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We compute from chiral two- and three-body forces the complete quasiparticle interaction in
symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative
contributions that account for Pauli-blocking and medium polarization are included, allowing for
an exploration of the full set of central and noncentral operator structures permitted by symmetries
and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-
nucleon force contributes to all noncentral interactions, and their strengths grow approximately
linearly with the nucleon density up that of saturated nuclear matter. Three-body forces are shown
to enhance the already strong proton-neutron effective tensor interaction, while the corresponding
like-particle tensor force remains small. We also find a large isovector cross-vector interaction but
small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence
of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre
polynomials is studied in detail.

I. INTRODUCTION

Fermi liquid theory [1–4] is widely used to describe the
transport, response and dynamical properties of nuclear
many-body systems [5–13]. The key quantity in this the-
ory is the quasiparticle interaction, defined as the second
functional derivative of the energy with respect to the
quasiparticle distribution function. For many years the
primary focus of investigation has been the central part
of the quasiparticle interaction and its associated Fermi
liquid parameters, which are directly related to static
properties of the interacting ground state such as the in-
compressibility, isospin-asymmetry energy and magnetic
susceptibility. The central terms include scalar operators
in spin and isospin space, but more recently noncentral
contributions [14, 15] that couple spin and momenta have
been studied together with their impact on the density
and spin-density response functions of neutron matter
[16–19]. Extending these results to nuclear matter with
equal numbers of protons and neutrons and to systems
with arbitrary isospin asymmetry will be needed to better
understand neutrino transport and emissivity in neutron
stars, proto-neutron star cooling [20], electron transport
in neutron stars [21], the evolution of shell structure and
single-particle states in nuclei far from stability [22, 23],
and nuclear collective excitations (spin and spin-isospin
modes together with rotational modes of deformed nu-
clei) [24–26].

An important motivation of the present work is to pro-
vide microscopic guidance for the tensor forces employed
in modern mean field effective interactions and nuclear
energy density functionals. Including as well new esti-
mates and uncertainties on the central Fermi liquid pa-
rameters, which are more directly related to nuclear ob-
servables, the present study will complement other recent
efforts [27–32] to constrain energy density functionals
from microscopic many-body theory. The importance of

tensor forces in mean field modeling is a question of ongo-
ing debate. While there is skepticism [33, 34] that tensor
forces can lead to a meaningful improvement in fits to nu-
clear ground state energies, there is strong evidence that
the description of single-particle energies [22, 23, 35, 36],
beta-decay half-lives [37], and spin-dependent collective
excitations [25, 26] are systematically improved with the
inclusion of tensor forces (for a recent review, see Ref.
[38]). One of the main driving questions is the extent
to which the effective medium-dependent tensor force in
mean field models resembles the fundamental tensor com-
ponent of the free-space nucleon-nucleon interaction aris-
ing from π + ρ meson exchange. A main conclusion of
the present work is that the proton-neutron effective ten-
sor force is enhanced over the free-space tensor interac-
tion due to three-body forces and second-order pertur-
bative contributions. On the other hand, the proton-
proton and neutron-neutron tensor forces are consider-
ably smaller in magnitude. In addition, we find evi-
dence for a large isovector cross-vector interaction that
to our knowledge has not been previously studied in phe-
nomenological mean field modeling of nuclei.

The quasiparticle interaction can be computed micro-
scopically from realistic two- and three-body forces start-
ing from the perturbative expansion of the energy den-
sity and taking appropriate functional derivatives with
respect to the Fermi distribution functions. For nuclear
or astrophysical systems with densities near or above that
of saturated nuclear matter, it is essential to consider
the effects of three-body forces. To date three-nucleon
forces have been included in calculations of the central
and exchange-tensor quasiparticle interaction in nuclear
matter [39–44] and the full quasiparticle interaction in
neutron matter [45]. In the present work our aim is to ex-
tend the calculations in Ref. [45] to the case of symmetric
nuclear matter. This is a natural step before consider-
ing the more general case of isospin-asymmetric nuclear
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matter.
We take as a starting point a class [46–51] of realis-

tic two and three-body nuclear forces derived within the
framework of chiral effective field theory [52–54]. The
two-body force is treated at both next-to-next-to-leading
order (N2LO) and N3LO in the chiral power counting,
while the three-body force is only considered at N2LO.
Although the inclusion of consistent three-body forces at
N3LO [55, 56] in the chiral power counting will be needed
for improved theoretical uncertainty estimates [57–59],
the present set of nuclear force models has been shown
to give a good description of nuclear matter saturation
[50, 60], the nuclear liquid-gas phase transition [61], and
the volume components of nucleon-nucleus optical po-
tentials [62, 63] when used at second order in many-
body perturbation theory. In addition to the order in
the chiral expansion, the resolution scale (related to the
momentum-space cutoff in the nuclear potential) is var-
ied in order to assess the theoretical uncertainties.

The paper is organized as follows. In Section II we
review the derivation of the quasiparticle interaction and
associated Fermi liquid parameters from microscopic nu-
clear two- and three-body interactions. We present a gen-
eral method to extract the central and noncentral com-
ponents of the quasiparticle interaction from appropriate
linear combinations of spin- and isospin-space matrix el-
ements. We also benchmark the numerical calculations
of the second-order contributions to the quasiparticle in-
teraction against semi-analytical results for model inter-
actions of one-boson exchange type. In Section III we
present analytical expressions for the Landau parameters
arising from the leading N2LO chiral three-body force to-
gether with numerical results for the second-order con-
tributions from two- and three-body forces. We end with
a summary and conclusions.

II. QUASIPARTICLE INTERACTION IN
SYMMETRIC NUCLEAR MATTER

A. General structure of the quasiparticle
interaction

The quasiparticle interaction in symmetric nuclear
matter has the general form [15]

F(~p1, ~p2 ) = A(~p1, ~p2 ) +A′(~p1, ~p2 )~τ1 · ~τ2, (1)

where

A(~p1, ~p2 ) = f(~p1, ~p2 ) + g(~p1, ~p2 )~σ1 · ~σ2

+h(~p1, ~p2 )S12(q̂) + k(~p1, ~p2 )S12(P̂ )

+`(~p1, ~p2 )(~σ1 × ~σ2) · (q̂ × P̂ ), (2)

and analogously for A′ except with the replacement
{f, g, h, k, `} −→ {f ′, g′, h′, k′, `′}. The relative momen-
tum is defined by ~q = ~p1 − ~p2 and the center of mass

momentum is given by ~P = ~p1 + ~p2. The tensor operator

has the usual form S12(v̂) = 3~σ1 · v̂ ~σ2 · v̂ − ~σ1 · ~σ2. The
interaction in Eq. (2) is invariant under rotations, time-
reversal, parity, and the exchange of particle labels. The
presence of the medium breaks Galilean invariance, and
two new structures (the “center-of-mass tensor” S12(P̂ )

and “cross-vector” (~σ1×~σ2) · (q̂× P̂ ) operators) arise [15]
that depend explicitly on the center-of-mass momentum
~P . Neither of these terms are found in the free-space
nucleon-nucleon potential.

