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Di-hadron and jet-hadron correlations are commonly used in relativistic heavy ion collisions to
study the soft component of jets in a quark gluon plasma. There is a large correlated background
which is described by the Fourier decomposition of the azimuthal anisotropy where vn is the nth
order coefficient. The path length dependence of partonic energy loss can be studied by varying the
angle of the high momentum trigger particle or jet relative to a reconstructed event plane. This
modifies the shape of the background correlated with that event plane. The original derivation of
the shape of this background only considered correlations relative to the second order event plane,
which is correlated to the initial participant plane. We derive the shape of this background for an
event plane at an arbitrary order. There is a phase shift in the case of jets restricted to asymmetric
regions relative to the event plane. For realistic correlations between event planes, the correlation
between the second and fourth order event planes leads to a much smaller effect than the finite
event plane resolution at each order. Finally, we assess the status of the rapidity even v1 term due
to flow, which has been measured to be comparable to v2 and v3 terms.

PACS numbers: 25.75.-q,25.75.Gz,25.75.Bh8

I. INTRODUCTION9

A hot and dense medium called a Quark Gluon Plasma10

(QGP) is formed in high energy heavy ion collisions [1–11

4]. Two primary signatures of the QGP are hydrody-12

namical flow and jet quenching. Hydrodynamical flow13

leads to an azimuthally asymmetric distribution of final14

state hadrons due to asymmetric pressure gradients in15

the medium [5–10]. This is quantified by flow harmonics16

vn = 〈cos(n(φ − ψn))〉, where n is an integer, φ is the17

azimuthal angle of the particle, and ψn is the azimuthal18

angle of the n th order event plane. Partonic energy19

loss in the medium is shown by the suppression of par-20

ticle production relative to that in p+p collisions. This21

suppression also leads to azimuthal asymmetries in final22

state hadrons because the geometry of the colliding nu-23

clei produces an asymmetry in the path lengths traversed24

by hard partons [11].25

At low transverse momenta pT (pT . 1 GeV/c), parti-26

cle production is dominated by soft processes, with cor-27

relations between the event plane due to hydrodynami-28

cal flow. At high transverse momenta (pT & 5 GeV/c)29

particle production is dominated by jets, leading to cor-30

relations with the event plane due to the path length31

dependent energy loss. Hard and soft processes can be32

studied separately in these regimes, however a complete33

understanding of jet quenching requires disentangling ef-34

fects from jet production and hydrodynamical flow at in-35

termediate and low momenta because these momentum36

ranges are where the soft products from processes such37

as gluon bremsstrahlung appear.38

Di-hadron [12–16] and jet-hadron correlations [17, 18]39

are often used in order to study the soft components of40

jets in heavy ion collisions, studies which require preci-41

sion background subtraction due to the large combinato-42

rial background. The background has usually been de-43

termined using the Zero-Yield-At-Minimum method [19]44

combined with an assumption that the vn contributions45

in correlations are the same as those measured indepen-46

dently. The shape of this background when the trigger47

particle or jet is fixed relative to the second-order event48

plane was derived in [20] and was used for studies of the49

path length dependence of partonic energy loss [21, 22].50

The change in this shape with the angle of the trigger51

particle relative to the event plane can be used to fit52

both the background level and shape from the correla-53

tions themselves [23]; this method was applied to data54

in [24].55

There have been several developments since the deriva-56

tion in [20] which have advanced our understanding of57

correlations due to flow. While the reaction plane is well-58

defined as the plane connecting the beam axis and con-59

taining the center of both incoming nuclei, we now know60

that we experimentally measure event planes, the axes61

of symmetry of the final state particles emitted from the62

nucleus collisions [25, 26]. The event planes of different63

orders are only partially correlated with each other [27].64

We revisit the form of two particle correlations due to65

flow derived in [20] for studies where a trigger particle is66

fixed relative to an event plane. We extend the deriva-67

tion in [20] to an arbitrary event plane and consider the68

impact of correlation between event planes of different69

orders. There is a phase shift when asymmetric regions70

relative to the event plane are studied, not generally of71

interest for studies of hydrodynamical flow but of poten-72

tial interest for studies of jets. We assess the impact of73

these equations on studies of di-hadron and jet-hadron74

correlations and provide some guidance for future stud-75
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ies.76

