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Abstract

Prompted by the simple proportional relation between critical temperature for pairing transition

and pairing gap at zero temperature, we investigate the relation between critical temperature for

shape transition and ground-state deformation by taking even-even 286−304Cm isotopes as examples.

The finite-temperature axially deformed covariant density functional theory with BCS pairing

correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations,

we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the

components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of

octupole equilibrium is understood by the contribution coming from the octupole driving pairs with

Ω[N,nz,ml] and Ω[N +1, nz±3,ml] for single-particle levels near the Fermi surfaces as it provides

a good manifestation of the octupole correlation. Furthermore, the systematics of deformations,

pairing gaps and the specific heat as functions of temperature for even-even 286−304Cm isotopes

are discussed. Similar to the relation between the critical pairing transition temperature and the

pairing gap at zero temperature Tc = 0.6∆(0), a proportional relation between the critical shape

transition temperature and the deformation at zero temperature Tc = 6.6β(0) is found for both

octupole shape transition and quadrupole shape transition for isotopes considered.
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I. INTRODUCTION

The study of hot nuclei has been a hot topic for decades. At medium excitation energies

in heavy-ion fusion, a completely equilibrated system is formed before the compound nucleus

decays by particle or γ emission [1]. The microcanonical description for the situation can

be transformed to an approximate form in which the equilibrated nucleus is characterized

by the temperature. When temperature rises, the shape deformations or superfluidity are

expected to wash out. This can be understood in terms of the shell model [2]. By increas-

ing temperature nucleons are excited from levels below the Fermi surface to levels above,

resulting in level blocking, and hence pairing correlations decrease. Similar picture holds for

the shape transition. The increasing temperature leads to the repopulation on the single-

particle levels near the Fermi surface, which will weaken the shell effects and hence act in

the direction of decreasing the equilibrium deformation [2, 3]. The equilibrium deformation

can be extracted from experimental data such as Giant Dipole Resonance (GDR). Extensive

studies for the GDR built on excited states can be found in Refs. [4–8] and references therein.

In the finite-temperature mean-field theory, these effects appear as sharp phase transitions

including pairing transitions and shape transitions, although the sharp phase transitions

will be actually washed out due to statistical fluctuations since the nucleus is a finite sys-

tem. The statistical fluctuations can be treated in the spirit of the Landau theory [3, 9], or

from a more fundamental point of view by using path integral techniques such as the static

path approximation [10, 11], the shell model Monte Carlo method [12], the particle number

projected BCS method [13–15], or the shell-model-like approach [16].

However, finite-temperature mean-field models still provide a simple and good tool for the

study of hot nuclei. Simple relations between the critical temperature for pairing transition

Tc and pairing gap at zero temperature ∆(0) can be found in such models. For example,

the critical pairing temperature is calculated to be Tc = 0.57∆(0) in the finite-temperature

BCS theory with a constant pairing force [17], Tc = 0.5∆(0) using a simplified degenerate

model [18], and Tc = 0.6∆(0) in the finite-temperature relativistic Hartree-Bogoliubov the-

ory [19]. Such a simple relation gives us a good guideline on up to which temperature the

pairing correlations are important, which is an instructive information for the study of hot

nuclei and the corresponding subjects, like weak interaction processes of nuclei in stellar

environment [20], heavy-ion collisions [21, 22] and so on.
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Similarly, it would be also useful if the critical temperature for shape phase transition

also holds a simple relation with the ground-state deformation, since above the critical tem-

perature, the deformation will vanish, and therefore nuclei could be studied as a spherical

system, which simplifies the calculation a lot. The previous phenomenological studies give

us some clues on it [3, 23, 24]. In Ref. [3], the general framework of the Landau theory

was used to establish the free energy and entropy dependence on the deformation and the

temperature variables. In this work, the analytical expression for the equilibrium deforma-

tion as a function of temperature was obtained. As a further study, the systematics of the

critical temperature and the critical angular momentum of the shape transitions as functions

of neutron and proton number were investigated with Landau theory in Ref. [24]. It was

found that the systematics of critical temperature is simple. The critical temperature as a

function of the neutron number falls on an inverted parabola-like curve whose maximum is

at the mid shell and minima near two closed neutron shells. The same behavior was also

found as a function of proton number. It is obvious that such behavior is very similar to

the behavior of the ground-state deformation. However, the possible relation between the

critical temperature and the ground-state deformation was not pointed out.

