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Large longitudinal spin alignment of E/A=24 MeV 7Li projectiles inelastically excited by Be, C,
and Al targets was observed when the latter remain in their ground state. This alignment is a con-
sequence of an angular-momentum-excitation-energy mismatch which is well described by a DWBA
cluster-model (α+ t). The longitudinal alignment of several other systems is also well described by
DWBA calculations, including one where a cluster model is inappropriate, demonstrating that the
alignment mechanism is a more general phenomenon. Predictions are made for inelastic excitation
of 12C for beam energies above and below the mismatch threshold.

1. INTRODUCTION

The generation and manipulation of nuclear spin align-
ment or polarization has led to many applications in
physics. In nuclear physics, the production of polarized
beams has enabled vector and tensor analyzing power
measurements [1]. Theoretical predictions of these quan-
tities are sensitive to the spin-spin and spin-orbit cou-
pling derived from the effective nucleon-nucleon (NN)
and 3N forces used, so these studies can put a constraint
on the effective potentials. Spin alignment generated in
nuclear reactions can give insight into the underlying re-
action mechanisms [2, 3], and has also been utilized for g-
factor measurements, which elucidate nuclear wavefunc-
tions used to understand nuclear structure [4, 5].

Methods for measuring the spin alignment of excited
nuclei are dependent on the nuclear state of interest and
its decay mode. For bound excited states, the popu-
lation of magnetic substates (and thus the spin align-
ment/polarization) can be measured by analyzing the
angular distribution of an emitted γ ray [6–12]. On the
other hand for unbound excited states, the angular corre-
lations of the sequential breakup fragments can be mea-
sured to determine the final magnetic substates [13, 14],
which is the approach taken in this work.

The motivation for this study comes from the observa-
tion of large longitudinal spin alignment of inelastically
excited 7Be* projectiles scattered off a 9Be target [13].
In that work, the proposed mechanism for generating
spin alignment evoked the unusual molecular structure
of the 9Be target. However, subsequently large longitu-
dinal alignment of 7Li* was observed with Be, C, and Al
targets [14]. This observation prompted the search for a
more general mechanism. Such a mechanism does exist
and originates from an angular-momentum-excitation-
energy mismatch that forces the exit-channel reaction
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plane to tilt in order to conserve angular momentum
[14]. This mechanism is reminiscent of Brink’s condi-
tion for optimal nucleon transfer stemming from angular
momentum conservation [15]. For this mismatch to oc-
cur, the excitation energy of the projectile must be small
compared to the beam energy. This alignment mecha-
nism is independent of the scattering partner (and thus
scattering potential), and as a consequence, it should be
possible to find large longitudinal alignment in many nu-
clear systems.
Our previous Letter on this alignment mechanism fo-

cused on the 7Li + 12C system [14]. The present work
presents the data for all three targets. The details of
the experiment are discussed in Sec. 2 and the results
are presented in Sec. 3. The theory behind the DWBA
calculations and the resulting alignment mechanism are
presented in Sec. 4. An optical-model analysis was car-
ried out for the 7Li + 12C reaction using the arguments
of Sec. 4, and the results of this analysis are presented in
Sec. 5. The effect of spin-orbit coupling on the observed
alignment is also discussed in Sec. 5. Other reaction ex-
amples where we believe this mechanism has been active
are mentioned in Sec. 6. Also included in Sec. 6 are
predictions for the 12C + 12C system.

2. EXPERIMENTAL METHOD

The Texas A&M K-500 Cyclotron provided a E/A =
24.0 MeV 7Li beam that impinged on targets of 9Be,
12C, and 27Al with thicknesses of 9.47, 9.60, and 10.38
mg/cm2, respectively. The breakup fragments of 7Li (α+
t) were detected by two annular Si-CsI(Tl) telescopes,
one looking through the hole of the other, mounted on a
rail parallel to the beam axis. A schematic of the experi-
mental setup is shown in Fig. 1. The upstream telescope
contained an 85-mm-diameter (3-cm-diameter hole) seg-
mented annular Si (32 rings and 48 pie-shaped sectors)
placed 15 cm from the target position. The downstream
telescope contained a 70-mm-diameter (22-mm-diameter
hole) segmented annular Si (48 incomplete rings and 16
pie-shaped sectors) placed 36 cm from the target posi-
tion. For each telescope, the Si detector were backed by
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TABLE I: Calibration beams and the energies generated with
the degraders.

Species Energy Target Thickness Degraded Energy

[MeV/A] [mg/cm2] [MeV/A]

p 24.2 Au 20.0 24.0

Al 429 15.8

d 24.2 Au 20.0 24.1

Al 429 20.3

Al 858 15.8

12.0 Au 20.0 11.9

α 24.0 Au 20.0 23.8

Al 429 15.6

Target Ladder

Si

CsI(Tl)

Beam

Photo-diode

Light-guide

Si

Light-guide

Photo-diode

CsI(Tl)

FIG. 1: (Color online) A schematic of the detector setup con-
sisting of two Si-CsI(Tl) telescopes. The first telescope was
placed 15 cm, and the second 36 cm, downstream of the target
position.

16 2-cm thick CsI(Tl) crystals which were used to mea-
sure the residual energies of the decay fragments and, in
conjuction with the Si detector, to determine the particle
type.