By assumption the two quasiparticle momenta ~p1 and
~p2 lie on the Fermi surface (|~p1| = |~p2| = kf ) and there-
fore the scalar functions {f, g, h, k, `, f ′, g′, h′, k′, `′} ad-
mit a decomposition in Legendre polynomials:

f(~p1, ~p2) =

∞∑
L=0

fL(kf )PL(cos θ),

f ′(~p1, ~p2) =

∞∑
L=0

f ′L(kf )PL(cos θ), . . . (3)

where cos θ = p̂1 · p̂2 and q = 2kf sin (θ/2) and P =
2kf cos(θ/2). The expansion coefficients fL, f

′
L, . . . are

referred to as the Fermi liquid parameters. In relating
the Fermi liquid parameters to nuclear observables, it is
often convenient to multiply by the density of states

N0 = 2M∗kf/π
2 (4)

with M∗ the effective nucleon mass, to obtain dimension-
less parameters FL = N0fL, . . . .

The ten scalar functions in Eq. (2) can be extracted
from linear combinations of the spin-space and isospin-
space matrix elements, but the decomposition will de-
pend on the orientation of the orthogonal vectors ~q and
~P . For instance, if ~P = P ẑ and ~q = qx̂, then

f = (6F1
1,1;1,1 + 3F1

1,0;1,0 + 3F1
0,0;0,0

+2F0
1,1;1,1 + F0

1,0;1,0 + F0
0,0;0,0)/16 ,

f ′ = (2F1
1,1;1,1 + F1

1,0;1,0 + F1
0,0;0,0

−2F0
1,1;1,1 −F0

1,0;1,0 −F0
0,0;0,0)/16 ,

g = (6F1
1,1;1,1 + 3F1

1,0;1,0 − 9F1
0,0;0,0

+2F0
1,1;1,1 + F0

1,0;1,0 − 3F0
0,0;0,0)/48 ,

g′ = (2F1
1,1;1,1 + F1

1,0;1,0 − 3F1
0,0;0,0

−2F0
1,1;1,1 −F0

1,0;1,0 + 3F0
0,0;0,0)/48 ,

h = (3F1
1,1;1,−1 + F0

1,1;1,−1)/12 ,

h′ = (F1
1,1;1,−1 −F0

1,1;1,−1)/12 ,

k = (3F1
1,1;1,1 − 3F1

1,0;1,0 + 3F1
1,1;1,−1

+F0
1,1;1,1 −F0

1,0;1,0 + F0
1,1;1,−1)/24

k′ = (F1
1,1;1,1 −F1

1,0;1,0 + F1
1,1;1,−1

−F0
1,1;1,1 + F0

1,0;1,0 −F0
1,1;1,−1)/24

` = (3F1
1,1;0,0 + F0

1,1;0,0)/4
√

2 ,

`′ = (F1
1,1;0,0 −F0

1,1;0,0)/4
√

2 , (5)
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with the notation FTS,ms;S′,m′
s

= 〈SmsT |F|S′m′sT 〉.
The quasiparticle interaction is defined as the second

functional derivative of the energy E with respect to the
occupation probabilities n~pst:

δE =
∑
~p1s1t1

ε~p1 δn~p1s1t1

+
1

2Ω

∑
~p1s1t1
~p2s2t2

F(~p1s1t1; ~p2s2t2)δn~p1s1t1δn~p2s2t2 , (6)

where Ω is a normalization volume. The quasiparticle
interaction F in momentum space has units fm2, si labels
the spin quantum number of quasiparticle i, and ti labels
the isospin quantum number. In the present work we
consider contributions to the quasiparticle interaction up
to second order in many-body perturbation theory.

B. Two-body force contributions

The first- and second-order terms in the perturba-
tive expansion of the ground-state energy from two-body
forces are given by

E
(1)
2N =

1

2

∑
ij

ninj〈ij
∣∣V 2N

∣∣ ij〉, (7)

E
(2)
2N =

1

4

∑
ijmn

∣∣〈ij ∣∣V 2N

∣∣mn〉∣∣2 ninj n̄mn̄n
ei + ej − em − en

, (8)

where nj = θ(kf−|~kj |), n̄j = θ(|~kj |−kf ), and V indicates
an antisymmetrized interaction. In Eqs. (7) and (8) the
sums run over momentum, spin and isospin.

Functionally differentiating Eq. (7) with respect to n1

and n2 yields for the first-order contribution to the quasi-
particle interaction

F (1)
2N (~p1s1t1; ~p2s2t2) = 〈12|V 2N |12〉

= 〈~p1s1t1; ~p2s2t2|V 2N |~p1s1t1; ~p2s2t2〉. (9)

shown diagrammatically in Fig. 1(a). Since this is just
the antisymmetrized free-space nucleon-nucleon poten-
tial, only the four central and two exchange-tensor terms
in the quasiparticle interaction can be generated and the

total spin ~S = (~σ1 + ~σ2)/2 (with associated quantum
number S) is conserved. From the second-order energy
in Eq. (8), three different contributions to the quasiparti-
cle interaction arise which are distinguished by interme-
diate particle-particle, hole-hole, and particle-hole states
shown diagrammatically in Figs. 1(b), 1(c), and 1(d), re-
spectively. They have the form

F (2pp)
2N (~p1s1t1; ~p2s2t2) =

1

2

∑
mn

|〈12|V 2N |mn〉|2n̄mn̄n
ε1 + ε2 − εm − εn

(10)

F (2hh)
2N (~p1s1t1; ~p2s2t2) =

1

2

∑
ij

|〈ij|V 2N |12〉|2ninj
εi + εj − ε1 − ε2

(11)

F (2ph)
2N (~p1s1t1; ~p2s2t2) = −2

∑
jn

|〈1j|V 2N |2n〉|2nj n̄n
ε1 + εj − ε2 − εn

.

