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We use a momentum-dependent optical model potential to analyze the annihilation cross sections
of antineutron n̄ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta plab . 500 MeV/c.
We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A
612, 346 (1997)] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002)] which exhibit an interesting
dependence of the cross sections on the plab as well as on the target mass number A. We also obtain
the neutron (n) non-elastic reaction cross sections for the same targets. Comparing the nA reaction
cross sections σnA

rec to the n̄A annihilation cross sections σn̄A
ann, we find that the σn̄A

ann is significantly
larger than the σnA

rec , that is, the σn̄A
ann/σ

nA
rec cross section ratio lies between the values of about 1.5

to 4.0 in the momentum region where comparison is possible. The dependence of the n̄ annihilation
cross section on the projectile charge is also examined in comparison with the antiproton p̄. Here
we predict the p̄A annihilation cross section on the simplest assumption that both p̄A and n̄A

interactions have the same nuclear part of the optical potential but differs only on the electrostatic
Coulomb interaction. Deviation from such simple model extrapolation in measurements will provide
new information on the difference between n̄A and p̄A potentials.

PACS numbers: 24.10.-i, 25.43.+t, 25.75.-q,
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I. INTRODUCTION

Annihilation between antinucleon and nucleon or nucleus defines one of the basic aspects in antimatter-matter
interactions. Over the years there have been many experimental measurements [1–21] and theoretical studies [21–41]
about antinucleon annihilation on nucleons and nuclei. However, most of the work was carried out with antiproton
p̄ projectile. Experimental and theoretical investigations using antineutron n̄, on the other hand, are still relatively
limited. Theoretical work has also been carried out on the relationship between n̄n oscillation and n̄A interaction
potential [42–44]. Recently, it has also been suggested that n̄A annihilation can be used to prepare apparatus for the
n̄n oscillations [45] detection.
On the experimental side, one representative investigation is the measurement of the n̄-Fe annihilation cross section

from 100 to 780 MeV/c [46–48]. The experiment was carried out with the LEAR facility at CERN using the p̄p → n̄n
charge-exchange reaction. Another investigation, by the OBELIX group of Astrua et al [8], measured the annihilation
cross section of n̄ on C, Al, Cu, Ag, Sn, and Pb nuclei in the plab range from 50 to 400 MeV/c. These experiments
give clear evidence about the dependence of the antinucleon-nucleus absorption cross section on the mass number
A and the momentum dependence which exhibits prominent absorption feature of inverse-momentum dependence at
low-energies. They are also useful to test the theories of antinucleon-nucleus interactions.
In response to the experimental efforts, Friedman derived an optical model potential for p̄-nucleus interaction by

accounting for both the neutron and proton densities [32] to examine the annihilation cross sections for p̄ and n̄ on all
the six targets at seven energies studied in Astrua et al [8]. The calculated cross sections for p̄ and n̄ were compared
with experimental annihilation cross sections for n̄. The study indicated that the p̄ induced annihilation cross sections
increase much more steeply in the low momentum plab < 200 MeV/c region in comparison to the case for n̄ projectile.
It also elucidated that the larger p̄ annihilation cross sections match the experimental data closely, but surprisingly
not for n̄ annihilation cross sections. Above 250 MeV/c, the n̄ annihilation cross sections are found to be reasonably
close to the experimental cross sections. However, below 100 MeV/c, the cross sections are found to be significantly
smaller than the experimental cross sections. Furthermore, the predicted n̄ annihilation cross sections display the
feature of decreasing and shifting to lower and lower momenta as the size of the nuclear target increases and thus
deviate from the behavior suggested by the experimental cross sections. It is important to note that the very same
density-folded optical model potential has been checked and tested previously, by the same author of Ref.[32], to
reproduce very well the angular distributions for elastic scattering of p̄ by C, Ca and Pb at 300 MeV/c [31].
The fact that n̄ induced annihilation cross sections are smaller than for p̄ can be easily understood because the

incoming electrically neutral projectile will naturally experience negligible Coulomb attraction from the target nucleus.
But, it is perplexing that, experimentally there is a notable absorption feature of 1/pαlab-like dependence, akin to the
effects of Coulomb focusing for n̄ annihilation cross sections at the lower momenta, and the microscopic optical
potential predicted that these cross sections are reduced and shifted to lower and lower momenta as A increases.
Recently, we have extended the Glauber model for nucleus-nucleus collisions [49–52] to study the nuclear annihilation

cross sections by antinucleons. The extended Glauber model for the calculation of the p̄A annihilation cross section [22,
23] considered the nucleon-nucleus collision as a collection of binary collisions, and took into account the appropriate
shadowing and the inclusion of initial-state and in-medium interactions. The basic ingredients are the elementary p̄p
and p̄n annihilation cross sections, σp̄p

ann and σp̄n
ann, together with initial-state Coulomb interactions and the change

of the momentum of the antinucleon inside the nuclear medium. We note that in our earlier study [22], the basic
p̄p annihilation cross section, σp̄p

ann, was parameterized semi-empirically as 1/v, and employed in our investigation of
the stability and the properties of matter-antimatter molecules [53, 54]. In our subsequent study [23], we improved
the σp̄p

ann and σp̄n
ann formulas by considering the anti-particle transmission through a nuclear potential and the p̄p

