, the Authors of Ref. [27] carried out an
analysis of the scaling features of the GFMC electromag-
netic response functions of 4He and 12C, retaining only
one-body current contributions. Their results show that
scaling is fulfilled, provided that the nonrelativistic scal-
ing variable ψnr is used. The latter is obtained from the
nonrelativistic reduction of the energy-conserving delta
function of Eq. (4), assuming that the scattering process
takes place on a single nucleon and using the free energy
spectrum for the initial and final states. In this work, we
introduce a constant shift in the energy transfer in the
definition of the scaling variable

ψ′nr = pF

(ω − Es
|q|

− |q|
2m

)
. (18)
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(b) electromagnetic response functions of 4He for |qi| =
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Eq.(18) .
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In the above equation, pF is the Fermi momentum, and
Es is empirically chosen to account for binding effects in
both the initial and final states. In the present analysis
of the 4He nucleus, we use pF=180 MeV and Es = 15
MeV. However the results are quite insensitive to small
variations of these parameters.
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FIG. 6. Same as in Fig. 5 including one- and two-body terms
in the electromagnetic current.

Figure 5 shows the longitudinal (a) and transverse (b)
response functions of 4He divided by the proton electric
form factor squared for |qi| = 300, 400, 500, 600, and 700
MeV as a function ψ′nr. In both channels the curves cor-
responding to different values of the momentum transfer
peak around ψ′nr=0 and the height of the quasielastic
peaks is a monotonic function of |q|. In the longitudinal
case, shown in the upper panel, the highest and the lowest
peak correspond to |q| = 300 and 700 MeV, respectively.
On the other hand, in the transverse channel, displayed
in the bottom panel, the response functions are smaller as
|q| decreases. In Fig. 6 both one- and two-body terms in
the electromagnetic current have been included. Meson-
exchange current contributions only appreciably affect
the transverse channel, leading to a sizable enhancement
of the response functions. Nevertheless, the behavior of
the curves in both the upper and lower panels is analo-
gous to that of Fig. 5.

In order to evaluate Eq. (1) we fix Ee and θe, the initial
electron beam energy and scattering angle, respectively,
and use Ee′ = Ee − ω for the energy of the outgoing

electron. The four-momentum transfer is then written as

Q2 = −q2 = 4Ee(Ee − ω) sin2 θe
2
. (19)

For a given value of ω, the response functions have to be

evaluated at |q| =
√
ω2 +Q2. To this aim, we first com-

pute ψ′nr as in Eq.(18). Then, the set of RL,T (ψ′nr, qi)
is interpolated at |q|. By looking at Figs. 5 and 6, it
becomes evident why it is more convenient to interpolate
the different response functions when the latter are given
as a function of ψ′nr and |q| rather than ω and |q|. For
a given value of ψ′nr the curves corresponding to the dif-
ferent |qi| are indeed almost perfectly aligned and mono-
tonic functions of |q|, largely improving the accuracy of
the interpolation procedure.

In Fig. 7 we compare with experimental data the
electron-4He inclusive double-differential cross sections
obtained from the GFMC responses for various kinematic
setups, corresponding to different values of Ee and θe.
The green and blue curves correspond to retaining only
one-body terms or both one- and two-body terms in the
current operators. The red curves–which accounts for the
contribution of one- plus two-body current operators–
have been obtained computing the cross section in the
ANB frame employing the two-fragment model to ac-
count for relativistic kinematics, and boosting back to
the LAB frame.

Our findings are consistent with those of Ref. [18], as
we observe that the two-body currents generate a large
excess of strength over the whole ω spectrum largely im-
proving the agreement with experimental data. The dif-
ference between the red and blue curves is clearly visible
for Ee = 961, 1080 MeV and θe = 37.5◦, where Q2 & 3
GeV2 at the quasielastic peak. In these two kinematic
setups, the inclusion of relativistic corrections lead to a
shift in the position of the quasielastic peak and a re-
duction of its width. The latter effect is needed to not
overestimate the experimental data once the resonance
production mechanism is accounted for.

V. CONCLUSIONS

The electromagnetic longitudinal responses of 4He ob-
tained with the GFMC have been successfully bench-
marked with some LIT results from the literature [39, 40]
For |q|=300 MeV we have found a very good agreement
between the two theoretical ab initio approaches. We
have checked that the small discrepancies, which become
more pronounced at |q|=500 MeV, are not due to prob-
lems pertaining to the inversion procedure. They are
likely to be ascribed to various smaller differences in the
calculations listed in Section II B.

We have gauged the relativistic effects in the GFMC
electromagnetic response functions at relatively high
value of the momentum transfer, |q| = 700 MeV. To
this aim, we have computed the response functions in
different reference frames, boosting the results back to
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FIG. 7. Double-differential electron-4He cross sections for different values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [47].
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the LAB frame. We observe sizable differences in the po-
sition and the strength of the quasielastic peak. The two-
fragment model of Ref. [21], suitable for realistic models
of nuclear dynamics, has been employed to account for
relativistic kinematics. This method has proven to pro-
vide fully satisfactory results in the longitudinal channel.
As for the transverse channel, residual frame dependence
in the strength of the quasielastic peak are likely to be
due to the missing higher-order relativistic corrections
in the transition operator. This is consistent with the
findings of Refs. [24, 44] and their inclusion will be the
subject of future work.

A novel algorithm to reliably and efficiently interpolate
the GFMC response functions for arbitrary values of |q|
and ω has been devised. This algorithm relies on the
first-kind scaling features of the GFMC responses, which
has been analyzed in Ref. [27]. It has to be noted that
scaling violations do not prevent its application. On the
other hand, if scaling were exactly fulfilled, the algorithm
would only require the GFMC calculation of the response
functions for a single value of |q|.

We have employed the interpolation algorithm to per-
form the first ab-initio calculation of the double differ-
ential cross section of the inclusive electron-4He scatter-
ing. The extensive comparison with experimental data
demonstrates that two-body currents generate an excess
of strength that is necessary to correct the cross section,
even in the quasielastic peak region. Relativistic cor-
rections, only appreciable for larger values of the lepton

energy and scattering angles, lead to a shift in the posi-
tion of the quasielastic peak and a reduction of its width.
Our findings indicate that relativistic effects are primar-
ily kinematical in nature, and can easily be accounted
for in the GFMC or any nuclear ab-initio approach, pro-
vided that the many-body calculations are carried out in
a proper reference frame. Therefore the fact that neu-
trino fluxes in current and planned experiments cover a
broad energy range extending to several GeVs does not
invalidate per se the results obtained within the nonrel-
ativistic approach.
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