II. CORRELATIONS DUE TO FLOW77

In [20], it was assumed that the density of overlapping78

regions was determined by the average distributions, ne-79

glecting fluctuations in the positions of the nucleons. We80

now know that the experimentally reconstructed event81

plane originates from the distribution of nucleons which82

participate in the collision, called the participant plane.83

The second order event plane corresponds to the reaction84

plane if nucleons were in their average positions. The85

derivations in [20] then are for the second order plane.86

The different orders of event planes are only partially87

correlated with each other [27]. Since the even order88

event planes are dominantly from the average nucleon89

positions, these event planes are strongly correlated with90

each other, while the odd participant planes are nearly91

uncorrelated with other orders.92

In a typical di-hadron or jet-hadron correlation mea-
surement, a high momentum trigger particle or recon-

structed jet is used to define the coordinate system and
the distribution of associated particles relative to that
trigger particle is measured. The shape of the correla-
tions when the trigger is restricted in angle relative to
the event plane can be derived from the azimuthal dis-
tribution of single particles or jets

dN

d(φ− ψj)
=
N

2π

(
1 + 2

∞∑
n=1

vn cos(n(φ− ψn))
)

(1)

by taking the product of the distribution of triggers and93

associated particles. Note that the vn can arise due to94

either flow or any other process, including jet quenching,95

which leads to a correlation with the event plane – the96

shape only depends on correlations with the event plane,97

not the physical origin of those correlations. The deriva-98

tion of the background level and azimuthal distribution99

of particles relative to each other ∆φ = φa−φt when the100

trigger azimuthal angle relative to the jth order event101

plane φs = φt − ψj is restricted to φs − c < φs < φs + c102

can be found in the appendix. The azimuthal distribu-103

tion of the background is given by104

B(∆φ) = B̃

(
1 + 2

∞∑
n=1

van
(
ṽtn cos(n∆φ) + w̃tn sin(n∆φ)

))
. (2)

where

B̃ =
N tNajc

2π2

(
1 + 2

∞∑
k=1

vtjk
jkc

sin(jkc)Rjk,jCjk,0,j cos(jkφs)
)
,

ṽtn =
vn +

δn,mult j
nc sin(nc)Rn,jCn,0,j cos(nφs) +

∑∞
k=1(vtjk+nC|jk+n|,n,j + vt|jk−n|C|jk−n|,n,j)

sin(jkc) cos(jkφs)Rjk,j
jkc

1 + 2
∑∞
k=1

vtjk
jkc sin(nc)Rjk,jCjk,0,j cos(jkφs)

w̃tn =

δn,mult j
nc sin(nc)Rn,jCn,0,j sin(nφs) +

∑∞
k=1(vtjk+nC|jk+n|,n,j + vt|jk−n|C|jk−n|,n,j)

sin(jkc) sin(jkφs)Rjk,j
jkc

1 + 2
∑∞
k=1

vtjk
jkc sin(nc)Rjk,jCjk,0,j cos(jkφs)

(3)