(12)

Eqs. (9)–(12) can be evaluated for realistic nuclear in-
teractions by first decomposing the potential matrix ele-
ments into a partial-wave sum. The Fermi liquid param-
eters are then obtained by integrating over the angle θ
between ~p1 and ~p2 with appropriate Legendre polynomi-
als as weighting functions. For the first-order term, as
well as the second-order particle-particle and hole-hole
diagrams, the partial-wave decomposition is straightfor-
ward since the two quasiparticle states are both in the
incoming or outgoing state. However, the evaluation of
the second-order particle-hole diagram is more compli-
cated due to the cross-coupling of the quasiparticle states
in one incoming and one outgoing state. We state here
the final expressions, and for additional details the reader
is referred to Ref. [45]. As already mentioned, the first-
order contribution to the quasiparticle interaction is just
the antisymmetrized free-space potential:

F (1)
L (Smsm

′
s;T ) = 16π(2L+ 1)

∑
ll′J

il−l
′√

(2l + 1)(2l′ + 1) 〈l0Sms|JM〉

×〈l′0Sm′s|JM〉
∫ kf

0

dp
p

k2
f

〈plSJT |V2N |pl′SJT 〉PL(1− 2p2/k2
f ), (13)

where p = q/2. The second-order terms are given by
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FIG. 1: Diagrams contributing to the quasiparticle interaction (all interactions represented by wavy lines are antisymmetrized):
(a) first-order, (b) second-order particle-particle, (c) second-order hole-hole, and (d) second-order particle-hole diagrams.

F (2pp)
L (Smsm

′
s;T ) =

16(2L+ 1)

k2
F

∑
l1l2l3l4mm

′

m̄m̄sJJ
′M

∫ kF

0

dp pPL(1− 2p2/k2
f )

∫ ∞
p

dk k2N(l1ml2m̄l3m
′l4m̄)Pml1 (0)Pm

′

l3 (0)

× M

p2 − k2
il2+l3−l1−l4CJMl1mSms

CJMl2m̄Sm̄s
CJ

′M
l3m′Sm′

s
CJ

′M
l4m̄Sm̄s

∫ min{x0,1}

max{−x0,−1}
dxP m̄l2 (x)P m̄l4 (x)

×〈pl1SJT |V2N |kl2SJT 〉〈kl4SJ ′T |V2N |pl3SJ ′T 〉, (14)

F (2hh)
L (Smsm

′
s;T ) =

16(2L+ 1)

k2
F

∑
l1l2l3l4mm

′

m̄m̄sJJ
′M

∫ kF

0

dp pPL(1− 2p2/k2
f )

∫ p

0

dk k2N(l1ml2m̄l3m
′l4m̄)Pml1 (0)Pm

′

l3 (0)

× M

k2 − p2
il2+l3−l1−l4CJMl1mSms

CJMl2m̄Sm̄s
CJ

′M
l3m′Sm′

s
CJ

′M
l4m̄Sm̄s

∫ min{−x0,1}

max{x0,−1}
dxP m̄l2 (x)P m̄l4 (x)

×〈pl1SJT |V2N |kl2SJT 〉〈kl4SJ ′T |V2N |pl3SJ ′T 〉, (15)

F (2ph)
L (s1s2s

′
1s
′
2; t1t2t

′
1t
′
2) =

16(2L+ 1)

πk2
f

∫ kf

0

dp pPL(1− 2p2/k2
f )

∫ 2π

0

dφ3

∫ kf

max{0,y0}
dk3k

2
3

∫ 1

max{−1,z0}
d cos θ3

×
∑

l1l2l3l4s3s4
m1m2m3m4

〈p′l1m1s1s3t1t3|V |k′l2m2s2s4t2t4〉〈k′l4m4s
′
2s4t

′
2t4|V |p′l3m3s

′
1s3t

′
1t3〉

× cos((m3 −m1 +m2 −m4)φp′)P
m1

l1
(cos θp′)P

m2

l2
(cos θk′)P

m3

l3
(cos θp′)P

m4

l4
(cos θk′)

×il2+l3−l1−l4N(l1m1l2m2l3m3l4m4)
M

p2 + k3p cos θ3
, (16)

where in the particle-particle and hole-hole diagrams
~k = (~k3 − ~k4)/2, x0 = (k2 − p2)/(2k

√
k2
f − p2),

x = cos θk, Pml are the associated Legendre functions,
and N(l1m1l2m2l3m3l4m4) = Nm1

l1
Nm2

l2
Nm3

l3
Nm4

l4
with

Nm
l =

√
(2l + 1)(l −m)!/(l +m)!. In the particle-hole

diagram we have additionally ~p ′ = (~p1 − ~k3)/2, ~k′ =

(~p2−~k4)/2, y0 = kf−2p, and z0 = (k2
f−k2

3−4p2)/(4k3p).
From the matrix elements of the second-order particle-
hole contribution in the uncoupled spin and isospin ba-
sis, it is trivial through recoupling to generate the terms

needed in Eq. (5) to extract the Fermi liquid parameters.
Given the numerical complexity of Eqs. (14)–(16), we

have benchmarked our codes against semi-analytical re-
sults from model interactions. As a first case we consider
a modified pseudoscalar interaction of the form

Vps = g2~σ1 · ~q ~σ2 · ~q
(m2 + q2)2

~τ1 · ~τ2 , (17)

where ~q is the momentum transfer, g is a dimensionless
coupling constant, andm is the mass parameter chosen to
be large enough to achieve good convergence in momen-
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FIG. 2: Comparison of the L = 0, 1 noncentral Fermi liquid parameters in nuclear matter from modified pseudoscalar exchange
at second order (left and middle plots) as well as from the interference of a central and spin-orbit interaction in the particle-hole
channel (right plot). Results from both a partial-wave decomposition and semi-analytical calculation are compared and found
to be in excellent agreement.

tum integrals and partial wave summations. We choose
for concreteness g = 6 and m = 600 MeV. As a second
interesting case, we consider the interference between an
isoscalar central and spin-orbit interaction of the form

Vc = g2 1

m2 + q2
, (18)

Vso =
g2

m2

i (~σ1 + ~σ2) · (~q × ~p )

m2 + q2
, (19)

where ~p is the incoming relative momentum. We choose
the same values for g and m as in the modified pseu-
doscalar case above.