Energy calibrations for the CsI(Tl) detectors were per-
formed with proton, deuteron, and α beams at several
energies. These beams impinged upon a thin Au tar-
get and several Al targets of varying thicknesses, giving
different degraded energies. A summary of the calibra-
tion beams, degraders, and resulting energies is shown
in Table I. The degraded energies were determined from
SRIM energy-loss tables [16]. The energy calibrations
determined for the deuterons were used for tritons.

For the downstream telescope, angle-independent
CsI(Tl) calibrations were found for deuterons and alphas.
On the upstream telescope, the photo-diode readouts of
the scintillated light were placed on the outside radius
of the CsI(Tl) crystals (Fig. 1). This external radial
readout introduced non-uniform light collection that de-
pended on the polar angle of the energy deposition in the
CsI(Tl) crystal. To correct for this, energy calibrations
were performed as a function of polar angle, taking into
account the effective thickness and kinematic effects, by
gating on 8 different regions of polar angle as determined
by the Si detector.

Energy calibrations for the Si detectors were performed
with a mixed α-source of 148Gd, 239Pa, 241Am, and
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FIG. 2: (Color online) The invariant-mass spectrum for α+d
events showing the first particle-unbound state of 6Li. The
solid red line is a fit to the measured distribution, shown
by the histogram, with the background modeled by a Fermi
function. The dashed blue line is the expected experimental
resolution from Monte Carlo simulations.

244Cm. For the downstream Si detector, the α calibra-
tions were sufficient, however, they were not sufficient
for the upstream Si detector either due to a non-uniform
dead layer or an incomplete depletion region. There-
fore, the upstream Si detector was used solely for deter-
mination of the scattering angle and particle identifica-
tion. The energy lost in the upstream Si was determined
from the energy deposited in the CsI(Tl) and SRIM [16]
energy-loss tables.
To check the robustness of the energy calibrations, an

invariant-mass reconstruction was made for α+d events,
and the spectrum is shown in Fig. 2. The width of the
first particle-unbound state in 6Li at 2.185 MeV is 24
keV, much smaller than the experimental resolution, so
the measured width of this state is a good indicator of the
intrinsic resolution of the detector system. The solid red
line in Fig. 2 is a fit to the measured distribution using
a Fermi function to model the background. The centroid
of this fit is 2.177 MeV, with a FWHM of 235 keV. The
measured width is a little larger than predictions from
Monte Carlo simulations of the detector system, shown
as the blue dashed line in Fig. 2. The discrepancy is
most likely due to imperfect energy calibrations.

3. EXPERIMENTAL RESULTS

Figure 3(a) shows the α + t invariant-mass spectrum
for all targets. The first two particle-unbound states of
7Li (at E∗ = 4.63 and 6.68 MeV, respectively) are clearly
seen.
To ensure that only events where 7Li is excited to the

4.63 MeV (Jπ = 7/2−) state were considered in the mag-
netic substate extraction, the gate G1, shown in Fig.
3(a), was applied. After reconstructing the 7Li momen-
tum, the targets’ excitation energy was deduced from 2-
body kinematics. These excitation energy distributions
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FIG. 3: (Color online) (a) The excitation energy distribution
for 7Li, summed from all three targets. The gate employed
to select the Jπ = 7/2− state is indicated. The 12C, 9Be,
and 27Al target excitation energy distributions after selecting
7Li excited to the 4.63 MeV (Jπ = 7/2−) state are shown in
(b), (c), and (d), respectively. The dashed vertical red lines
correspond to energy levels for the respective nuclei.

are shown for the C, Be, and Al targets in Figs. 3(b),
3(c), and 3(d), respectively. The dashed red lines corre-
spond to energy levels in the respective nuclei. The large
separation between the ground and first excited state of
12C (4.44 MeV, Jπ = 2+) allowed a clean selection of the
ground state (via gate G2) without contributions from
excited states. The energy resolution of the detector sys-
tem was insufficient to separate the ground and first ex-
cited state of 9Be (1.68 MeV, Jπ = 1/2+). Even still, a
tight gate on the 9Be ground state peak, shown as G3
in Fig. 3(c), can be used to bias the dataset with events
where 9Be remains in its ground state. In the case of Al,
there are many low-lying excited states, and these can
be observed as the long tail in the reconstructed 27Al
excitation energy distribution. Subsequently presented
spectra are gated on the target “ground-state” peak by
either gate G2, G3, or G4.

Monte Carlo simulations were also used to understand
the geometrical efficiency of the detector array. An ex-
ample of the simulated geometrical efficiency is shown
for the 7Li + 12C system in Fig. 4(a). The angle ψ
is defined as the angle of the breakup with respect to
the beam axis, which is also our quantization axis. The
angle χ is measured from the reconstructed scattering
plane. A diagram defining these angles is provided in
Fig. 4(b). The efficiency-corrected angular correlations
for the decay of 7Li* projectiles, after interaction with C,
Be, and Al targets, are shown in Figs. 4(c), (d), and (e),
respectively. The resulting angular correlations are all
very similar with preferred fragment emission transverse

to the beam [cos(ψ) = 0]. This result is consistent with
the prior study using a beam of 7Be at E/A = 65.5 MeV
[13]. The projections of the angular correlations and the
associated Legendre-polynomial-squared fits to the data
are shown in Figs. 4(f), (g), and (h). The asymmetry
in the cos(ψ) distributions is likely due to imperfect en-
ergy calibrations. This was determined by introducing
a small linear shift to the assigned energies of the frag-
ments in the Monte Carlo simulations which reproduced
the observed asymmetries. The magnetic-substate distri-
butions of 7Li* extracted from the angular correlations
are shown in Figs. 4(i), (j), and (k) for the three targets.