Coulomb interaction, the nuclear annihilation cross sections can be properly evaluated in a simple analytical form. The
expressions are rigorous enough and therefore we amend our earlier simple approach of 1/v function to parameterize
the basic σp̄p

ann and σp̄n
ann cross sections. The strong absorption model formulated decomposes the incoming plane waves

into a sum of partial waves of given orbital angular momentum L and assumes that these partial waves transmitted
to the nucleon surface S lead to an annihilation reaction. It is shown that the cross sections for nuclear annihilation
by p̄ and n̄ are simple functions of the momentum of the incident particles. Across the momentum range considered,
contrasting it to the σn̄p

ann annihilation cross section, the σp̄p
ann annihilation cross section is significantly enhanced by

the Coulomb interaction for the plab momenta of the incident particle below 500 MeV/c. As the plab increases, the
two annihilation cross sections become almost identical, approaching the Pomeranchuk’s equality limit [55] at plab ∼
500 MeV/c. In addition, the calculated annihilation cross sections agree well with the experimental data. With the
improved σp̄p

ann and σp̄n
ann, we also reproduced the general map of annihilation cross sections, σp̄A

ann, as a function of
nuclear mass numbers A and collision energies.
With encouraging results from the particle transmission theory to describe the σp̄p

ann, σ
p̄n
ann and σp̄A

ann annihilation
cross sections, we employed the very same theory to examine the σn̄A

ann. But there was an inadvertent error that
arose through the Coulomb trajectory modification considered in the extended Glauber model, making our σn̄A

ann to
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agree with the experiment data. We re-examined and re-evaluated our σn̄A
ann cross section, and found, in the absence

of additional Coulomb effects, the rectified σn̄A
ann cross sections are significantly “flat” and relatively lower than the

experimental data for plab < 200 MeV/c, yielding a far from satisfactory agreement between our calculations and
experiment of Astrua et al.
Anticipating that new and better experiments [56–58] will be performed in the coming years, here we attempt to

explore an alternative theoretical method to rectify our previous annihilation cross section results for n̄A. Moreover, it
appears that a comparative study of the absorption cross sections induced by neutrons, antineutrons and antiprotons
has not yet been made.
The content of this paper is as follows. In Section II, we present the phenomenological optical model potential

(OMP) we obtained to examine the n̄A annihilation cross sections. In Section III, we assess our phenomenological
theory by comparing our numerical results to the available experimental n̄A annihilation cross section, nA reaction
cross section, and p̄A annihilation data. Finally, we conclude the present study with some discussions in Section VI.

II. PHENOMENOLOGICAL MOMENTUM-DEPENDENT OPTICAL MODEL POTENTIAL

The Glauber model is known to work best at high energies in which the extend individual nucleon can be treated as
isolated scatterer. For low energies collisions, such description may not be as appropriate and the traditional optical
model potential analysis may be more suitable. For this reason we adopt a phenomenological analysis to study the
energy-dependence of the OMP in n̄A annihilation cross section. Moreover, the method of OMP is well-tested and
long-established for treating complicated interactions between an incoming nucleon and a nucleus [60, 61].
In the present analysis, we consider the collision between an antinucleon and a nucleus, and their effective interaction

strength without spin-orbit interaction is represented generally by a momentum-dependent optical model potential

U(r) = VC(r) − VV (r, p)− i(WV (r, p) +WD(r, p)), (1)

where subscripts “V ” and “D” denote the volume and surface terms, respectively; and

VV (r, p) = Vo(p)f(r, rV , aV ), (2)

WV (r, p) = Wo(p)f(r, rW , aW ), (3)

WD(r, p) = −4aWD
WoD (p)

d

dr
f(r, rWD

, aWD
). (4)

As usual the f(r, rx, ax) form factor is a Wood-Saxon

f(r, rx, ax) =
1

(1 + exp[(r − rx)/ax])
, (5)

where x ≡ V,W,WD. The Coulomb term VC(r) is naturally zero for an electrically neutral projectile. Otherwise,