In Ref. [45] it was shown that the second-order particle-
particle and hole-hole diagrams can only generate the
central, relative momentum tensor, and center-of-mass
tensor components of the quasiparticle interaction. In
fact, only the combination of a spin-orbit force with
any non-spin-orbit force in the second-order particle-
hole diagram can lead to a cross-vector term. These
general conclusions are exemplified in the test interac-
tions considered in Eqs. (17)–(19). In particular, the
L = 0, 1 isoscalar relative-momentum tensor and center-
of-mass tensor Fermi liquid parameters from modified
pseudoscalar exchange at second order are shown in the
left and middle plots of Fig. 2 employing both the partial-
wave decomposition in Eqs. (14)–(16) as well as semi-
analytical expressions similar to those in Ref. [45]. The
isovector contributions only differ from the isoscalar con-
tributions by integer factors and therefore are not shown
explicitly. The modified pseudoscalar interaction at sec-
ond order also gives rise to central components of the
quasiparticle interaction, but these have been considered
in previous work [64]. From Fig. 2 we see that the nu-
merical agreement across the full range of densities con-
sidered, 0 < ρ < 0.32 fm−3, is excellent. In the right-
most plot of Fig. 2 we show the Fermi liquid parameters
associated with the cross-vector interaction from the in-
terference term between a central and spin-orbit force.
Again the numerical agreement between the two meth-
ods is very good.

C. Three-body force contributions

We next consider contributions to the quasiparticle in-
teraction from three-body forces. The Hartree-Fock en-
ergy is given by

E
(1)
3N =

1

6

∑
ijk

ninjnk〈ijk|V 3N |ijk〉, (20)

where the totally antisymmetrized three-body potential
is given by V 3N = (1 − P12 − P13 − P23 + P12P23 +
P12P13)V3N . In the present work we employ the N2LO
chiral three-body force, which includes a long-range two-
pion exchange component V 2π

3N , a one-pion exchange con-
tribution V 1π

3N , and a pure contact force V cont
3N . The two-

pion exchange three-nucleon interaction has the form

V 2π
3N =

∑
i 6=j 6=k

g2
A

8f4
π

~σi · ~qi ~σj · ~qj
(~qi

2 +m2
π)(~qj

2 +m2
π)
Fαβijkτ

α
i τ

β
j , (21)

where gA = 1.29, fπ = 92.2 MeV, mπ = 138 MeV is the
average pion mass, ~qi denotes the difference between the
final and initial momenta of nucleon i, and the isospin

tensor Fαβijk is given by

Fαβijk = δαβ
(
−4c1m

2
π + 2c3~qi · ~qj

)
+c4ε

αβγτγk ~σk ·(~qi × ~qj) .
(22)

The one-pion exchange component of the three-nucleon
interaction is defined by

V 1π
3N = −

∑
i6=j 6=k

gAcD
8f4
πΛχ

~σj · ~qj
~qj

2 +m2
π

~σi · ~qj ~τi · ~τj , (23)

where Λχ = 700 MeV. Finally, the three-nucleon contact
interaction has the form

V cont
3N =

∑
i 6=j 6=k

cE
2f4
πΛχ

~τi · ~τj . (24)

In pure neutron matter only the terms proportional
to c1 and c3 contribute to the ground state energy and
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(1) (2) (3) (4) (5) (6)

FIG. 3: Diagrammatic contributions to the quasiparticle interaction in symmetric nuclear matter generated from the three
terms in the N2LO chiral three-body force. The short double-line symbolizes summation over the filled Fermi sea of nucleons.
Reflected diagrams of (2) and (3) are not shown.

quasiparticle interaction, but for symmetric nuclear mat-
ter in general all terms are needed. Taking two functional
derivatives of Eq. (20) with respect to n1 and n2 yields

F (1)
3N (~p1s1t1, ~p2s2t2) =

1

3

∑
i

ni
[
〈i12|V 3N |i12〉

+〈1i2|V 3N |1i2〉+ 〈12i|V 3N |12i〉
]
. (25)

Since the three-body force is symmetric under the inter-
change of particle labels, we can rewrite Eq. (25) without
loss of generality as

F (1)
3N (~p1s1t1, ~p2s2t2) =

∑
i

ni〈i12|V 3N |i12〉. (26)

In general there are nine distinct direct (and exchange)
contributions to the quasiparticle interaction from a
three-body force. In Fig. 3 we show the direct terms
from the N2LO chiral three-nucleon interaction (ex-
change terms can be obtained by swapping the two out-
going lines). As seen in Fig. 3 there are three topolog-
ically distinct contributions from the two-pion exchange
three-body force V 2π

3N . Contribution ‘(2)’ represents the
sum of four reflected diagrams, while contribution ‘(3)’
represents the sum of two reflected diagrams. The one-
pion exchange contribution V 1π

3N gives rise to two topo-
logically distinct diagrams, shown as ‘(4)’ and ‘(5)’ in
Fig. 3. Finally, there is a single diagram ‘(6)’ coming
from the three-body contact force V cont

3N . As shown in
the Appendix, this diagram contributes only to the cen-
tral components of the quasiparticle interaction.

At second order in perturbation theory we include
the effects of three-body forces by first constructing a
density-dependent two-body force V med

2N , as described in
detail in Refs. [65, 66]. In Eqs. (10)–(12) we then re-

place V 2N with V
eff

2N = V 2N + V
med

2N . This approxima-
tion accounts for only a subset of the full second-order
contributions from three-body forces.

III. RESULTS

In the present section we focus on the noncentral com-
ponents of the quasiparticle interaction from the five dif-
ferent chiral nuclear forces {n2lo450, n2lo500, n3lo414,
n3lo450, n3lo500} [46–51]. We focus primarily on the

role of three-body forces and second-order perturbative
contributions. The quality of the nuclear force models
and perturbative many-body method is benchmarked by
comparing the nuclear incompressibility, isospin asym-
metry energy, and effective mass (which are related to
specific central Fermi liquid parameters) with empirical
values. We also study the convergence of the Legendre
polynomial decomposition for both central and noncen-
tral forces.

A. First-order perturbative contributions to Fermi
liquid parameters

At first order in perturbation theory, two-nucleon
forces contribute only to the relative momentum tensor
noncentral Fermi liquid parameters (HL, H

′
L) due to the

underlying Galilean invariance of the free-space interac-
tion. In Fig. 4 we show as solid-circle and solid-square
symbols the magnitude of the dimensionless Fermi liq-
uid parameters (H0, H1) and (H ′0, H

′
1) from two-body

forces as a function of density. The error bars are cal-
culated as the standard deviation of the results from the
five nucleon-nucleon potentials considered in the present
work and represent an estimate of systematic uncertain-
ties in the construction of realistic two- and three-body
force models. Note that here and in the following sec-
tions, we employ in the density of states, Eq. (4), the
Landau effective mass computed from the full quasipar-
ticle interaction including second-order perturbative con-
tributions (see Eq. (42) below). The Hartree-Fock single-
particle spectrum is used only when calculating the en-
ergy denominators in the second-order perturbative con-
tributions to the quasiparticle interaction. Comparing
the results from two-body forces in Fig. 4, we find the
approximate relationship H0 ' −3H ′0 and H1 ' −3H ′1,
which in fact exactly holds for all L in the case of a pure
one-pion exchange (OPE) nucleon-nucleon potential [39].