The magnitude of alignment can be quantified by a
scalar conventionally denoted by A (sometimes called
Pzz) that incorporates the population of specific mag-
netic substates. Given a quantization axis the scalar can
be defined as,

A =
∑

mf

3m2
f − J(J + 1)

J(2J − 1)
ρJmf ,mf

. (1)

The magnetic substate populations are denoted in this
work by the diagonal density matrix elements of the fi-
nal state, ρJmf ,mf

. The formulation of the density ma-

trix for sequential breakup can be found in Ref. [13].
For 7Li∗ inelastically excited to the Jπ = 7/2− state,
the magnitude of longitudinal alignment was found to be
A = 0.49(1), 0.53(1), 0.53(1) after scattering off C, Be,
and Al nuclei, respectively. This magnitude of alignment
for 7Li∗ is quite large compared to other types of reac-
tions at similar energies. For example, longitudinal spin
alignment has been observed in several projectile frag-
mentation experiments [17, 18], but the level of alignment
produced varies drastically. In the production of 32Al
from projectile fragmentation, the alignment was found
to be A = 0.08. The population of a high spin isomer
of 43mSc, produced by projectile fragmentation, yielded
an alignment A = 0.35. The similarity of the alignment
found for 7Li in this work, for each target, requires an ex-
planation, and this is provided in the following section.

4. THEORY

The longitudinal alignment arising from an angular-
momentum-excitation-energy mismatch should be
present in any single inelastic process X(Y,Y*)X or
X(Y,Y)X*, provided the excitation energy is sufficiently
small compared the beam energy. A change in intrinsic
spin must be accommodated for by one or more different
processes, that include: a change between the incoming
and outgoing orbital angular momenta (either a reduc-
tion in magnitude or tilting [6, 14]), a coupling of the
fragment spins and the incoming orbital momentum
(i.e. spin-orbit effects [19]), or some other spin-spin
interaction.
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FIG. 4: (Color online) (a) The geometrical efficiency of the detector system determined from Monte Carlo simulations for the
12C target system. (b) A diagram of the angles ψ and χ used for the correlations. The efficiency-corrected angular correlations
for the breakup of 7Li* after interacting with (c) C, (d) Be, (e) and Al targets over the measured angular range; (f),(g),(h) the
projections of the angular correlations onto the cos(ψ)-axis; and (i),(j),(k) the extracted magnetic-substate distributions of 7Li*
with the separate targets, respectively. All data have been gated on the ground-state peak of the respective target nucleus.

4.1. Semi-Classical Argument for an

Angular-Momentum-Excitaiton-Energy Mismatch

For sufficiently large energies, the mechanism for gen-
erating longitudinal spin alignment can be understood
classically, where a loss of center-of-mass kinetic energy
directly corresponds to a change in magnitude of the
reaction orbital angular momentum, ∆L, assuming a
fixed radius of interaction, R. Repeating the analysis in
[14], an upper limit on the possible transfer of reaction
orbital angular momentum can be found by assuming
pin,pout ⊥ R. This gives the Newtonian result,

∆L = R
√

2µEc.m.

(

1−
√

1− E∗

Ec.m.

)

, (2)

where µ is the reduced mass of the system, and Ec.m. is
the kinetic energy in the center-of-mass frame. Applying
this equation to the studied 7Li + 12C system by using
an excitation energy of E∗ = 4.63 MeV, a beam energy
of E/A = 24.0 MeV, and a radius of R = 5 fm, one
finds ∆L < 1~. This means a change in magnitude of
the reaction orbital angular momentum alone cannot ex-
cite 7Li to the 4.63 MeV state, as the excitation requires
a change in intrinsic spin of 2~. When the center-of-
mass energy is much larger than the excitation energy,
Ec.m. ≫ E∗, L must tilt in order to conserve angular

momentum when there is a change in spin of the reac-
tant (in the absence of a spin flip of either reactant). As
a result the final reaction angular momentum is likely to
have a finite projection, M , on the beam axis. This ar-
gument for an angular-momentum-excitation-energymis-
match suggests this phenomenon is a threshold effect. As
one increases the beam energy (i.e. Ec.m.), the mismatch
becomes greater.

4.2. Constructing the Transition Amplitude for

Inelastic Processes

In order to probe the connection between the final pro-
jection of L and the inelastic excitation, it is useful to
look at the transition amplitude, or T matrix, which
gives the probability of going from an initial magnetic
substate, mi, to a final magnetic substate, mf . Ulti-
mately, it will be shown that the final projection of L is
related to the change in fragment spin by M = mf −mi.
By integrating the squared T matrix over a given angular
region (and summing over the initial states because the
beam is unpolarized), one can predict the final outcome
of the magnetic-substate distribution for an exit-channel
fragment in the reaction.
To construct the T matrix for the inelastic processes

of interest, we assume a general form for the projectile–
target interaction. It should be able to induce multipolar
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FIG. 5: The coordinates r and R as well as the fragment-
target and core-target coordinates for the 7Li +12C system.

excitations of the projectile by coupling the projectile–
target relative motion, described with the vector R, with
the internal degrees of freedom of the projectile, de-
scribed with some intrinsic coordinate ξ. The interaction

∆(R, ξ) = 4π
∑

K

(−1)K√
2K + 1

×∆K(R, ξ)
[

Y K(ξ̂)Y K(R̂)
]0

0

(3)

satisfies the above requirement and is rotation-
ally invariant. The square brackets denote an-
gular momentum coupling, where [Y p1Y p2 ]PMP