VC(r) =







ZAZpe
2

2rc

(

3− r2

r2c

)

for r ≤ rc,

ZAZpe
2

r for r > rc,
(6)

for a charged projectile with ZA and Zp being the target and projectile nuclear charges, respectively, and rc = roA
1/3

is the Coulomb radius with ro being 1.25 fm.
Although the main focus here is the n̄A’s optical model potential, our knowledge of p̄A’s optical model potential is

more extensive. To gain some intuitions about the shape and size of our desired OMP, knowledge of the p̄A’s OMP
is valuable as it could shed some light on the construction of n̄A’s OMP. There are at least two families of the p̄A
potential, and these families and their ambiguity have been studied by one of the present authors in [62]. One family,
so-called S, has a much more shallow imaginary potential with W of order 15−45 MeV, associated with a deep real
potential with V of order 200−350 MeV. The other one, so-called D, has a real well-depth V of order 100 MeV and
a deep imaginary part W of order 100−200 MeV. On the other hand, the neutron-nucleus (nA) optical potential is
also well-established. From Koning and Delaroche [61], we learned that the nA optical potential has a real well-depth
V of the order of 60 MeV and considerably shallower imaginary potential with W of the order of 15 MeV for many
nuclei across the periodic table, but with A-value greater than 23. This potential family is quite different from that
of p̄A.
The optical model potential of Koning and Delaroche has many advantages because of its simplicities and systematic

variations. However, as it has not taken into account the effects of static and dynamical deformation of the nuclei, it
has its limitations and its application to 12C as we do here will exhibit an expected deficiency.
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It is desirable to have a simple, “flexible”, and yet rich enough (i.e., applicable in the very low momentum region)
forms of optical model potential for n̄A that could also be useful to p̄A annihilation. We therefore concocted a
momentum-dependent phenomenological optical model potential

Vo(plab) = V ′

o ×

(

cosh(
√

(b0 + plab)−
√
b0)

cosh(
√

(b1 + plab)−
√
b1)

)

, (7)

where b0 and b1 are two adjustable parameters. We choose this form so that Vo → V ′

o as plab → 0, and we use the cosh
function such that Vo(plab) decreases monotonically and gradually with plab. In addition, we also want our Vo(plab) to
behave similarly to the functional dependence of VV (E) of Koning and Delaroche plotted in Fig. 1 of Ref.[61]. We also
assume that our absorptive potentials, Wo(p) = Wo and WoD(p) = WoD, do not vary with the projectile momentum.
Table I lists the optical model potential well depths and the b0 and b1 parameters used in the calculations.

TABLE I: Antineutron optical model potential well depths, V ′

o and W(o,oD), and the b(0,1) free parameters, are in
MeV, and VD = 0. The W(o,oD) parameters are independent of the projectile momentum.

Nucleus 12C 27Al 56Fe 63.6Cu 107.9Ag 118.7Sn 206Pb

V ′

o 52.00 66.00 56.00 60.00 82.00 90.00 110.00
Wo 12.00 3.50 9.00 4.33 4.10 4.30 2.80
WoD 5.98 5.98 5.98 5.98 5.98 5.98 5.98
b0 14.04 31.86 67.20 75.52 127.29 140.08 243.08
b1 7.92 16.90 39.00 37.70 61.10 65.00 106.60

With regard to the radius parameter in the optical potential, we use the following procedure to estimate its
approximate value before more refined search and adjustment. From the experimental annihilation cross section at
high energies at which a geometrical approximation is a reasonable assumption, we estimate a radius rR given by

σann = π(rRA
1/3)2. (8)

This radius defines a sharp cut-off distribution for the collision process. The equivalent Wood-Saxon optical model
potential with a radius parameter of rV and a diffuseness aV can be estimated by [59]

rV = rR

(

1−
1

3

(

πaV
rRA1/3

)2
)

(9)

for each nuclei. For example, even though the n̄C experimental annihilation cross section at plab > 500 MeV/c is not
readily available, according to Pomeranchuk’s equality at high-energy limit [55], both the n̄C and p̄C annihilation
cross sections should be identical. Therefore, it is reasonable to make use of the experimental data to determine the
value of p̄C annihilation cross section at 900 MeV/c and use this value to determine the rR, which turns out to be
1.653 fm. Concerning how one guesses the value of the diffuseness parameter aV , its initial estimate is deduced from
the clues given by Friedman [31], in which the aV for antineutron may be about a factor of 2-3 times of that for the
neutron. To search for the optimal value of aV , several iterative calculations for annihilation cross section have to be
performed at a fixed momentum of 900 MeV/c for both the n̄C and p̄C until both their annihilation cross sections
closely satisfy the Pomeranchuk’s equality. Once the rR and aV values are determined, Eq.(9) gives the corresponding
value of rV . The same procedure is also applied to the case of iron nuclei.
With respect to the Al, Cu, Sn and Pb nuclei (e.g., see Fig. 5 in Ref.[9]), despite the fact that there are p̄ experimental

data are available at around 1 GeV/c, they were not measured at a common momentum point. As a result, we are
afraid that they can complicate the consistency of our estimations for the rR and hence rV values for each element.
To be safe, we choose to use the experimental n̄A annihilation cross section values at 375 MeV/c and extrapolate
them to 400 MeV/c. Note that the same iterative aV -search procedure is also considered for these elements. Table II
presents the annihilation cross section at 400 MeV/c and 900 MeV/c, and their corresponding values of rR. The
subsequent antineutron radial and diffuseness parameters for the POMP as a function of mass numbers are given in
Table III. Fig. 6(a) illustrates the variation of the strength of Vo as a function of mass numbers and antineutron
momentum. In general, their behaviors bear similarity with the momentum functional form of σn̄A

ann.
In order to obtain the nA reaction cross section, we adopted the optical model potential by Koning-Delaroche