Next we present analytical expressions for the noncen-
tral Fermi-liquid parameters in nuclear matter from the
N2LO chiral three-nucleon interaction. The associated
low-energy constants {c1, c3, c4, cD, cE} have been fitted
separately for each nuclear potential and are compiled in
Table I. We present individually the Fermi liquid param-
eters arising from the five diagrammatic contributions in

Fig. 3. The pion self-energy correction V med,1
NN leads to a
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c1 c3 c4 cD cE
n2lo450 −0.81 −3.40 3.40 −0.326 −0.149
n2lo500 −0.81 −3.40 3.40 −0.165 −0.169
n3lo414 −0.81 −3.00 3.40 −0.400 −0.072
n3lo450 −0.81 −3.40 3.40 −0.240 −0.106
n3lo500 −0.81 −3.20 5.40 −0.200 −0.205

TABLE I: Low-energy constants associated with the N2LO
chiral three-body force for the five different nuclear potentials
considered in the present work. The constants c1, c3, and c4
have units GeV−1, while cD and cE are unitless.

relative-momentum tensor interaction

hL = −3h′L =
g2
Am

3
πu

5

3π2f4
π

∫ 1

−1

dz (1− z)(2L+ 1)

×PL(z)
c3u

2(z − 1)− c1
[1 + 2u2(1− z)]2

, (27)

where u = kf/mπ and PL(z) is the Legendre polyno-
mial of degree L. The pion-exchange vertex correction,

V med,2
NN , likewise gives rise to relative-tensor force of the

form

hL = −3h′L =
g2
Am

3
π

π2(4fπ)4

∫ 1

−1

dz
(1− z)(2L+ 1)PL(z)

1 + 2u2(1− z)

×
{

64u2

3
(c3 − 2c4) arctan 2u+

[
(c3 + c4)( 1

3 − z)− 4c1

u

+4u
(
3c4 − 4c1 − c3 − (c3 + c4)z

)
+

]
ln(1 + 4u2)

+4(c3 + c4)uz

(
1 + 2u2 − 8u4

3

)
+

32u5

9
(5c3 − 7c4)

+8u3(4c1 − 3c3 + 5c4) +
4u

3
(12c1 − c3 − c4)

}
. (28)

Since V med,1
NN and V med,2

NN renormalize the one-pion ex-
change interaction through self-energy and vertex cor-
rections, the associated Fermi liquid parameters obey the
generic relationship hL = −3h′L as seen explicitly above.

The Pauli-blocked two-pion exchange contribution,

V med,3
NN , gives rise to a richer set of spin and isospin struc-

tures that lead to contributions to all of the noncentral
Fermi liquid parameters (h, h′, k, k′, `, `′). For the rela-
tive tensor interaction we find

hL = −3h′L (29)

=
g2
Ac4m

3
πu

2

16π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

× (1− z)[u(1 + z)− l(x+ y)]2

(1 + z)(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
,

with z = xy +
√

(1− x2)(1− y2) cosφ. The center-of-
mass tensor Fermi liquid parameters in the isoscalar and
isovector channel are given by

kL = −3k′L =
g2
Ac4m

3
πu

2

16π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

× (1− z)[u(1 + z)− l(x+ y)]2 + 2l2(x2 + y2 + z2 − 1− 2xyz)

(1 + z)(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
, (30)

We note that the relative tensor interaction exhibits
the same relationship, kL = −3k′L, between the isoscalar
and isovector components as the relative-momentum ten-

sor interactions above. Finally, the Pauli-blocked two-
pion exchange diagram produces a cross-vector interac-
tion with Fermi liquid parameters
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`L =
3g2
Am

3
πu

32π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

√
1− z
1 + z

×[u(1 + z)− l(x+ y)]
2c1 + (c3 − c4)[l2 − ul(x+ y) + u2z]

(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
, (31)

`′L =
g2
Am

3
πu

32π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

√
1− z
1 + z

×[u(1 + z)− l(x+ y)]
6c1 + (3c3 + c4)[l2 − ul(x+ y) + u2z]

(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
, (32)

˜̀
L =

3g2
Am

3
πu

16π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

×[u(1 + z)− l(x+ y)]
2c1 + (c3 − c4)[l2 − ul(x+ y) + u2z]

(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
, (33)

˜̀′
L =

g2
Am

3
πu

16π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ (2L+ 1)PL(z)

×[u(1 + z)− l(x+ y)]
6c1 + (3c3 + c4)[l2 − ul(x+ y) + u2z]

(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)
. (34)

In Eqs. (31)–(34) we have employed two parametriza-
tions of the cross-vector quasiparticle interaction in terms
of Fermi liquid parameters:

Fcross = (~σ1 × ~σ2) · (q̂ × P̂ )

∞∑
L=0

`L(kf )PL(p̂1 · p̂2) , (35)

and

Fcross =
(~σ1 × ~σ2) · (~p1 × ~p2)

|~p1 + ~p2|2
∞∑
L=0

˜̀
L(kf )PL(p̂1 · p̂2) ,

(36)
the latter being more convenient in calculations of nuclear

response functions [19]. In pure neutron matter V med,3
NN

gives rise to only central and cross-vector interactions
[45]. In the present symmetric nuclear matter calculation
also the relative tensor and center-of-mass tensor terms
are generated due to the three-body force proportional
to the low-energy constant c4.

The medium-dependent vertex correction, V med,4
NN ,

from the one-pion exchange three-body force leads to a
relative tensor force with associated Fermi liquid param-
eters

hL = −3h′L =
gAcDm

3
πu

5

24π2f4
πΛχ

∫ 1

−1

dz
(1− z)(2L+ 1)PL(z)

1 + 2u2(1− z)
.