=
∑

m1,m2
〈p1m1p2m2|PMP 〉Y p1

m1
Y p2
m2

. The requirement
that P = 0 and MP = 0 generates a scalar that only
depends on the angle between ξ and R. The actual form
of the ∆ functions will depend on the case under con-
sideration and, more specifically, on the model used to
describe inelastic excitation.
Focusing on breakup experiments, the population of

the particle-unbound resonance is described as an inelas-
tic excitation of the fragment-core system in terms of
the relative coordinate r. This can be easily extended
to cluster-model calculations, provided the fragment is
treated as a nucleus instead of a nucleon. We define the
model interaction (using p−t, f−t, and c−t as projectile-
target, fragment-target, and core-target, respectively),

∆(R, rc−t, rf−t) = Up−t(R)− Uc−t(rc−t)− Uf−t(rf−t),
(4)

where these effective interactions are taken as central
phenomenological optical potentials. This transition po-
tential can be cast into the general form of Eq. (3),

∆(R, rc−t, rf−t) =
∑

K

∆K(R, r)PK (θ)

= 4π
∑

K

(−1)K√
2K + 1

(5)

×∆K(R, r)
[

Y K(r̂)Y K(R̂)
]0

0
,

where θ is the angle between r and R (diagrammed in
Fig. 5), PK(θ) are the Legendre polynomials. The mul-
tipole components ∆K(R, r) can be computed from the
interaction Eq. (4),

∆K(R, r) =
2K + 1

2

∫ π

0

∆(R, rc−t, rf−t)PK(θ) sin θ dθ.

(6)

The population of the resonance is modeled as a di-
rect, one–step inelastic excitation of the fragment–core
system. The cross section is proportional to the squared
modulus of the transition amplitude Tmi,mf

, which is
calculated in the Distorted Wave Born Approximation
(DWBA).
The distorted waves describing the relative projectile-

target motion in the initial (χi,mi
(R,ki)) and final

(χf,mf
(R,kf )) channels are solutions of the phenomeno-

logical central optical potential Up−t(R) used in Eq. (4).
Note that, in order to avoid complications inherent in the
treatment of the continuum, the final particle-unbound
state is modeled with a very weakly bound wavefunc-
tion (quasi–bound approximation). With these ingredi-
ents the T matrix is

Tmi,mf
=

∫

χ
(−)∗
f (R,ki)φ

∗
f,mf

(r)∆(R, rc−t, rf−t)

×χ(+)
i (R,kf )φi,mi

(r) dr dR,

(7)

and the differential cross section for a specific mi → mf

transition is

dσ

dΩ
(θc.m.;mi,mf ) =

kf
ki

µ2

4π2~4
|Tmi,mf

|2. (8)

In the last expression, θc.m. is the scattering angle in the
center-of-mass frame. For the sake of numerical com-
putation, but also in order to gain further insight, it is
convenient to work out the partial wave analysis of Eq.
(7). We thus write down the standard expressions of the
scattering and bound wavefunctions in terms of a spher-
ical harmonics series,

χ
(+)
i (R;ki) =

4π

kiR

∑

Li

iLieiσ
Li
i fLi

(R)
√

2Li + 1

×
[

Y Li(R̂)Y Li(k̂i)
]0

0
,

(9)

χ
(−)∗
f (R;kf ) =

4π

kfR

∑

Lf

i−Lf eiσ
Lf

f gLf
(R)
√

2Lf + 1

×
[

Y Lf (R̂)Y Lf (k̂f )
]0

0
,

(10)

φi,mi
(r) = ui(r)

∑

µi,mfrag

〈ℓi µi Jfrag mfrag|Ji mi〉

×Y ℓi
µi
(r̂)Ξms

(σ),

(11)
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φ∗f,mf
(r) = uf(r)

∑

µf ,mfrag

〈ℓf µf Jfrag mfrag|Jf mf 〉

×Y ℓf
µf

(r̂)(−1)µfΞ†
ms

(σ).

(12)

The radial wavefunctions ui(r) and uf (r) are com-
puted with a simple Woods–Saxon potential which re-
produces the particle-emission threshold. The func-
tions fLi

(R) and gLf
(R) are the solutions of the radial

Schrödinger equation for the potential Up−t(R) in the ini-

tial and final channel respectively, and σLi

i , σ
Lf

f are the

corresponding Coulomb phase shifts. The spinors Ξms
(σ)

describe the spin degrees of freedom. Since all the inter-
actions we are considering are spin–independent, the spin
projection mfrag remains unchanged during the collision
process, while the employed version of ∆ and the partial
wave expansion enforces angular momentum conserva-
tion. We define the transition density for a multipolarity
K,

ρK(R) =

∫

ui(r)uf (r)∆K (R, r)r2 dr. (13)

Using Eqs. (9–13) in Eq. (7), and after some algebra, we
obtain

Tmi,mf
=

∑

K,Li,Lf

〈Li 0 K M |Lf M〉

× 〈Ji mi K M |Jf mf 〉Y Lf

−M (k̂f )I(K,Li, Lf),

(14)

with I(K,Li, Lf ) defined as,

I(K,Li, Lf) = 2π1/2iLi−Lf ei(σ
Li
i

+σ
Lf
i

)

× (2Li + 1)3/2(2K + 1)(2ℓi + 1)

×
√

(2Ji + 1)(2ℓf + 1)

{

ℓi Jfrag Ji
Jf K ℓf

}

× 〈Li 0 K 0|Lf 0〉〈ℓi 0 K 0|ℓf 0〉,

×
∫

fLi
(R) gLf

(R)ρK(R) dR.