[61]. To avoid later confusion, we shall use the phenomenological optical model potential (POMP) to denote the
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TABLE II: The estimated annihilation cross sections at 400 MeV/c and 900 MeV/c, and their corresponding values
of rR.

Pair plab(MeV/c) σ = π(rRA
1/3)2(fm2) rR(fm)

p̄C 900 45.0 1.653
n̄Al 400 100.0 1.881
p̄Fe 900 100.0 1.475
n̄Cu 400 180.0 1.893
n̄Ag 400 240.0 1.840
n̄Sn 400 265.0 1.868
n̄Pb 400 400.0 1.911

TABLE III: Optical model potential parameters for n̄A and nA interactions. The neutron optical model potential
parameters are from Ref.[61]. The geometry parameters rx and diffusiveness parameters ax are in fm. It is assumed

that rW = rV , aW = aV , aVD
= aWD

and VD = 0.

Nucleus 12C 27Al 56Fe 64Cu 108Ag 119Sn 206Pb

rV 1.234 1.577 1.307 1.649 1.663 1.681 1.785
rWD

1.260 1.260 1.260 1.260 1.260 1.260 1.260
n̄

aV 1.050 1.250 1.050 1.500 1.500 1.600 1.600
aWD

0.590 0.590 0.590 0.590 0.590 0.590 0.590

rV 1.127 1.162 1.186 1.203 1.219 1.221 1.235
rWD

1.306 1.290 1.282 1.279 1.267 1.264 1.249
n

aV 0.676 0.665 0.663 0.668 0.662 0.660 0.647
aWD

0.543 0.538 0.532 0.534 0.527 0.525 0.510

antinucleon-nucleus interactions U(r) of eq.(7). On the other hand, we shall use the Koning-Delaroche’s optical
model potential (KD-OMP) to denote the nA optical potential described in Ref.[61] .
These optical model potentials are then employed in the Schrödinger equation and the standard distorted wave

method provided in the ECIS97 computer program [63] is used to solve the Schrödinger equation to obtain the reaction
cross section. For each individual nuclei, we use a fixed value for Vo evaluated at plab = 200 MeV/c for plab ≥ 200
MeV/c as Vo becomes almost constant in the high-energy limit. Furthermore, we also check the sensitivity of the
cross section at plab = 200 MeV/c with respect to the small variation (∼ 5%) of Vo and made sure that the changes
in the cross section is not more than ∼ 5%.

III. RESULTS AND DISCUSSION

In this section, we first evaluate our n̄A annihilation cross section results by comparing with the available exper-
imental data. Second, we discuss the differences between the n̄A annihilation and nA reaction cross sections, and
compare their corresponding optical model potential parameters. Third, we consider the p̄A annihilation. Lastly, we
analyze the power laws of the p̄ and n̄ annihilation cross sections.

A. n̄A annihilation cross sections

In our previous study [23], we have examined the n̄p annihilation cross section as a function of the antineutron
momentum by considering the transmission through a nuclear potential. Although the annihilation cross section data
for n̄p still remains rather sparse to date in comparison to p̄p and contain significant degrees of uncertainties, a good
agreement is achieved between our analytical results and experimental data from the OBELIX Collaboration [1] and
from Brookhaven National Laboratory [2]. Similarly, a good way to verify and validate the present optical model
potential model in describing the mass A and momentum dependencies of n̄ annihilation (and of n reaction) is to
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FIG. 1: (Color online) Comparison of n̄C, p̄C annihilation cross sections and nC non-elastic reaction cross section as
a function of the projectile momentum in the laboratory frame. The dash-dot-dotted line refers to nC reaction cross
section obtained using the KD-OMP; the dotted line and the scattered triangles are the nC reaction non-elastic data

from Brookhaven National Laboratory’s National Nuclear Data Center [66].

benchmark against the available experimental data.
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FIG. 2: (Color online) Comparison of n̄Fe, p̄Fe annihilation cross sections and nFe non-elastic reaction cross section
as a function of the projectile momentum in the laboratory frame. The symbols are experimental data of n̄Fe

annihilation. The dash-dot-dotted line refers to nFe reaction cross section obtained using the KD-OMP; the dotted
line is the nFe reaction non-elastic data from Brookhaven National Laboratory’s National Nuclear Data Center [66].