(37)

The second contribution, V med,5
NN , from the one-pion ex-

change three-body force has the form of a zero-range in-

teraction with vertex correction, leading to a finite-range
force that contributes to only the L = 0, 1 Fermi liquid
parameters:

h0 = −h′0 = −h1 = h′1 = k0 = −k′0 = k1 = −k′1 (38)

=
gAcDm

3
π

π2(4fπ)4Λχ

{
1

u
+ 2u− 8u3

3
− 1 + 4u2

4u3
ln(1 + 4u2)

}
.

Finally, the contribution, V med,6
NN , due to the three-body

contact interaction is momentum-independent and there-
fore does not give rise to any noncentral components of
the quasiparticle interaction.

In Figs. 4 and 5 we show as open symbols the L = 0, 1
Fermi liquid parameters associated with the N2LO chiral
three-body force as a function of density computed at the
Hartree-Fock level according to Eq. (26). All contribu-
tions vanish in the ρ → 0 limit and grow approximately
linearly with the density up to nuclear saturation density
ρ0 = 0.16 fm−3. We find that in the case of the isotropic
H0 and H ′0 Fermi liquid parameters, the three-body force
enhances the contribution from two-body forces at all
densities considered. In contrast, both H1 and H ′1 from
two- and three-body forces exhibit large cancellations be-
yond nuclear saturation density ρ0. All three-body force

contributions (except V med,5
NN , which is small) to the rela-

tive tensor Fermi liquid parameters obey the relationship
HL = −3H ′L characteristic of one-pion exchange. At the
Hartree-Fock level with two- and three-body forces, this
relationship turns out to be an excellent approximation
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FIG. 4: First-order perturbative contributions to the dimensionless L = 0, 1 Fermi liquid parameters of the relative tensor
interactions as a function of density. Results for both two- and three-body forces are included.
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FIG. 5: First-order perturbative contributions to the dimensionless L = 0, 1 Fermi liquid parameters of the center-of-mass
tensor and cross-vector interactions as a function of density. Only three-body forces contribute at the Hartree-Fock level.

relating the isoscalar and isovector relative tensor interac-
tions. The center-of-mass tensor interaction from three-
body forces is comparatively weak. The L = 0, 1 Fermi
liquid parameters associated with both the isoscalar and
isovector center-of-mass tensor force are all less than 0.10
in magnitude at nuclear matter saturation density. We
observe that the spin-nonconserving cross-vector inter-
action from the chiral three-body force is particularly
strong in the isoscalar channel, with L0 and L1 from
three-body forces reaching values around −0.75 at twice
saturation density.

B. Second-order perturbative contributions to
Fermi liquid parameters

We next consider the sum of the second-order particle-
particle, particle-hole, and hole-hole contributions to the

noncentral Fermi liquid parameters. All are computed
according to Eqs. (14)−(16), except that a Hartree-Fock
energy spectrum for the intermediate particle and hole
states is employed. This results in a reduction of the
second-order contributions by a density-dependent ef-
fective mass factor, which at saturation density is on
the order M∗HF /M ' 0.7. Second-order perturbative
contributions [62] to the nucleon self-energy result in
a slightly larger average effective mass on the order of
M∗/M ' 0.85 at nuclear saturation density. In the
present study we neglect such effects since the associ-
ated uncertainties are small compared to the choice of
nuclear force model.

In Figs. 6−8 we show the total dimensionless L = 0, 1
Fermi liquid parameters for the noncentral parts of the
quasiparticle interaction as a function of density. This
includes the first-order two-body and three-body contri-
butions together with the second-order particle-particle,
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FIG. 6: Total L = 0, 1 Fermi liquid parameters of the rel-
ative tensor interaction from two- and three-body forces as
a function of the density. Error bars are obtained from the
standard deviation of the five chiral potentials considered in
the present work.

hole-hole, and particle-hole diagrams. Comparing the
results to Figs. 4 and 5, we see that overall the second-
order terms have a relatively small impact, in contrast
to their large contributions to the central components
[44]. Neither the particle-particle nor hole-hole diagram
gives any contribution to the noncentral Fermi liquid pa-
rameters larger than 0.1 in magnitude across the range
of densities considered. The particle-hole diagram, how-
ever, gives contributions to the relative tensor and cross-
vector Fermi liquid parameters on the order of 0.1−0.3 in
magnitude. None of the second-order diagrams lead to a
sizable center-of-mass tensor interaction, and in Fig. 7 we
see that this component of the quasiparticle interaction is
very weak in both the isoscalar and isovector channels in
symmetric nuclear matter up to twice saturation density.

The L = 0, 1 Fermi liquid parameters of the isoscalar
and isovector relative tensor force are very well con-
strained up to nuclear saturation density. In fact, the un-
certainties on all four parameters are less than 0.1 in this
regime but grow significantly beyond saturation density.
As in the case of one-pion exchange (OPE), the isotropic
Landau parameters H0 and H ′0 are respectively positive
and negative across all densities considered. The generic
relationship HL = −3H ′L, which is satisfied by OPE
and most 3NF contributions, is violated due to second-
order perturbative contributions. The corresponding ten-
sor interactions in the proton-neutron and proton-proton
(neutron-neutron) channels are given by

Hpn
L = HL −H ′L

Hpp
L = Hnn

L = HL +H ′L. (39)

From Fig. 6 we see that the combination of isoscalar
and isovector tensor forces produces a large proton-
neutron effective interaction and a very small proton-
proton (neutron-neutron) interaction, in agreement with
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FIG. 7: Total L = 0, 1 Fermi liquid parameters of the center-
of-mass tensor interaction from two- and three-body forces as
a function of the density. Error bars are obtained from the
standard deviation of the five chiral potentials considered in
the present work.

a wide range of experimental data [38].
The Fermi liquid parameters of the cross-vector inter-

action are non-negligible in the isoscalar channel. In par-
ticular, the value of L0 (and to a lesser extent L1) grows
strongly with the density as a result of the N2LO chiral
three-body force. The isovector cross-vector interaction,
in contrast, remains small up to about twice saturation
density. The large negative value of L0 may be a concern
in light of the normal stability conditions

CL > −(2L+ 1), (40)

where C ∈ {F, F ′, G,G′}, for the central components of
the quasiparticle interaction. The presence of additional
spin-dependent interactionsH,K,L (andH ′,K ′, L′) that
couple to G (and G′) modifies the stability criteria in Eq.
(40), but to date only the effect of the relative tensor
contributions have been considered [67].