In recent years, microscopic models for the study of shape transitions in hot nuclei were

developed. The finite temperature Hartree-Fock-Bogoliubov theory was formulated [18]

and then applied to the pairing and shape transitions in rare earth nuclei [25]. The shape

transition from prolate to spherical occurs at 1.81 MeV for 170Er, while 188Os experienced

two shape transitions, namely one from a triaxial shape to an oblate shape at 0.60 MeV

and the other from an oblate shape to spherical at 1.33 MeV. Using the finite-range density

dependent Gogny force and a large configuration space within the framework of the finite-

temperature Hartree-Fock-Bogoliubov (FTHFB) theory [2], nuclei with different shapes,

including well quadrupole-deformed nuclei, superdeformed nucleus, and octupole deformed

nucleus, gradually collapse to the spherical shape at certain critical temperatures in the

range 1.3-2.7 MeV.

The covariant density functional theory (CDFT), which has achieved great success in

describing ground-state properties of both spherical and deformed nuclei all over the nuclear

chart [26–32], is a good tool for investigations on nuclear properties with temperature. The

finite-temperature relativistic Hartree-Bogoliubov theory [19] and relativistic Hartree-Fock-

Bogoliubov theory [33] for spherical nuclei were formulated, and used to study the pairing
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transitions in hot nuclei. The relativistic Hartree-BCS theory was applied to study the tem-

perature dependence of shapes and pairing gaps for 166,170Er and rare-earth nuclei [34, 35]. A

shape transition from prolate to spherical shapes was found at temperatures ranging 1.0-2.7

MeV. Taking into account the unbound nucleon states, the temperature dependence of the

pairing gaps, nuclear deformation, radii, binding energies, entropy were studied in the Dirac-

Hartree-Bogoliubov (DHB) calculations [36, 37]. It was also found the nuclear deformation

disappears at temperatures T = 2.0-4.0 MeV. When the temperature T > 4 MeV, the effects

of the vapor phase that take into account the unbound nucleon states become important.

Recently, the finite-temperature covariant density functional theory in the axial-deformed

space was developed and used to study the shape evolution of 72,74Kr [38]. The shape tran-

sition temperature was found between 1.7-2.1 MeV. Furthermore, the octupole correlations

were taken into account and the shape evolutions of typical octupole deformed nuclei 224Ra

and even-even 144−154Ba isotopes were studied, and these nuclei first go through an octupole

shape transition where the octupole correlations disappear at temperature range 0.5-0.95

MeV, and then another quadrupole shape transition from quadrupole deformed shape to

spherical shape at a higher temperature range 1.0-2.2 MeV [39]. Moreover, it was pointed

out that the transition temperatures are roughly proportional to the corresponding defor-

mations at the ground states.

Motivated by this study, we would like to investigate more carefully about the possi-

ble relation between ground-state deformation and the critical temperature. To generalize

our study, we will take examples of nuclei with both octupole and quadrupole deforma-

tions. Traditionally, strong octupole correlations occur at the nucleon numbers being close

to 56 (1h11/2 ↔ 2d5/2 coupling), 88 (1i13/2 ↔ 2f7/2 coupling), and 134 (1j15/2 ↔ 2g9/2 cou-

pling) [40]. In previous study [39], the 224Ra is an isotope with the neutron number 136 and

the proton number 88, and the even-even 144−154Ba isotopes locates at the neutron number

88-98 with the proton number 56. Recently, a new region centering at 292Cm with the neu-

tron number 196 and the proton number 96 were systematically studied and the ground-state

octupole deformation were obtained by the covariant density functional theory [41]. It is

proposed that the neutron 1k17/2 ↔ 2h11/2 coupling and the proton 1i13/2 ↔ 2f7/2 coupling

are responsible for the ground-state octupole deformation. The research concerning 292Cm

will shed light on the understanding of nuclear shape especially octupole correlations and

its related problems.
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Therefore, the purpose of this paper is two-fold. The first one is to study the relation

between critical shape transition temperature and ground-state deformation by taking Cm

isotopes as examples, and the other one is to explore in details the newly suggested octupole

nucleus 292Cm by understanding how the octupole correlations manifest. So in this paper, the

shape transition temperature together with the ground-state deformation will be investigated

for the even-even 286−304Cm isotopes in the CDFT framework. It is organized as follows.

The self-consistent finite-temperature CDFT model with BCS approach for axially deformed

nuclei based on the point-coupling density functional will be briefly introduced in Section II.