Fig. 1 shows a comparison of n̄C annihilation cross sections against several sets of data. From quantitative perspec-
tive, the predicted cross sections appear to obey the momentum dependence behavior suggested by the experiment
at the low momenta region. As plab proceeds to increase beyond 500 MeV/c, the theoretical and experimental
cross sections continue to remain in agreement with indication that its momentum dependence is decreasing at large
momenta.
In Fig. 2, we examine the n̄Fe annihilation cross sections along with several data sets. Similarly, the calculated

n̄Fe annihilation cross sections also appeared to be in good agreement with the experimental data which indicate a
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FIG. 3: (Color online)(a) Cross sections for n̄A, p̄A and nA, as a function of the projectile momentum in the
laboratory frame. The solid line is for n̄A, the dashed line is for p̄A and the dash-dot-dotted line is for nA. The

circles are experimental data from Astrua et al [8]. The diamond is from Bianconi et al [9]. (b) Cross section ratios.
The solid line represents the theoretical σn̄A

ann/σ
nA
rec , the dashed line represents the theoretical σp̄A

ann/σ
n̄A
ann and the solid

circle represents the ratio of experimental σn̄A
ann to the theoretical σnA

rec .

much larger cross sections (in comparison to the case of n̄C annihilation) below plab of 400 MeV/c and the absorption
feature becomes progressively reduced as one goes up in plab.

Fig. 3(a) shows that the predicted n̄A annihilation cross sections for the Al, Cu, Ag, Sn and Pb nuclei rise
considerably as the projectile momentum continues to decrease. These theoretical cross sections also describe the
experimental data [8] relatively well in the momenta region where the data are available for comparison, except at
plab of 76 MeV/c where the calculations underestimated the experiment by about 15-20% for Ag, Sn and Pb targets.
In regard to the finding of Ref.[32] where n̄ annihilation cross sections shift to lower and lower momentum as nuclear
size increases, inspecting the change of σn̄A

ann cross sections as a function the nuclear mass number A displayed in Fig.
3(a), we do not notice any sign of reduction of n̄A annihilation cross sections and shift of such kind.

B. nA reaction cross sections

The energy dependence of nA reaction cross sections have been relatively well studied for many elements across
the periodic table over the years. Therefore, it is meaningful to compare the n̄A annihilation cross section against
nA reaction cross section as a function of incoming projectile momenta. But before we do that, it is worthwhile to
examine the quality of the present neutron reaction cross sections based on the KD-OMP. Displaying in Fig. 4 is
a comparison between the present results and the BNL recommended non-elastic reaction cross section data for C,



8

140 160 180 200 220 240 260 280 300 320 340 360 380 400
p

lab
(MeV/c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

C
ro

ss
 s

e
c
ti

o
n
 (

b
a
rn

s)

C

Al

Fe

Cu

Ag

Pb

FIG. 4: (Color online) The nA non-elastic reaction cross section as a function of the projectile momentum in the
laboratory frame. The solid-line refers to the present results obtained using the KD-OMP. The symbols are the data

recommended by the Brookhaven National Laboratory’s National Nuclear Data Center [66].

Al, Fe, Cu, Ag and Pb nuclei [66]. It is shown that the overall agreement between the calculated cross sections and
recommended data is reasonably good. Note that we intensionally left out the Sn results in the plot because, to our
best knowledge, we could not find the available BNL data to make comparison.
Since both the n̄A and nA interactions are free from initial-state Coulomb interactions, it is valuable to compare

the momentum dependence of the cross sections of these two interactions. One can clearly see, from figures 1, 2,
3(a), that the n̄ annihilation cross sections on all targets are significantly larger than that of the n reaction. To
better appreciate their differences in the cross sections between the n̄ and n projectiles, we plot the σn̄A

ann/σ
nA
rec ratios

as a function of the projectile momentum for carbon and iron nuclei in Fig. 5(a). In general, both curves for carbon
and iron nuclei depicted a similar behavior. In the same plot, we also include the ratio of experimental σn̄C

ann to the
theoretical σnC

rec , which we shall denote it as experimental ratio. It is interesting to see the shape of the curve of
experimental ratios also resembles the behavior of the theory even though the agreement between the theoretical
predicted and the experimental ratios is not that satisfactory. The disagreement may be attributed to the calculation
has not taken into account the effects of static and dynamical deformation of the carbon nuclei.
Examining Fig. 5(a) more closely, one finds that the theoretical σn̄C

ann/σ
nC
rec ratio is about 1.5 at plab ≃ 160 MeV/c

whereas the experimentally suggested value is about 1.3 and at a slightly higher plab of 165 MeV/c. Moving to higher
plab ≃ 400 MeV/c, this ratio is about 2.3. It should be noted that in this low-energy region we have assumed that
most of the nA non-elastic reaction are due to the absorption process. We also restrict our analysis to the lowest
momentum of 100 MeV/c to avoid any complications due to the contributions from the low-energy resonances.
Again, as illustrated in Fig. 5(a), the σn̄Fe

ann/σ
nFe
rec ratio is also turned out to be about 1.4 to 1.6 between the plab of