(15)

4.3. Properties of the Transition Amplitude

Partial waves, or L waves, are semi-classically related
to the impact parameter, b, which characterizes the dis-
tance of closest approach for the projectile’s trajectory.
The relationship between these two parameters is given
by L = p∞b, where p∞ is the momentum of the particle
at far distances, or rather the momentum of the beam in
scattering experiments. Small impact parameters, and
thus small L, represent head-on collisions that result in
processes such as fusion and projectile/target fragmenta-
tion. Larger impact parameters give rise to transfer and
inelastic scattering before giving way to pure Coulomb
scattering at even larger impact parameters.

If the beam energy and/or the reduced mass of the
colliding systems is large, the process is rather well local-
ized in space. Due to the absorptive nature of the optical
potential, the main contribution to the inelastic process
comes from the nuclear surfaces (peripheral collisions).
In this situation, the partial waves contributing to the
cross section are large compared to the multipolarity of
the transition, and are narrowly peaked around the graz-
ing angular momentum, Lgraz ≫ K. Here we define the
grazing angular momentum by the touching spheres ap-
proximation with Lgraz = p∞rgraz, where the grazing ra-

dius is given by rgraz = 0.5 fm + (1.36 fm)(A
1/3
p +A

1/3
t )

[20]. Above the grazing angular momentum, the par-
tial wave contribution to the total reaction cross sections
drops steeply.
Assuming there is one dominant multipolarity,K ′, and

if only processes where Li = Lf are considered (employ-
ing the angular-momentum-excitation-energy matching
argument) we can take advantage of the fact that as
L → ∞ the first Clebsch-Gordan coefficient in Eq. (14)
is independent of L. Since only L around Lgraz, which is
large at intermediate energies, will contribute to the cross
section, the Clebsch-Gordan coefficients in Eq. (14) can
be factored out resulting in the expression,

Tmi,mf
≈ 〈Lgraz 0 K

′ M |Lgraz M〉 〈Ji mi K
′ M |Jf mf 〉

×
∑

L

Y L
−M (k̂f )I(K

′, L, L).

(16)

The angle dependence and implicit energy dependence
of the T matrix is represented in the sum over L in Eq.
(16).
Oscillations in alignment with angle are expected

from the high-order spherical harmonics required for the
target-projectile motion in the wavefunction, although,
at larger angles the alignment should become fairly con-
stant. This is due to the mixing of several L waves
about Lgraz, which is taken into account by the sum,
∑

L Y
L
−M (k̂f )I(K

′, L, L), in Eq. (16). If the angle de-
pendence of the T matrix is integrated over (i.e. angle
averaged), then the magnetic-substate distribution of in-
elastically excited species should show large longitudinal
alignment at beam energies above the mismatch thresh-
old, when the reaction partner remains in its ground
state. In fact, the observed alignment should be very
similar to the Clebsch-Gordan coefficients presented in
Eq. (16).

5. OPTICAL-MODEL ANALYSIS OF 7Li + 12C

The DWBA breakup calculations outlined in Sec. 4
were performed for the 7Li + 12C system using FRESCO
[21], assuming an α+ t cluster structure of 7Li. The opti-
cal potentials used were obtained from a fit of the relative
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TABLE II: Fitted optical potential parameters for the 7Li +
12C DWBA calculations, assuming a cluster model for 7Li
(α + t). The volume terms use a Woods-Saxon form. The
spin-orbit coupling uses a differential Woods-Saxon form.

System Type V rreal areal W rimag aimag

[MeV] [fm] [fm] [MeV] [fm] [fm]
7Li−12C Volume 169.4 1.28 0.800 34.8 1.67 0.758

Spin-Orbit 0.550 1.48 0.727 0.720 1.48 0.485

α−12C Volume 72.0 1.43 0.692 32.0 1.43 0.692

t−12C Volume 65.3 1.15 0.400 30.9 1.35 0.407

α− t Volume 71.6 1.20 0.736

FIG. 6: (Color online) Data (black circles) and DWBA pre-
dictions (solid red lines) for the 7Li + 12C system: (a) elas-
tic scattering and the single inelastic excitation of 7Li to the
0.48 MeV state and (b) the single inelastic excitation of 7Li
to the 4.63 MeV state. The predicted angular distributions
were used as inputs into the Monte Carlo simulations of the
detector system and the expected detector distributions are
compared to the data (blue dashed lines).

elastic and inelastic scattering angular distributions, as
well as the angular correlations for the breakup of 7Li*
[4.63 MeV] shown in Fig. 4. Absolute cross sections
were not available from our measurements, and so the
relative cross section data (black circles in Fig. 6(a) and
(b)) were scaled to the DWBA predictions in the fitting
procedure. The volume terms for the phenomenological
optical potentials are described by a Woods-Saxon form,
while the spin-orbit coupling uses a differential Woods-
Saxon form. The radii of the potentials follow the form

]hL / J [
0 20 40

 [
m

b
]

J
!