In Section III, the shape evolution of 292Cm with temperature will be studied with details

by the single particle levels near the Fermi surfaces concerning the octupole correlations.

Furthermore, the systematics of deformations, pairing gaps of the global minimum and the

specific heat as functions of temperature for even-even 286−304Cm isotopes will be discussed.

A proportional relation between ground-state deformation and critical temperature will be

explored.

II. THEORETICAL FRAMEWORK

The starting point of the CDFT model is an effective Lagrangian density with zero-range

point-coupling interaction between nucleons:

L = ψ̄(iγµ∂
µ −m)ψ

−
1

2
αS(ψ̄ψ)(ψ̄ψ)−

1

2
αV (ψ̄γµψ)(ψ̄γ

µψ)−
1

2
αTV (ψ̄~τγµψ) · (ψ̄~τγ

µψ)

−
1

3
βS(ψ̄ψ)

3 −
1

4
γS(ψ̄ψ)

4 −
1

4
γV [(ψ̄γµψ)(ψ̄γ

µψ)]2

−
1

2
δS∂ν(ψ̄ψ)∂

ν(ψ̄ψ)−
1

2
δV ∂ν(ψ̄γµψ)∂

ν(ψ̄γµψ)

−
1

2
δTV ∂ν(ψ̄~τγµψ) · ∂

ν(ψ̄~τγµψ)

−
1

4
F µνFµν − eψ̄γµ

1− τ3
2

ψAµ, (1)

which includes the free nucleon term, the four-fermion point-coupling terms, the higher-

order terms which are responsible for the effects of medium dependence, the gradient terms

which are included to simulate the effects of finite range, and the electromagnetic interaction

terms. The Dirac spinor field of the nucleon is denoted by ψ, and the nucleon mass is m.
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α, β, γ, and δ with subscripts S (scalar), V (vector), TV (isovector) are coupling constants

(adjustable parameters) in which α refers to the four-fermion term, β and γ respectively to

the third- and fourth-order terms, and δ the derivative couplings.

Following the prescription in Ref. [18] where the BCS limit of finite-temperature Hartree-

Fock Bogoliubov equations is derived, we obtain the finite-temperature CDFT+BCS equa-

tion. The finite-temperature Dirac equation for single nucleons reads

[γµ(i∂
µ − V µ)− (m+ S)]ψk = 0, (2)

where m is the nucleon mass. ψk(r) denotes the Dirac spinor field of a nucleon. The

scalar S(r) and vector V µ(r) potentials are determined by the isoscalar density ρS, isoscalar

current jµV and isovector current ~jµTV . The density and currents are represented by,

ρS(r) =
∑

k

ψ̄k(r)ψk(r)[v
2
k(1− 2fk) + fk], (3)

jµV (r) =
∑

k

ψ̄k(r)γ
µψk(r)[v

2
k(1− 2fk) + fk], (4)

~jµTV (r) =
∑

k

ψ̄k(r)~τγ
µψk(r)[v

2
k(1− 2fk) + fk]. (5)

where the thermal occupation probability of quasiparticle states fk is directly related to

the temperature T by fk = 1/(1 + eEk/kBT ). Ek is the quasiparticle energy for single-

particle (s.p.) state k. A smooth energy-dependent cutoff weight gk having the form of

{1 + exp[(ǫk − λq − Ec)/(Ec/10)]}
−1 is introduced to simulate the effect of finite range.

The cutoff parameter Ec is further determined by an approximate condition
∑
k

2gk = Nq +

1.65N
2/3
q related to the particle number Nq [42]. Consequently, the quasiparticle energy

reads Ek = [(ǫk − λq)
2 + (gk∆k)

2]
1

2 , where λq is the Fermi level. In Eqs. (3)-(5), the BCS

occupation probabilities v2k and associated u2k = 1− v2k are obtained by

v2k =
1

2
(1−

ǫk − λq
Ek

), (6)

u2k =
1

2
(1 +

ǫk − λq
Ek

). (7)
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∆k is the pairing gap parameter, which satisfies the gap equation at finite temperature.

∆k = −
1

2

∑

k′>0

V pp

kk̄k′k̄′

∆k′

Ek′
(1− 2fk′). (8)

The particle number Nq is restricted by Nq = 2
∑
k>0

[v2k(1− 2fk) + fk].