120 and 400 MeV/c. For the rest of the targets shown in Fig. 3(b), one finds that the σn̄A
ann/σ

nA
rec ratios vary between

the order of 1.5 and 3.8 in the region where comparisons are possible, and also depend on both the momentum and
the A values. Notice that their momentum dependency of cross section ratios resembles their cross section behaviors
is also quite different from those of the iron and carbon nuclei seen earlier in Fig. 5(a). Comparing to the case of
carbon nuclei, Fig. 3(b) indicates a much better agreement between the predicted and the experimental σn̄A

ann/σ
nA
rec

ratios for all targets. The better agreement is understandable since the theoretical and experimental σnA
rec are also in

a much closer agreement (e.g., see Fig. 4).
Now we consider the optical potential parameters for both n̄A and nA interactions. The values of the initial (or

starting) potential depth V ′

o for all the target elements are given in Table I. The V ′

o value, in general, increases from
52 to 110 MeV as the A value goes from 12 to 206. But with KD-OMP [61] calculations, this trend is reversed for the
case of nA reaction.
The corresponding real part of the central potentials Vo for n̄A and nA interactions, as a function of momentum, are

shown in Fig. 6(a) and Fig. 6(b), respectively. Although the depth of Vo based on POMP for every nuclei decreases
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FIG. 5: (Color online) Cross section ratios as a function of the projectile momentum in the laboratory frame. (a)
The ratios of σn̄/σn. The solid line represents the theoretical σn̄C

ann/σ
nC
rec , the dashed line represents the theoretical

σn̄Fe
ann/σ

nFe
rec and the solid circle represents the ratio of experimental σn̄C

ann to the theoretical σnC
rec . Note that there are

no experimental σn̄Fe
ann available at the common momentum points of carbon. (b) The ratios of σp̄/σn̄. The solid line

represents the theoretical σp̄C
ann/σ

n̄C
ann and the dashed line represents the theoretical σp̄Fe

ann/σ
n̄Fe
ann .

with increasing momentum according to Eq.(7), as shown in Fig. 6(a), the antineutron’s potential curves do not
display any form of systematic order as a function of mass number A. At larger momentum (i.e., plab > 100 MeV/c
), the potentials gradually become less sensitive to the increment of the projectile momentum. On the contrary, in
Fig. 6(b), the neutron’s Vo obtained from KD-OMP [61] for each nucleus does show a systematic decrease as the
nuclear size increases and almost linearly as a function of momentum, especially for plab > 200 MeV/c.
The imaginary terms, Wo and WoD , the volume and surface absorption POMP components are also quite different

from that of the KD-OMP prescribed values. First of all, they do not depend on projectile momentum. Second, as
shown in Table II, even though our Wo for n̄A varies from 12.0 to 2.8 MeV with respect to carbon and to lead nuclei,
there is no systematic change in the Wo as the nuclear size increases. In comparison to the case of nA, Fig. 7(a) shows
that KD-OMP determined Wo decreases as A value increases, but increases as plab increases. Third, the antineutron’s
surface absorption WoD for n̄A is chosen to be a constant of 5.98 MeV for all targets. However, the neutron’s surface
absorption WoD do depend on momentum and their functional forms are diaplayed in Fig. 7(b). It should be noted
that for neutron, at low incident energy, the absorption is dominated by the surface component WoD . Beyond about
250 MeV/c, the volume term Wo can no longer be ignored, and at higher energies the absorption can be completely
dominated by Wo.
We compare the geometrical parameters rx and diffusiveness parameters ax for n̄A and nA interactions in Table

III. Similar to nA interactions, with the case of iron nuclei as an exception, we have in the case of n̄A that the radii
rW = rV and it increases as A increases. But the present rV values for the antineutron are significantly larger than
those for the neutron. For example, the rV of 1.785 fm for n̄Pb annihilation is about 45 % larger than the rV of 1.235
fm for nPb reaction. Also, in the n̄A case, even though the rWD

values for n̄A and nA are not that different, we have
a constant value of rWD

= 1.26 fm for every nuclei, whereas the rWD
associated with nA reaction decreases from the

C target with rWD
= 1.306 fm to Pb with rWD

= 1.249 fm. Similar pattern is also found with the n̄A diffusiveness
parameters aW = aV and aWD

. The diffusiveness parameter aV for n̄A are also happened to be at least a factor of 2-3
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FIG. 6: (Color online) The variation of Vo as a function of projectile momentum and atomic mass.

larger than those for the nA interactions. Nevertheless, this set of POMP parameters enables us to obtain theoretical
cross sections that complement the experimental annihilation cross sections across a wide momentum range.