 /
 

L
!
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FIG. 7: (Color online) The partial cross section as a function
of J for the total reaction cross section of the system E/A =
24 MeV 7Li + 12C using DWBA calculations (solid black line)
and for the inelastic excitation of 7Li to the 4.63 MeV excited
state while the target remains in its ground state (dashed red
line). The inelastic cross section has been scaled by a factor
of 10 for comparison.

r = r0(A
1/3
1 +A

1/3
2 ), where A1 and A2 are the mass num-

bers for the nuclei in the system and r0 is specified sepa-
rately for the real and imaginary potentials. The initial
α−12C effective interaction was obtained from [22] and
the magnitude of the interaction was allowed to vary in
fitting. The t−12C potential was extrapolated from a
3He-12C effective interaction. The α− t and 7Li-12C po-
tential parameters were allowed to vary during the fitting
procedure, as well as the spin-orbit coupling of 7Li. The
fitted potential parameters are listed in the Table II and
the resulting fits to the elastic and single inelastic excita-
tion cross sections of 7Li are shown in Fig. 6(a) and (b)
as the solid red lines.

The predicted angular distributions were then used as
inputs into the Monte Carlo simulations, which take into
account a tilt of the beam axis with respect to the de-
tector axis of 0.62o, a beam divergence characterized by
a two-dimensional Gaussian with σY = 1.53o and σX =
0.32o, and a beam spot size 4 mm in diameter at the
target. The tilt with respect to the beam axis was de-
termined from Monte Carlo simulations by rotating the
beam in the simulation until the experimental hit-map of
elastic scattering events was reproduced. The divergence
parameters were calculated from LISE++ simulations of
the several quadrupole and dipole magnet settings used
to tune the beam [23]. The beam was tuned through a
4 mm diameter hole in a target blank covered in scin-
tillator. By minimizing the amount of scintillated light
viewed by a camera, the beam spot size at the target po-
sition was constrained. These combined features of the
7Li beam severely limited the scattering angle resolution,
and the expected measured distributions are shown as the
blue dashed lines in Fig. 6(a) and (b).

The reactions of interest, single inelastic excitations,
are well described by peripheral collisions with large or-
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FIG. 8: (Color online) Angular correlations from DWBA cluster-model calculations of 7Li∗ [4.63 MeV] breakup after interaction
with a 12C target, which remains in its ground state, with : (a) no spin-orbit term, (b) VSO = 0.55 and WSO = 0.72 MeV,
(c) VSO = 3.0 MeV and WSO = 0.72, and (d) VSO = 0.55 MeV and WSO = 1.44. (e) For comparison, the measured angular
correlations for the breakup of 7Li* after interacting with the 12C target.

bital angular momentum between the projectile and tar-
get. The solid black line in Fig. 7 shows the contributions
to the total reaction cross section of each J , where J is
the addition of L and incoming spin of the projectile, for
E/A = 24 MeV 7Li interacting with 12C from a DWBA
cluster-model calculation. The dashed red line in Fig.
7 shows the partial cross section as a function of J for
the inelastic excitation of interest, where 7Li is excited to
the E* = 4.63 MeV (Jπ = 7/2−) state while the target
remains in its ground state.

As can be seen in Fig. 7, the inelastic excitation of
interest occurs at very large J corresponding to a pe-
ripheral reaction (i.e. is near Lgraz = 35 ~). The DWBA
cluster-model calculations indicate that this particular
inelastic excitation of 7Li takes up a relatively small part
of the overall reaction cross section. The calculations
also suggest that the inelastic excitation of 7Li stud-
ied is a purely nuclear process. This is consistent with
relativistically-correct calculations of the Coulomb exci-
tation cross section [14].

5.1. Spin-Orbit Effects on Alignment

When spin-orbit effects are introduced to the effective
potential spin-flip processes become possible. These spin-
flips are accompanied by a tilt of the orbit between the
projectile and target [19]. This spin-orbit tilting can po-
tentially diminish or destroy the overall alignment gener-
ated from an angular-momentum-excitation-energy mis-
match. This should be a miniscule effect due to the
typically small coupling strength of the spin-orbit po-
tential. However, small spin-orbit couplings can have a
large effect on the resulting angular correlations. Fig-
ure 8(a) shows the predicted ψ − χ correlations from a

DWBA cluster-model calculation for inelastically excited
7Li* [4.63 MeV] after interacting with a 12C target, at a
beam energy of E/A = 24 MeV, with no spin-orbit po-
tential (in the angular range of 3o < θc.m. < 23o). The
pattern of the calculated correlations is very similar to
the data [Fig. 8(e)] although the centroid of the cen-
tral ridge is shifted to negative cos(ψ) values, as opposed
to the positive values in the experiment. It was found
that the the inclusion of a small complex spin-orbit cou-
pling for the projectile resulted in an angular correla-
tion pattern [Fig. 8(b)] much more consistent with the
data. Small spin-orbit couplings do not affect the align-
ment (i.e. the magnetic-substate distribution). Increas-
ing the real spin-orbit coupling strength to VSO = 3.0
MeV distorts the angular correlations but also preserves
the alignment [Fig. 8(c)]. The angular correlations, and
differential cross sections, are even more sensitive to fur-
ther increases of the complex spin-orbit strength. Figure
8(d) shows the predicted correlations with WSO = 1.44
MeV, at which point the pattern of the correlations is
completely distorted and the longitudinal alignment is
destroyed. In fact, larger increases of WSO result in spin
alignment transverse to the beam axis. This study sug-
gests that angular correlation measurements, in concor-
dance with differential cross section data, can put a con-
straint on the strength of spin-orbit effects in reactions.
These constraints are analogous to those made by ana-
lyzing power measurements [1], which are compared to
spin-spin/spin-orbit couplings of fundamental NN inter-
actions, while here these measurements are compared to
spin-orbit couplings in the mean-field picture. However,
these alignment effects do not require a polarized beam.
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FIG. 9: (Color online) Magnetic-substate distributions extracted from the data (solid squares) and predicted by DWBA (lines)
for single inelastic excitation to particle-decaying states in (a) 6Li, (b) 17Ne, (c) 7Li, and (d) 7Be. Note for (a) 6Li the magnetic
substate distribution is for the decay angular momentum (ℓdecay = 2). The blue and red solid lines are the DWBA predictions
for angular regions including and excluding small angles, respectively. The green dashed lines are predictions from the Clebsch-
Gordan coefficients in Eq. (16), omitting the energy and angle dependence. The black squares are data from this and other
works.