Rn,j = 〈cos(n∆ψrecoj )〉 = 〈cos(n(ψrecoj − ψtruej ))〉
Cn,m,j = 〈cos(nψn +mψm − (n+m)ψj)〉

where N t is the number of triggers, Na is the number of associated particles, van are the vn of the associated particles,105

and vtn are the vn of the triggers.106

The assumptions used for deriving equation 3 are that107

both the trigger and the associated particle are correlated108

with an event plane, which need not be the jth order109

participant plane, and that when averaged over events110

〈sin(n(ψrecoj −ψtruej ))〉 = 〈sin(nψn+mψm−(n+m)ψj)〉 =111

0. Furthermore, we assume that the impact of event-by-112

event vn fluctuations leading to correlations between vn113

of different orders is negligible. The degree of correla-114

tion between event planes of different orders is described115

by the Cn,m,j . This correlation need not arise from the116

same physical mechanism for the trigger and associated117

particles; it may be due to jet quenching for the trigger118

and flow for the associated particle. The nth order event119

plane resolution of the jth order event plane is shown by120

Rn,j . Note that the background shape in equation3 is121

different for different experiments even in the same col-122

lision energy, centrality, and pT selections for the trigger123

and associated particles because Rn,j depends on detec-124

tor performance.125

The w̃tn = 0 if jφs = nπ where n is an integer, such126

as the φs = 0 and φs = π/2 cases investigated for j = 2127

in [20]. The w̃tn are also zero if two regions with φs = α128
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FIG. 1. Shape of correlations relative to the (a) j = 2
participant plane with c = π/6 and (b) j = 3 participant
plane with c = π/9 for different orientations of the trigger
relative to the participant plane for vt2 = va2 = vt3 = va3 = 0.1,
vt4 = va4 = 0.02, C4,0,2 = C4,2,2 = C2,4,2 = 0.1, R2,2 = 0.8,
R3,3 = 0.6, and R4,2 = 0.4. The Cn,m,j mixing odd and even
terms are assumed to be zero, as are the Cn,m,j mixing odd
terms of different orders.

and φs = −α are summed, as in [21, 22, 24]. Figure 1129

illustrates the effect of this phase shift. This shift is cru-130

cial for understanding the background for triggers fixed in131

asymmetric regions relative to the event plane as in [28],132

which could provide additional constraints for the path133

length dependence of energy loss. It also may provide134

useful information for determining the shape of these cor-135

relations from a fit, such as in [23]. Note that the vtn are136

only modified by vtn with n which are separated by mul-137

tiples of j. This is not due to partial correlation between138

participant planes of different orders but rather destruc-139

tive interference of terms which are not multiples of j.140

For instance, for the second order event plane, j = 2,141

ṽ2 is modified by v2, v4, v6... and ṽ3 is modified by v1,142

v3, v5... In the latter case, the vn are multiplied by the143

Cn,m,j and Rn,j , which are generally small except when144

n, m, and j are even. While the Rn,j can be measured,145

most of the Cn,m,j are not generally known. However,146

the formulation in (2) and (3) can be used to set limits147

on the higher order correlations because 0 < Cn,m,j < 1.148

Figure 2 shows the impact of realistic event plane149

resolution [29] and possible correlations between event150

planes [27] for the second order event plane. For realistic151

correlations between the second and fourth order event152

planes, the impact of correlations is much smaller than153

the impact of the event plane resolution at each order.154

Such terms may need to be taken into account, however,155

for precision measurements. At higher order, cross terms156

such as C6,4,2 = 〈cos(6ψ6 + 4ψ4 − 10ψ2〉 appear with a157

coefficient of v6. These terms may not be independently158

measured, but their impact can be estimated from a tem-159

plate fit to experimental data using equation 3.160

The impact of v1 in such correlations is still unclear.
There are two contributions to the coefficient of cos(∆φ),
which is approximately

v1,1 = vflow,a1 vflow,t1 − kp
a
T p

t
T

N
(4)