C. p̄A annihilation cross sections

As an adjunct to predicting the n̄A annihilation and nA reaction cross sections, we further predict the p̄A anni-
hilation cross section. We base our prediction on the simplest assumption that both p̄A and n̄A interactions have
the same nuclear optical model potential but differs only on the long range Coulomb interaction. The goal here is to
examine the dependence of the annihilation cross sections on the projectile charge and to provide a benchmark for
comparison against which the n̄A and p̄A interaction potentials may differ.
In comparison to neutral n̄ projectile, according to the annihilation cross sections depicted in figures 1, 2 and 3(a),

it is within our expectation that the charged p̄ projectile shows relatively larger annihilation cross section. As a matter
of fact, because of the additional effects from Coulomb focusing, the p̄ annihilation cross sections for all the nuclei
feature a steeper rise than that of n̄A interaction as the projectile momentum goes down. As the projectile momentum
continues to increase, the effects from Coulomb focusing also gradually diminish. As a result, the annihilation cross
sections for both n̄ and p̄ merge at plab ∼ 500 MeV/c, and eventually reaches the Pomaranchuk’s equality, in which
their cross section ratio becomes unity at ∼1.0 GeV/c. These plots also evidently indicate the p̄A annihilation cross
sections are sensitive to the target mass number A.
To better understand the differences in annihilation cross sections due to p̄ and n̄ projectiles, we examine the

σp̄A
ann/σ

n̄A
ann ratios as a function of momentum for carbon and iron nuclei in Fig. 5(b). The plots show that their

behavior is similar to their momentum-dependent of the annihilation cross section, and their slopes are remarkably
steep in the region where the momentum does to zero. Comparing the magnitude of the iron’s ratio curve to the
carbon, one clearly sees a stronger Coulomb focusing effects for the heavier nuclei and this long range effect weakens
in the limit of large moemtum. In addition to that, Fig. 5(b) also reveals a contrasting energy-dependent in the
behavior of σp̄A

ann/σ
n̄A
ann ratios in comparison to those of σn̄A

ann/σ
nA
rec ratios shown in Fig. 5(a) .
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Fig. 3(b) displays a collection of the behaviors of σp̄A
ann/σ

n̄A
ann ratios for all target nuclei as a function of momentum.

The featured behavior is consistent with σn̄A
ann/σ

nA
rec where comparisons are possible, expected that the σp̄A

ann/σ
n̄A
ann

ratios are smaller by roughly a factor of 2. Again, all the σp̄A
ann/σ

n̄A
ann ratios show strong momentum-dependent in low

momenta.
Recently, the ASACUSA’s Collaboration took a new measurement for p̄C annihilation cross section at low energy

of 5.3 MeV or plab = 100 MeV/c [20]. Their cross section value of 1.73 ± 0.25 barns is also plotted in Fig. 1. The
datum clearly touches our prediction. In addition to that, we have also plotted the one and only experimental datum
for p̄Sn at 100 MeV/c in Fig. 3(a4). The down side of this case is that there is no other comparable experimental
measurements for p̄ and n̄ as in the case of proton. Therefore, at this point, we will not surmise the energy dependence
of the p̄Sn cross section.

D. The power laws and annihilation cross sections

Since it is of interest to find out whether the σn̄A
ann ∝ A2/3 at low energies, we plotted the σn̄A

ann at plab = 50 and 100
MeV/c against their corresponding mass number of A2/3 in Fig. 8. The scattered points are the POMP predicted
results. They are fitted with an expression of σn̄A

ann = σn̄A
o A2/3. The fitting is rather good. It indeed indicates that σn̄A

ann

has a linear dependent on A2/3 at low energies. Apart from these, Fig. 8 additionally reveals the n̄Fe annihilation cross
sections appear to perculiarily deviate from this linear dependence. Perhaps future experiments can re-investigate
this anomaly in the low momenta region where plab is less than 100 MeV/c.
It is also informative to examine the inverse power law of n̄A annihilation. In the limit of low-energy, parametrizing

the theoretical annihilation cross section in an inverse power law form, σn̄A
ann ∝ 1/pαlab, in the range between 40 and

100 MeV/c, the α exponential value can be easily determined by setting α = ∂ ln(σann)/∂ ln(plab). Fig. 9 gives the
variation of α exponential values as a function of mass number A2/3. Taking an average over all the nuclear targets

yields a value of α = 0.530. This consequently suggests that the σn̄A
ann may be proportional to 1/p

1/2
lab for targets with

A ≥ 6. This finding appears to be remote from what we learned in our previous work [23]. There we found in the
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case of n̄p, the exponential value α = 1.08 in the momentum range between 30 and 95 MeV/c. This exponential value
is very close to the expected α = 1.0 value, a clear indication of the 1/plab behavior. However, in our previous study
[23], the nuclear potential was assumed to be a constant there. Here, on the contrary, the nuclear optical potential
depends on the projectile momentum, hence causing the σn̄A to deviate from the 1/plab law.