6. OTHER CASES FOR LARGE

LONGITUDINAL SPIN ALIGNMENT

Large longitudinal spin alignments were observed in
the inelastic excitation of 7Be and 6Li to particle-
decaying states [13]. 6Li is modeled well by an α + d,
and 7Be by an α+3He, cluster structure, so the manifes-
tation of this alignment mechanism in the cluster-model
directly applies to these nuclei. Another example for this
large longitudinal spin alignment is the inelastic excita-
tion of 17Ne to the 1.76 MeV state (Jπ = 5/2−), which
subsequently 2p decays to 15O. The decay is purely se-
quential, and in the first step, 17Ne decays directly to the
ground state of 16F (Jπ = 0−) [24]. At sufficiently high
beam-energies, the first proton is preferentially emitted
perpendicular to the beam-axis indicating large longitu-
dinal spin alignment of 17Ne* [25]. This observation of
alignment illustrates that the alignment mechanism out-
lined is not a consequence of cluster structure.

Using the same breakup model and optical-model po-
tential parameters for 7Li (changing the fragment and
core for each case), DWBA calculations were performed
for the inelastic excitations to particle-decaying states of
6Li, 17Ne, and 7Be at the appropriate experimental ener-
gies (E/A = 36.6, 58.5, and 65.5 MeV, respectively) and
angular regions [13, 24, 25]. The experiments show, and
the calculations predict, that the alignment produced is
fairly constant above the grazing angle. However the
calculations indicate that transverse alignments must be
present at small scattering angles due to the inclusion

of the spherical harmonics Y L
0 in the wavefunction. In-

deed at θc.m. = 0o, the only contribution to the align-
ment is from M = 0 (no tilting), and thus mf = mi

meaning no longitudinal alignment is possible. The green
dashed lines in Fig. 9 correspond to the squared T ma-
trix predictions from Eq. (16) for a single L (equal to
Lgraz) and omitting the angle and implicit energy de-
pendence. These lines are in remarkable agreement with
the solid blue line obtained from the T matrix integrated
over the entire angular region. If small-angle scattering
is removed, the T matrix calculations (solid red lines)
show significant enhancement to the alignment due to
the suppression of M = 0 transitions (non-tilting). This
feature of the alignment mechanism was observed for 7Be
[13]. The experimental magnetic-substate distributions
for 6Li*[3+], 7Li*[7/2−], 17Ne*[5/2−], and 7Be*[7/2−]
are shown as black squares in Fig. 9. The data for 6Li,
17Ne, and 7Be are from Refs. [13, 25]. The agreement
between the data and the DWBA predictions, exclud-
ing small angles, is remarkable for several of the cases,
and demonstrates the limited acceptance of the detec-
tor arrays for small angles. There is a small discrepancy
in the predicted alignment for 7Be. Although the opti-
cal potential parameters found for 7Li + 12C should be
more reasonably suited for the 7Be + 9Be system than
the other presented systems (since the projectiles are iso-
baric analogs), the 7Be experiment was performed at a
much larger beam energy (E/A = 65.5 MeV) and so the
phenomenological optical potentials used may not be as
representative of the system due to the implicit energy
dependence of the potentials.
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It should be noted that the predictions and data for
6Li* in Fig. 9 are for magnetic-substate populations of
the decay channel angular momentum. In principle, one
can reconstruct the final angular momentum state, Jf ,
from the relationship Jf = ℓdecay + score + sfrag, assum-
ming there is only one decay channel angular momentum.
However, only systems where score = 0 and sfrag = 1/2,
or vice-versa, are completely constrained and allow for
the extraction of ρJmf ,mf

. In the 6Li case, the measured
magnetic-substates of the decay angular momentum in-
dicate large longitudinal alignment, but the magnetic-
substate populations of the excited projectile cannot be
extracted. This is made clear by repeating the density
matrix analysis in Ref. [13] for the 6Li case resulting in
the set of equations,

ρℓ2,2 = ρJ3,3 +
1
3ρ

J
2,2 +

1
15ρ

J
1,1 (17)

ρℓ1,1 = 2
3ρ

J
2,2 +

8
15ρ

J
1,1 +

1
5ρ

J
0,0 (18)

ρℓ0,0 = 4
5ρ

J
1,1 +

3
5ρ

J
0,0. (19)

There is no fully-constrained solution for the final
magnetic-substate populations for J given the measure-
ment of magnetic-substate populations for ℓdecay. If 6Li
decayed with a smaller ℓdecay, then almost no alignment
information would be recoverable.