where vflow,a1 and vflow,t1 are from rapidity-even hydrody-161

namical flow, k is a constant with respect to ∆φ, paT is the162

momentum of the associated particle, ptT is the momen-163

tum of the trigger particle, and N is the event multiplic-164

ity. There may also be a residual contribution from other165

non-flow effects such as resonance decay, Bose-Einstein166

correlations, and jets. The rapidity odd term is of par-167

ticular interest to constrain the equation of state [30], but168

it is usually small at midrapidity. Furthermore it has a169

sign change for pseudorapidity η = 0 and is symmet-170

ric about η = 0 for symmetric collisions, so its average171

is usually zero unless the measurement explicitly distin-172

guishes between the directions of the incoming nuclei.173

The fluctuations in initial nucleon position which lead to174

the other odd vn also lead to a rapidity-even v1 [31], al-175

though there are also contributions from the eccentricity176

in the initial state and nonlinear mixing between har-177

monics [32]. Both rapidity-even flow and momentum178

conservation terms impact the background in di-hadron179

correlations and it is unclear if they impact jet-hadron180

correlations.181

The term −k p
a
T p

t
T

N is from global momentum conser-182

vation, as derived in [33]. This derivation assumed that183

momentum conservation is the only correlation in the col-184

lision. The only contribution with this assumption is v1185

because it is proportional to the dot product of the mo-186

menta, although there may be higher order corrections.187

While the pT -integrated rapidity-even v1 due to flow188

times pT ,
∫
vflow1 (pT )pT dpT , is zero due to momentum189

conservation, it has been measured to be negative at190

low momenta and comparable to v2 and v3 at high mo-191

menta [34–36]. This corresponds to a preferred direction192

in the collision, with high momentum particles preferen-193

tially in the opposite direction of low momentum par-194

ticles. The momentum conservation term was observed195

to be significant in these papers as well. Both measure-196

ments use di-hadron correlations with a large separation197

in pseudorapidity between trigger and associated parti-198

cles and assume that non-flow contributions are negli-199

gible. To extract v1 as a function of momentum, v1,1200

is measured in several different momentum bins and fit201

to separate the momentum conservation and flow terms.202

Note that equation 4 neglects event-by-event flow fluctu-203

ations. The large separation in pseudorapidity suppresses204

contributions from hadrons from the same jet as the trig-205

ger hadron, however, there may be residual contributions206

from jets π radians away from the trigger hadron in az-207

imuth. The measurement in [34] may still have resid-208
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FIG. 2. Shape of correlations relative to the j = 2 participant plane with c = π/6 for different orientations of the trigger
relative to the participant plane for vt2 = va2 = vt3 = va3 = 0.1, vt4 = va4 = 0.02 comparing realistic reaction plane resolution
and correlations between participant planes (C4,0,2 = C4,2,2 = C2,4,2 = 0.1, R2,2 = 0.8, and R4,2 = 0.4), ideal reaction plane
resolution (R2,2 = R4,2 = R6,4 = 1), and perfect correlation between even order participant planes (C4,0,2 = C4,2,2 = C2,4,2 = 1).

ual contributions from hadrons in the same jet as the209

trigger hadron because the separation in pseudorapidity,210

|∆η| = |ηa − ηt| < 0.7, is not wide enough to exclude all211

particles since the width of the jet-like peak on the near212

side is around 0.4 [37] at the lowest momenta. The v1213

measured may also be sensitive to the η gap between the214

trigger and associated momenta.215

In summary, the rapidity even v1 due to flow has been216

measured to be comparable to v2 and v3 and the global217

momentum conservation is also non-negligible, but there218

are not currently measurements which are reliable enough219

to subtract this contribution with precision in di-hadron220

correlations. Its subtraction in jet-hadron correlations is221

even more complicated, since only v2 has been measured222

for reconstructed jets. We therefore urge caution with223

respect to the treatment of the rapidity-even v1 term.224

The ZYAM method requires independent measurements225

of the vn. The reaction plane fit method described in [23]226

allows the inclusion of a v1 term and therefore could be227

used to reliably subtract this term. It may also allow for228

more reliable measurements of this term, since contribu-229

tions from jets are strongly suppressed.230

III. CONCLUSIONS231

We have derived the shape of the flow-modulated back-232

ground in di-hadron and jet-hadron correlations changes233

when the trigger is fixed relative to an event plane at an234

arbitrary order j, including both the finite event plane235

resolution and realistic correlations between different or-236

der event planes. There is a phase shift in this back-237

ground when asymmetric regions about the event plane238

are studied. The vn in this form are only modified by the239

contributions from odd multiples of j, independent of the240

correlations between other order event planes. For realis-241

tic correlations between event planes, we find only small242

effects from the correlation between participant planes243

of different orders. We urge caution with respect to the244

treatment of the rapidity even v1 due to flow in such245

studies because this component is not constrained well246

by data.247
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Appendix: Derivations328