C. Central components of the quasiparticle
interaction

In previous work [44] we have computed the central
Fermi liquid parameters in symmetric nuclear matter in-
cluding the effects of three-body forces. We update those
results to include theoretical uncertainties obtained by
varying the chiral order and momentum-space cutoff of
the nuclear potential. In comparison to Ref. [44] we also
consider a larger range of densities in the present calcu-
lation. We then use standard relations [68, 69] to study
various nuclear observables that are directly related to
the low-harmonic central Fermi liquid parameters. Since
the tensor Fermi liquid parameters for symmetric nu-
clear matter are largely unconstrained by empirical data,
benchmarking the central terms to empirical data is an
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FIG. 8: Total L = 0, 1 Fermi liquid parameters of the cross-
vector interaction from two- and three-body forces as a func-
tion of the density. Error bars are obtained from the standard
deviation of the five chiral potentials considered in the present
work.
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FIG. 9: Total L = 0, 1 Fermi liquid parameters of the spin-
independent central parts of the quasiparticle interaction from
two- and three-body forces as a function of the density. Error
bars are obtained from the standard deviation of the five chiral
potentials considered in the present work.

important check on the nuclear force models and many-
body methods.

In Figs. 9 and 10 we show the L = 0, 1 Fermi liquid
parameters associated with the F, F ′, G,G′ components
of the quasiparticle interaction. The isotropic spin- and
isospin-independent Fermi liquid parameter F0 is related
to the nuclear incompressibility K = 9∂P/∂ρ, where P =

ρ2 ∂(E/A)
∂ρ , through

K =
3k2
F

M∗
(1 + F0) . (41)

From Fig. 9 we see that F0 < −1 for ρ . 0.10 fm−3,
which corresponds to the well known instability of nu-

clear matter to density fluctuations associated with spin-
odal decomposition and cluster formation. However, the
nearly linear dependence of F0 on the nuclear density
results in a strongly increasing nuclear incompressibil-
ity, which we show in Fig. 11. At ρ = ρ0 the incom-
pressibility lies in the range 190 MeV < K < 400 MeV.
While this is consistent with the empirical estimate of
220 MeV < K < 260 MeV [70, 71], the large theoreti-
cal range is due to the fact the n2lo450, n2lo500, and
n3lo500 nuclear forces saturate at too low of a density
ρ ' 0.14 − 0.15 fm−3. In this case the contribution

∼ 18ρ∂(E/A)
∂ρ that is linear in the density strongly en-

hances the nuclear incompressibility.
In Eq. (44) the quasiparticle effective mass M∗ is re-

lated to the Landau parameter F1 through

M∗

M
= 1 +

F1

3
, (42)

withM = 938.9182 MeV the average nucleon mass. From
Fig. 9 we find that F1 > 0 for ρ . ρ0 and consequently
the effective mass is larger than the free-space mass. For
ρ & ρ0 the effective mass may be less than that of a free
nucleon, but the decrease in the effective mass with in-
creasing density is not nearly as large as in most mean
field models and other approaches to scaling masses [10]
at first order. The large effective mass is due almost
solely to the second-order particle-hole diagram, which

gives a contribution F
(2ph)
1 ' 1 for all densities up to

ρ = 2ρ0. From the study of nuclear level densities in the
vicinity of the Fermi surface, the effective mass has been
estimated [72, 73] to lie close to that of a free nucleon
M∗ ' M . In Fig. 12 we show the effective mass as a
function of density together with the theoretical uncer-
tainty estimates. At saturation density we find the range
0.94 < M∗/M < 1.07. Since M∗/M → 1 as ρ → 0, the
effective mass must rise rather quickly at low densities.

We define the density-dependent isospin-asymmetry
energy S2(ρ) as the coefficient of the quadratic term
in an expansion of the energy per particle of isospin-
asymmetric nuclear matter in powers of the parameter
δnp =

ρn−ρp
ρn+ρp

:

E

A
(ρ, δnp) =

E

A
(ρ, 0) + S2(ρ)δ2

np + · · · (43)

Generically [74, 75] the energy per particle contains non-
analytic contributions in δnp beyond the quadratic term
in Eq. (43) when second-order perturbative corrections
are included in the equation of state, but at low temper-
atures it is nevertheless a good approximation to retain
only the quadratic term in the expansion in Eq. (43). The
isospin-asymmetry energy is related to the isotropic part
of the F ′ contribution to the quasiparticle interaction:

S2 =
k2
F

6M∗
(1 + F ′0) . (44)

In Fig. 13 we plot S2(ρ) and associated uncertainties up
to twice nuclear matter saturation density. We find the
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FIG. 10: Total L = 0, 1 Fermi liquid parameters of the spin-
dependent central parts of the quasiparticle interaction from
two- and three-body forces as a function of the density. Error
bars are obtained from the standard deviation of the five chiral
potentials considered in the present work.
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FIG. 11: Incompressibility of symmetric nuclear matter as
a function of the density for the two- and three-body chiral
nuclear force models considered in the present work.

peculiar feature that the variations in the Landau param-
eter F1 (which enters into the definition of the effective
mass M∗) and in the Landau parameter F ′0 are correlated
in such a way as to produce a very small error band for
the isospin-asymmetry energy up to nuclear saturation
density. For instance, at nuclear matter saturation den-
sity, we obtain 29.6 MeV < S2(ρ0) < 33.4 MeV, which is
consistent with other recent microscopic uncertainty es-
timates [59, 60] but with a much smaller error band. It is
not clear what could lead to the correlation between F1

and F ′0, and therefore we tentatively attribute the very
small errors in S2(ρ) to a chance cancellation.

From Fig. 10 we see that G′0 remains large and positive
for all densities considered. At nuclear saturation den-
sity, we find 1.16 < G′0 < 1.74, which is consistent with
extractions [76, 77] from fitting the peak energy of giant

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.9

1.0

1.1

1.2

1.3

1.4

ρ (fm-3)

M
*

M

FIG. 12: Nucleon effective mass in symmetric nuclear matter
as a function of the density for the two- and three-body chiral
nuclear force models considered in the present work.

Gamow-Teller resonances in heavy nuclei. Such fits give
a range 1.4 < G′0 < 1.6 [78] but rely on certain model
assumptions related to the shape of the parametrized
single-particle potential and the form of the effective in-
teraction. In addition the authors of Ref. [78] find corre-
lations between the value of G′1 and the position of the
energy peak of the Gamow-Teller resonance when G′0 is
kept fixed, leading to further uncertainties in the extrac-
tion of G′0 from resonance data.