6.1. Predictions for 12C + 12C

The 12C + 12C system is simpler than 7Li + 12C as
there are no spin-spin or spin-orbit interactions. Exten-
sive studies measuring the spin alignment of a single 2+

[4.44 MeV] inelastic excitation of 12C have been per-
formed at low energies [6, 9, 26]. These studies were
focused on correlating gross structures in the alignment
with intermediate structures in the excitation function
of the reaction cross section. While no strong correla-
tion was found, these studies were consistent with the
reduction in magnitude of the incoming partial wave
by 2~. Furthermore, these studies suggest the reaction
is dominated by only one incoming partial wave due
to molecular-like resonances in the experimental energy
regime. Without the smoothing effect produced by a
range of partial waves, a single partial wave will produce
large oscillations in the alignment with angle. To effec-
tively measure the gross structure in alignment (because
of these oscillations) the alignment measurements need to
be angle-averaged and weighted by the differential cross
section [9]. All of these studies restricted themselves to
center-of-mass angles θc.m. > 30o, and thus a large por-
tion of the reaction yield, and resulting alignment, was
missed.
Even still, the transfer of angular momentum gener-

ated in the reaction to the intrinsic spin of 12C* is consis-
tent with the alignment mechanism outlined in this work,
and at larger beam energies tilting of the exit-channel re-
action plane should occur resulting in a longitudinal spin
alignment of 12C*. Predictions for the spin alignment
of 12C* [4.44 MeV] have been made previously using a
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FIG. 10: (Color online) (a) Differential cross sections for the
single inelastic excitation of 12C* [4.44 MeV] predicted by
a DWBA soft-rotator model for the beam energies E/A =
2.0, 5.8, 12.0, and 17.0 MeV (purple dashed, blue dot-dashed,
green dot-dot-dashed, and red solid line, respectively). (b) A
coarse excitation function of the spin alignment for 12C*, as
a function of scattering angle, for the same beam energies.

variety of models including DWBA predictions [27], but
these studies focused on the previously mentioned low-
energy data sets.
The proposed alignment mechanism can be tested by

measuring a coarse excitation function of the generated
spin alignment as a function of scattering angle. These
measurements would allow one to probe the predicted
threshold of the alignment mechanism. By measuring the
spin alignment over a large portion of the reaction yield
(i.e. scattering angles around the grazing angle) the gross
structure of the alignment can be found and compared
to theoretical predictions. Figure 10(a) shows the differ-
ential cross sections predicted by a DWBA soft-rotator
model for the beam energies E/A = 2.0, 5.8, 12.0, and
17.0 MeV (purple dashed, blue dot-dashed, orange dot-
dot-dashed, and red solid line, respectively), while Fig.
10(b) shows the corresponding alignments. The optical-
potential parameters employed came from the literature
[28]. In order to do a proper phenomenological optical-
model analysis, the optical potential parameters should
be fit to differential elastic and inelastic cross section data
at each energy because of the implicit energy dependence
of phenomenological optical potentials.
Well below the angular-momentum-excitation-energy
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mismatch threshold, around E/A = 5 MeV (deduced
from semi-classical calculations), the overall alignment
should be transverse to the beam axis (A < 0). This is
predicted for measurements at a beam energy of E/A =
2.0 MeV. Larger longitudinal alignment should be ob-
served after passing this threshold (this is seen for the
E/A = 5.8 MeV prediction in Fig. 10). Interestingly,
the minima in the alignment correspond with diffraction
minima in the differential scattering cross section. This
a consequence of the fact that the same spherical har-
monics are responsible for the diffraction minima in the
differential cross section and angular distributions for the
alignment. Further, these minima in alignment will not
be observed in the angle-averaged alignment because it
is weighted by the differential cross section. Well above
this threshold, the generated alignment does not vary
significantly with energy (comparing E/A = 12.0 and
17.0 MeV) and the gross structure of alignment should
be similar to the Clebsch-Gordan coefficients in Eq. (16).
Also, the contribution of many partial waves to the cross
section result in a spin alignment that is fairly constant
at large scattering angles. Since the overall yield of the
alignment has to be weighted by the differential cross sec-
tion, this means the overall (i.e. gross) alignment will be
largely longitudinal at intermediate energies.

7. CONCLUSION

We have found large longitudinal spin alignment of
7Li* produced in single inelastic excitations with tar-
gets of C, Be, and Al. Large longitudinal spin align-
ment has also been observed in several other particle-
unbound systems. These observations are explained by
an alignment mechanism stemming from an angular-
momentum-excitation-energy mismatch. Above a certain

beam-energy threshold, that depends on the excitation
energy and change in fragment spin, the reaction-plane
is forced to tilt in order to conserve angular momentum.
The 7Li + 12C reaction studied, where 7Li is excited to
the Jπ = 7/2−[4.63 MeV] state and 12C remains in its
ground state, is well characterized by DWBA calcula-
tions and suggest the reaction is purely a nuclear transi-
tion. DWBA calculations are consistent with the semi-
classical argument for tilting of the exit-channel reaction
plane and predict longitudinal alignment to be present in
single inelastic excitations of many nuclear systems. The
effect of spin-orbit coupling on the alignment produced is
discussed, and it was found that angular correlation mea-
surements, along with differential cross section data, can
put constraints on the strength of these spin-orbit effects.
With the observation of longitudinal alignment generated
by an angular-momentum-excitation-energy mismatch in
systems where a cluster-model is inappropriate, it is clear
that this alignment phenomenon is more general and
should also apply to Coulomb excitation as well. The pro-
posed alignment mechanism may be the primary mecha-
nism for large longitudinal alignments already utilized in
g-factor measurements at intermediate energies [4].
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