We follow the notation and terminology from [20], expanding it for an arbitrary order participant plane and taking
decorrelations between different order event planes into account. The azimuthal anisotropy of single hadrons relative
to the jth order event plane is

dN

d(φ− ψj)
=
N

2π

(
1 + 2

∞∑
n=1

vn cos(n(φ− ψn))
)

(A.1)

where N is the number of particles, φ is the position of the particle in azimuth, ψn is the position of the nth order329

participant plane in azimuth, and vn = 〈cos(n(φ− ψ))〉 where ψj need not equal ψn. We assume that the azimuthal330

anisotropy of a jet can be similarly quantified and refer to the trigger particle or jet as a trigger in the following331

discussion.332

To determine the azimuthal anisotropy between an associated particle and a trigger when the trigger azimuthal
angle relative to the jth order event plane φs = φt − ψj is restricted to φs − c < φs < φs + c, we write equations like
equation A.1 for each, multiply them, integrate over possible angles between the reaction plane angle and the trigger
position, and average over several events. These integrals run from φ − ψj = φs − c to φ − ψj = φs + c for the jth
order event plane and there are j integrals so the operator to integrate over this region is given by

j−1∑
k=0

∫ φs+c+
2πk
j

φs−c+ 2πk
j

d(φ− ψj). (A.2)

In the case where the measurement is done relative to the reconstructed participant plane, the operator in equation A.2
can be rewritten as

j−1∑
k=0

∫ φs+c+ψ
reco
j −ψtruej + 2πk

j

φs−c+ψrecoj −ψtruej + 2πk
j

d(φ− ψrecoj ) (A.3)

by denoting the true participant plane ψj = ψtruej , writing φ − ψrecoj = (φ − ψtruej ) − (ψtruej − ψrecoj ) and changing333

the variable of integration.334

For convenience, we define x = φt − ψrecoj where the superscript t indicates that this is the position of the trigger,

∆φ = φa − φt, ∆ψrecoj = ψrecoj − ψtruej and ∆ψab = ψtruea − ψtrueb . We then write the distribution of trigger as

dN t

d(φt − ψj)
=
N t

2π

(
1 + 2

∞∑
n=1

vtn cos(n(φt − ψn))
)

=
N t

2π

(
1 + 2

∞∑
n=1

vtn cos(n(φt − ψj + ψj − ψn))
)
, (A.4)

or

dN t

dx
=
N t

2π

(
1 + 2

∞∑
n=1

vtn cos(nx+ n∆ψjn)
)
. (A.5)

Similarly, the distribution of associated particles can be written

dNa

d(φa − ψj)
=
Na

2π

(
1 + 2

∞∑
m=1

vam cos(m(φa−ψm))
)

=
Na

2π

(
1 + 2

∞∑
m=1

vam cos(m(φt−ψj +φa−φt +ψj −ψm))
)
, (A.6)

or,

dNa

dx
=
Na

2π

(
1 + 2

∞∑
m=1

vam cos(m(x+ ∆φ+ ∆ψjm))
)
. (A.7)

We then put these pieces together to get the background as a function of ∆φ:

B(∆φ) =
N tNa

4π2

j−1∑
k=0

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx
(

1 + 2

∞∑
m=1

vam cos(mx+m∆φ+m∆ψjm)
)(

1 + 2

∞∑
n=1

vtn cos(nx+ n∆ψjn)
)