Finally, we investigate the convergence of the Legen-
dre polynomial decomposition, Eq. (3), for the noncentral
components of the quasiparticle interaction. From Figs.
6–8 we see that in some cases the L = 1 Fermi liquid
parameters are comparable in magnitude to the L = 0
parameters at nuclear matter saturation density. Using
the tensor parametrizations in Eq. (2), it is expected [16]
that the convergence is much improved compared to al-
ternative choices, such as

H(~p1, ~p2)S12(q̂) =
q2

k2
f

H̃(~p1, ~p2)S12(q̂) (45)

employed in Refs. [7, 14, 39]. In Fig. 14 we plot the ten
lowest dimensionless Fermi liquid parameters from the
n3lo450 potential at nuclear matter saturation density.
It is clear that the slowest convergence is in the spin- and
isospin-independent part of the quasiparticle interaction
F , which even up to L = 9 has contributions greater
than 0.1. The Legendre polynomial expansion in all other
channels is nearly converged by L = 5.

IV. CONCLUSIONS AND OUTLOOK

In the present work we have computed for the first time
the full set of central and noncentral contributions to the
quasiparticle interaction in symmetric nuclear matter up
to twice nuclear saturation density. We have derived gen-
eral formulas that allow one to extract the associated
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FIG. 13: Isospin-asymmetry energy as a function of the den-
sity for the two- and three-body chiral nuclear force models
considered in the present work.

scalar functions from appropriate linear combinations
of spin- and isospin-space matrix elements. Both two-
and three-body forces are included at first- and second-
order in perturbation theory, with the involved numerical
calculations of the second-order diagrams benchmarked
against model interactions. Three-body forces at the
Hartree-Fock level are shown to give important contri-
butions to the relative tensor and cross-vector interac-
tions. Indeed, the isovector cross-vector interaction is
dominated by three-body forces, in particular the two-
pion exchange term proportional to the low-energy con-
stant c4, and only the second-order particle-hole diagram
leads to a modest reduction of the strength in this chan-
nel. While the relative tensor force from the free-space
nucleon-nucleon interaction is enhanced in the medium
by three-body forces and second-order perturbative cor-
rections, the center-of-mass tensor force remains rela-
tively weak.

We have considered five different nuclear force models
in order to estimate theoretical uncertainties. Up to nu-
clear saturation density, the relative tensor force in both
the isoscalar and isovector channels is well constrained by
microscopic many-body theory, which should be valuable
for efforts to include effective tensor forces in mean-field
modeling and density functional theory. In addition we
find robust evidence for a strong isovector cross-vector
interaction which is not normally included in mean-field
models and may be important for spin-dependent phe-
nomena. We benchmark the quality of our results against
bulk nuclear matter properties, such as the incompress-
ibility, isospin-asymmetry energy, and nucleon effective
mass, which are directly related to selected central Fermi
liquid parameters. While the theory uncertainties are
sometimes large, in all cases the results are consistent
with empirical constraints.

The present calculations are a step toward the micro-
scopic description of response functions in nuclear matter
consistent with equations of state exhibiting realistic nu-
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1

1.5
F
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L′

FIG. 14: Convergence of the Legendre polynomial expansion
for each of the different contributions to the quasiparticle in-
teraction. Results are shown only for n3lo450 two- and three-
body forces at nuclear matter saturation density. Terms up
to L = 9 are considered.

clear saturation properties. In the future this work will
be extended to isospin-asymmetric nuclear systems with
applications to neutrino processes in neutron stars and
supernovae.
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V. APPENDIX

A. Central components of the quasiparticle
interaction from the N2LO chiral three-body force

In this section we provide for completeness the central
Fermi liquid parameters for arbitrary values of L result-
ing from the N2LO chiral three-body force. The various
terms are organized according to the different topologies
shown in Fig. 3. Some contributions are explicitly sep-
arated into a direct “d” and exchange “e” term. For
notational convenience we introduce the abbreviations
σ = ~σ1 · ~σ2 and τ = ~τ1 · ~τ2. The contributions from
the six topologies read
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F (med,1)
L = (σ − 3)(3− τ)

4g2
Am

3
πu

9π2f4
π

∫ u

0

dxx3(2L+ 1)PL(1− 2x2u−2)
c1 + 2c3x

2

(1 + 4x2)2
, (46)

F (med,2)
L = (3− σ)(3− τ)

g2
Am

3
π

(12π)2f4
πu

5

∫ u

0

dx
x3(2L+ 1)

1 + 4x2
PL(1− 2x2u−2)

{
16u3(c3 − 2c4) arctan 2u

+

[
3x2

2
(c3 + c4)(4 + u−2) + 6u2(c4 − c3 − 2c1)− 3c1 −

c3 + c4
2

]
ln(1 + 4u2)

+2(c3 + c4)x2(8u4 − 6u2 − 3) + 12c1u
2(1 + 2u2)

+2c3u
2

(
1− 6u2 +

8u4

3

)
+ 2c4u

2

(
1 + 18u2 − 40u4

3

)}
, (47)

F (med,3d)
0 =

g2
Am

3
π

16π2f4
π

{
24u(c3 − c1)− 8c3u

3 + 6(6c1 − 5c3) arctan 2u+
3

u
(3c3 − 4c1) ln(1 + 4u2)

}
, (48)

F (med,3e)
L =

3g2
Am

3
π

32π3f4
π

∫ u

0

dl l2
∫ 1

−1

dx

∫ 1

−1

dy

∫ π

0

dφ
(2L+ 1)PL(z)

(1 + u2 + l2 − 2ulx)(1 + u2 + l2 − 2uly)

×
{

(1 + σ)(1 + τ)
[
2c1(u2z − ulx− uly + l2) + c3(u2z − ulx− uly + l2)2

]
+(3− σ)(3− τ)

c4
9

[
(u2z − ulx− uly + l2)2 − (u2 + l2 − 2ulx)(u2 + l2 − 2uly)

]}
, (49)

with z = xy +
√

(1− x2)(1− y2) cosφ,

F (med,4)
L = (3− σ)(3− τ)

gAcDm
3
πu

18π2f4
πΛχ

∫ u

0

dx
x3(2L+ 1)

1 + 4x2
PL(1− 2x2u−2) , (50)

to which only the exchange term contributes,

F (med,5)
0 = (3− σ − τ − στ)

gAcDm
3
π

16π2f4
πΛχ

{
2u3

3
− u+ arctan 2u− 1

4u
ln(1 + 4u2)

}
, (51)

F (med,6)
0 = (σ + τ + στ − 3)

cE k
3
f

4π2f4
πΛχ

. (52)
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