At the low-energy limit, we can see the cross section slope for the p̄A interaction is much steeper than the one of
n̄A. Therefore, it is also meaningful to check the inverse power law form, σp̄A

ann ∝ 1/pαlab, of p̄A annihilation. Similar
to what we have discussed earlier with respect to n̄A annihilation in Fig. 9, parametrizing the theoretical annihilation
cross section in a power law form in the range between 40 and 100 MeV/c allows one to obtain the α exponential
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value. In our previous investigation on p̄p interaction [23] , we found that α = 1.544 in the momentum range between
30 and 50 MeV/c. Displaying in Fig. 9 is the variation of α as a function of mass A. Similarly, averaging these values
over the 7 nuclear targets yields a value of α = 1.494. As opposed to the case of n̄A, this value is close to what we
have found previously in the case of p̄p annihilation. This also means the Coulomb effect is dominant at low-energy
limit and cannot be neglected. The extracted α = 1.494 is not quite equal to α = 2.0 as expected to be at the very
low-energy limit [64, 65]. This means that the approach to the lowest energy limit of α = 2 will occur at much lower
energies than the range of low energies considered here.

IV. SUMMARY AND CONCLUSIONS

The purpose of this contribution is in two folds. The first one is to revisit and rectify our previous annihilation
cross section results for n̄A in [23]. The second one is to pursue a phenomenological analysis of n̄ annihilation cross
section as a function of projectile momentum plab and mass number A.

Previously, we have used the extended Glauber theory [23] to examine the experimental annihilation cross section
data for n̄ on C, Al, Fe, Cu, Ag, Sn, and Pb in the momenta range below 500 MeV/c. But there was an inadvertent
error rose through the Coulomb trajectory modification, causing the results to agree with the experimental data.
After amending the theory, the re-evaluated results turned out to be in disagreement with the experimental data.

The Glauber theory is well-known to valid for high-energy collisions in which the extend individual nucleon can
be treated as isolated scatterer. For low-energy collisions, such description may not be as appropriate and the
traditional optical model analysis be more suitable. For this reason we adopt the optical model potential to analyze
the momentum dependence of n̄A annihilation cross section.

The use of microscopic optical model potential method was previously attempted by Friedman [31, 32] to investigate
the momentum dependence of n̄A annihilation cross sections. The investigation found that the annihilation cross
section of n̄ on nuclei cannot be described by the microscopic optical potential that fits well the available data on
the p̄ interactions with nuclei. Nevertheless, inspired by the works of Friedman and Koning and Delaroche [61], we
explored a new form of momentum dependent optical model potential to describe n̄A interaction. Even though it
is phenomenological and local, the presented optical model potential of Eq.(7) is quite different from that of the
Koning-Delaroche and Friedman. It is simple, as well as comprehensive enough to treat the very low-momentum n̄A
and p̄A annihilations. We employed the momentum-dependent optical model potential in the Schrödinger equation
and the equation is solved using the standard distorted wave method provided in the ECIS97 computer program [63]
to evaluate the annihilation cross sections for n̄A and p̄A. Similarly, we have also applied the Koning-Delaroche’s
momentum-dependent optical model potential to examine the nA non-elastic reaction cross sections on on C, Al, Fe,
Cu, Ag, Sn, and Pb. We showed that the calculated cross sections are in reasonable agreement with the recommended
data from Brookhaven National Laboratory’s database.

Although, in this study, we found that the present n̄A annihilation cross sections fit the experimental data rather
well, this does not mean that we have fundamentally understood the neutral n̄A annihilation mechanism. In fact, we
are exactly on the opposite. For a start, even though both the n̄A and nA interactions are Coulomb-free, why is the
σn̄A
ann/σ

nA
rec cross section ratio appears to be so large (almost by a factor of 2)? From a simple geometrical argument,

in comparison to the incoming neutron n, why does the antineutron n̄ seems to have a larger “effective area” for
the target nuclei to react? Further theoretical and experimental efforts are necessary to address this fundamental
question.

At the low-energy range considered here, we have demonstrated and verified that the σn̄A
ann is indeed approximately

proportional to A2/3. We have illustrated that for neutral or Coulomb-free n̄A interactions the annihilation σn̄A
ann ∝

1/pαlab. In addition, we have also shown that the α value for charged p̄A interactions is significantly larger than the α
value for the neutral n̄A interactions. We presume this is likely due to the additional Coulomb effects on top of nuclear
interactions for charged p̄A interactions. In conclusion, we have calculated the n̄A annihilation cross section based on
the simplest assumption that both n̄A and p̄A interactions have the same nuclear optical potential but differs only on
the long-range electrostatic interaction. Any deviation from such simple model extrapolation in measurements will
shed new and desirable information on the difference between n̄A and p̄A potentials.
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