=
N tNa

4π2

j−1∑
k=0

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx
(

1 + 2

∞∑
m=1

vam cos(mx+m∆φ+m∆ψjm) + 2

∞∑
n=1

vtn cos(nx+ n∆ψjn)

(A.8)

+ 4

∞∑
m=1

∞∑
n=1

vanv
t
m cos(mx+m∆φ+m∆ψjm) cos(nx+ n∆ψjn)

)
.
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We define the four terms as b1(∆φ), b2(∆φ), b3(∆φ), and b4(∆φ), respectively, as

b1(∆φ) =
N tNa

4π2

j−1∑
k=0

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx (A.9)

b2(∆φ) =
N tNa

2π2

j−1∑
k=0

∞∑
m=1

vam

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(mx+m∆φ+m∆ψjm)

b3(∆φ) =
N tNa

2π2

j−1∑
k=0

∞∑
n=1

vtn

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(nx+ n∆ψjn)

b4(∆φ) =
N tNa

π2

j−1∑
k=0

∞∑
n=1

∞∑
m=1

vtnv
a
m

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(mx+m∆φ+m∆ψjm) cos(nx+ n∆ψjn). (A.10)

We consider each of them below.335

1. First term b1(∆φ)336

b1(∆φ) =
N tNa

4π2

j−1∑
k=0

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx =
N tNa

2π2

j−1∑
k=0

c =
N tNajc

2π2
(A.11)

2. Second term b2(∆φ)337

b2(∆φ) =
N tNa

2π2

j−1∑
k=0

∞∑
m=1

vam

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(mx+m∆φ+m∆ψjm)

=
N tNa

2π2

j−1∑
k=0

∞∑
m=1

vam
m

sin(mx+m∆φ+m∆ψjm)
∣∣∣φs+c+∆ψrecoj + 2πk

j

φs−c+∆ψrecoj + 2πk
j

=
N tNa

π2

j−1∑
k=0

∞∑
m=1

vam
m

sin(mc) cos(mφs +m∆ψrecoj +
2πkm

j
+m∆φ+m∆ψjm) (A.12)

using

sin(a+ b)− sin(a− b) = 2 cos(a) sin(b). (A.13)

We can further simplify this using

cos(a+ b+ c) = cos(a) cos(b) cos(c)− cos(a) sin(b) sin(c)− sin(a) cos(b) sin(c)− sin(a) sin(b) cos(c). (A.14)

The fact that the average over events 〈∆ψrecoj 〉 = 0 and 〈∆ψjm〉 = 0 and the fact that these distributions are
symmetric about 0 means that 〈sin(m∆ψrecoj )〉 = 0 and 〈sin(m∆ψjm)〉 = 0 . The ∆ψrecoj and ∆ψjm terms can then
be pulled out:

b2(∆φ) =
N tNa

π2

j−1∑
k=0

∞∑
m=1

vam
m

sin(mc)〈cos(m∆ψrecoj )〉〈cos(m∆ψjm)〉 cos(mφs +
2πkm

j
+m∆φ). (A.15)

We will investigate the term

j−1∑
k=0

cos(mφs +
2πkm

j
+m∆φ) =

j−1∑
k=0

(
cos(mφs +

2πkm

j
) cos(m∆φ)− sin(mφs +

2πkm

j
) sin(m∆φ)

)
. (A.16)
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We use the identity

j−1∑
k=0

(
cos(ma+

2πkm

j
) + i sin(ma+

2πkm

j
)
)

= eima
j−1∑
k=0

e
2πkm
j i =

{
j cos(ma) + ij sin(ma) ,m = multiple of j

0 , otherwise.

(A.17)
We can then write

b2(∆φ) =
N tNa

π2

∞∑
m=1

vamδm,mult jj

m
sin(mc)〈cos(m∆ψrecoj )〉〈cos(m∆ψjm)〉 cos(mφs +m∆φ) (A.18)

where δm,mult j indicates that m is an integer k times j.338

We define the following variables to simplify the equations:

Rn,j = 〈cos(n∆ψrecoj )〉 = 〈cos(n(ψrecoj − ψtruej ))〉 (A.19)

C(n,m, j) = 〈cos(nψn +mψm − (n+m)ψj)〉 (A.20)

We can then simplify and rearrange:

b2(∆φ) =
N tNaj

π2

∞∑
m=1

vamδm,mult j
m

sin(mc)Rm,jCm,0,j cos(mφs +m∆φ)

=
N tNajc

2π2

(
2

∞∑
m=1

vamδm,mult j
mc

sin(mc)Rm,jCm,0,j
(

cos(mφs) cos(m∆φ)− sin(mφs) sin(m∆φ)
))

=
N tNajc

2π2

(
2

∞∑
k=1

vajk
jkc

sin(jkc)Rjk,jCjk,0,j
(

cos(jkφs) cos(jk∆φ)− sin(jkφs) sin(jk∆φ)
))

(A.21)

3. Third term b3(∆φ)339

b3(∆φ) =
N tNa

2π2

j−1∑
k=0

∞∑
n=1

vtn

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(nx+ n∆ψjn)

=
N tNa

2π2

j−1∑
k=0

∞∑
n=1

vtn
n

sin(nx+ n∆ψjn)
∣∣∣φs+c+∆ψrecoj + 2πk

j

φs−c+∆ψrecoj + 2πk
j

=
N tNa

π2

j−1∑
k=0

∞∑
n=1

vtn
n

sin(nc) cos(nφs + n∆ψrecoj +
2πkn

j
+ n∆ψjn)

=
N tNa

π2

j−1∑
k=0

∞∑
n=1

vtn
n

sin(nc)〈cos(n∆ψrecoj )〉〈cos(n∆ψjn)〉 cos(nφs +
2πkn

j
)

=
N tNa

π2

∞∑
n=1

vtnδn,mult jj

n
sin(nc)〈cos(n∆ψrecoj )〉〈cos(n∆ψjn)〉 cos(nφs) (A.22)

following the same logic as for the second term. Again we simplify and rearrange, including a shift of indices

b3(∆φ) =
N tNajc

2π2
2

∞∑
k=1

vtjk
jkc

sin(nc)Rjk,jCjk,0,j cos(jkφs) (A.23)

4. Fourth term b4(∆φ)340

b4(∆φ) =
N tNa

π2

j−1∑
k=0

∞∑
n=1

∞∑
m=1

vtnv
a
m

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(mx+m∆φ+m∆ψjm) cos(nx+ n∆ψjn) (A.24)
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We consider n = m and n 6= m terms separately.341

a. n = m342

We use the integral∫
cos(n(x+ a)) cos(n(x+ b))dx =

x

2
cos(n(a− b)) +

1

4

sin(n(a+ b+ 2x))

n
+ C (A.25)

to simplify

b4(∆φ) =
N tNa

π2

j−1∑
k=0

∞∑
n=1

vtnv
a
n

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(nx+ n∆φ+ n∆ψjn) cos(nx+ n∆ψjn)

=
N tNa

π2

j−1∑
k=0

∞∑
n=1

vtnv
a
n

(
c cos(n∆φ) +

sin(2nc) cos(2n∆ψjn + 2nφs + 2n∆ψrecoj + 2n 2πk
j + n∆φ)

2n

)

=
N tNa

π2

j−1∑
k=0

∞∑
n=1

vtnv
a
n

(
c cos(n∆φ) +

sin(2nc)〈cos(2n∆ψjn)〉〈cos(2n∆ψrecoj )〉 cos(2nφs + 2n 2πk
j + n∆φ)

2n

)
=
N tNaj

π2

∞∑
n=1

vtnv
a
n

(
c cos(n∆φ) +

δ2n,mult j sin(2nc)〈cos(2n∆ψjn)〉〈cos(2n∆ψrecoj )〉 cos(2nφs + n∆φ)

2n

)
=
N tNajc

2π2
2

∞∑
n=1

vtnv
a
n

(
cos(n∆φ) +

δ2n,mult j sin(2nc)Cn,n,jR2n,j cos(2nφs + n∆φ)

2nc

)
. (A.26)

b. n 6= m343

We use the integral∫
cos(n(x+ a)) cos(m(x+ b))dx =

1

2

sin((m− n)x+ na−mb)
n−m

+
1

2

sin((m+ n)x+ na+mb)

n+m
+ C∫ α+β

α−β
cos(n(x+ a)) cos(m(x+ b))dx =

1

2

sin((m− n)β) cos((m− n)α+ na−mb)
n−m

+
1

2

sin((m+ n)β) cos((m+ n)α+ na+mb)

n+m
(A.27)

to simplify

b4(∆φ) =
N tNa

π2

j−1∑
k=0

∞∑
n=1

∞∑
m=1

vtnv
a
m

∫ φs+c+∆ψrecoj + 2πk
j

φs−c+∆ψrecoj + 2πk
j

dx cos(mx+m∆φ+m∆ψjm) cos(nx+ n∆ψjn)

=
N tNa

π2

j−1∑
k=0

∞∑
n=1

∞∑
m=1

vtnv
a
m

( sin((n−m)c) cos((n−m)(φs + ∆ψrecoj + 2πk
j )− n∆ψjn +m∆ψjm +m∆φ)

n−m

+
sin((m+ n)c) cos((n+m)(φs + ∆ψrecoj + 2πk

j ) + n∆ψjn +m∆ψjm +m∆φ)

n+m

)
=
N tNajc

2π2
2

∞∑
n=1

∞∑
m=1

vtnv
a
m

(δn−m,multj sin((n−m)c) cos((n−m)φs −m∆φ)Rn−m,jCn,−m,j
(n−m)c

+
δn+m,multj sin((m+ n)c) cos((n+m)φs +m∆φ)Rn+m,jCn,m,j

(n+m)c

)
. (A.28)
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c. n = m and n 6= m combined344

Note that the second term in equation A.26 gets folded in to the n + m term in equation A.28. We add the term
and shift indices:

b4(∆φ) =
N tNajc

2π2
2

∞∑
n=1

van

(
vtn cos(n∆φ) +

∞∑
k=1

(vtjk+nC|jk+n|,n,j + vt|jk−n|C|jk−n|,n,j)
sin(jkc) cos(jkφs − n∆φ)Rk,j

kc

)
(A.29)

5. Putting it all together345

We want to write our equation in the form

B(∆φ) = B̃

(
1 + 2

∞∑
n=1

van
(
ṽtn cos(n∆φ) + w̃tn sin(n∆φ)

))
. (A.30)

By evaluating the previous terms and comparing the sections with cos(n∆φ) and sin(n∆φ) dependence, we can see

B̃ =
N tNajc

2π2

(
1 + 2

∞∑
k=1

vtjk
jkc

sin(jkc)Rjk,jCjk,0,j cos(jkφs)
)
,

ṽtn =
vn +

δn,mult j
nc sin(nc)Rn,jCn,0,j cos(nφs) +

∑∞
k=1(vtjk+nC|jk+n|,n,j + vt|jk−n|C|jk−n|,n,j)

sin(jkc) cos(jkφs)Rjk,j
jkc

1 + 2
∑∞
k=1

vtjk
jkc sin(nc)Rjk,jCjk,0,j cos(jkφs)

(A.31)

w̃tn =

δn,mult j
nc sin(nc)Rn,jCn,0,j sin(nφs) +

∑∞
k=1(vtjk+nC|jk+n|,n,j + vt|jk−n|C|jk−n|,n,j)

sin(jkc) sin(jkφs)Rjk,j
jkc

1 + 2
∑∞
k=1

vtjk
jkc sin(nc)Rjk,jCjk,0,j cos(jkφs)
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