Here we take the δ pairing force V (r) = Vqδ(r), where Vq is the pairing strength parameter

for neutrons or protons. A smooth energy-dependent cutoff weight is introduced to simulate

the effect of finite range in the evaluation of local pair density.

The internal binding energies E at deformation (β2, β3) is obtained by applying con-

straints on the quadrupole moment as well as the octupole moment. The free energy is

evaluated by F = E−TS where S is the entropy. The specific heat Cv is defined as ∂E∗/∂T

where E∗(T ) = E(T ) − E(T = 0) is the internal excitation energy, and E(T ) is the in-

ternal binding energy for the global minimum state in the free energy surface at certain

temperature T . Further details can be found in the Ref. [39].

III. RESULTS AND DISCUSSION

The point-coupling density functional parameter set PC-PK1 is used in our calcula-

tion due to its success in the description of finite nuclei for both ground state and excited

states [43]. The pairing correlations are taken into account by BCS method with a δ pair-

ing force. The value of the pairing strength Vq is taken from Ref. [44, 45], that is, -333.9

(-397.0) MeV fm3 for neutrons (protons). Such strengths are determined to reproduce the

corresponding pairing gap of the spherical configuration of 300Fm, calculated using the rel-

ativistic Hartree-Bogoliubov (RHB) model with the finite-size separable pairing force [44].

A set of axial harmonic oscillator basis functions with 20 major shells is used. Consider-

ing that the effects of the vapor phase become important when T > 4.0 MeV in the DHB

calculations [37], we limit the temperature range to 0-4.0 MeV in our study.

First, we investigate the properties of 292Cm, where the newly predicted mass region with

octupole correlation is centered [41, 46]. The free energies in the (β2, β3) plane at typical

temperatures 0, 0.5, 0.8, 1.0, 1.2 and 1.6 MeV for 292Cm are plotted in Fig. 1. The free

energy surface at zero temperature in Fig. 1(a) reproduces Fig.3(d) in Ref. [45] with the

same parameter set and pairing strengths, as the free energy at zero temperature equals
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FIG. 1. (Color online) The free energy surfaces in the (β2, β3) plane at temperature T=0(a), 0.5(b),

0.8(c), 1.0(d), 1.2(e), and 1.6(f) MeV for 292Cm obtained by the finite-temperature CDFT+BCS

calculations using PC-PK1 energy density functional. The global minima are indicated by the solid

squares. The energy separation between contour lines is 0.5 MeV.

to the binding energy. The calculated ground-state deformation (β2 = 0.177, β3 = 0.166)

is close to other calculations with parameter set DD-PC1 (β2 = 0.150, β3 = 0.137), and

NL3* (β2 = 0.155, β3 = 0.136) [46]. The quadrupole-deformed saddle point is about 1.8

MeV higher than the ground state. The free energy surfaces barely change in Fig. 1(a)-

(b) for temperatures up to 0.5 MeV. In the temperature range 0.5 6 T 6 1.0 MeV, the

energy surfaces change dramatically. The energy difference between the saddle point and

global minimum quickly drops with slight changes of their deformations for 0.5 6 T 6 0.8

MeV. At the same time, the energy difference between the global minimum and spherical
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state also drops quickly, i.e. from 4.5 MeV at T=0.5 MeV to 1.1 MeV at T=0.8 MeV. At

temperature 1.0 MeV in Fig. 1(d), the nucleus experiences a shape phase transition from

quadrupole-octupole deformed to spherical shape. When the temperature continues rising in

Fig. 1(e)-(f), the global minimum remains at the spherical state while the soft area shrinks,

especially in the β3 direction. Such shape evolution is similar to the evolution of 224Ra [39],

except that two shape transitions can be found for 224Ra, namely one from quadrupole-

octupole deformed shape to quadrupole deformed shape at temperature 0.9 MeV, and the

other from quadrupole deformed shape to spherical shape at temperature 1.0 MeV. This

could be related to the fact that the quadrupole deformation and octupole deformation

of the ground state for 292Cm are very close (β2=0.177, β3=0.166) while those for 224Ra

are separated (β2=0.184, β3=0.133). The possible relation between the shape transition

temperatures and the ground-state deformations will be analyzed later.

At zero temperature, the equilibrium shape tends to be deformed since it has lower

values of the s.p. level density [3]. The s.p. levels of neutrons and protons of 292Cm at

zero temperature are plotted in Fig. 2. Two noticeable gaps or low level density areas at

N = 196 and Z = 96 can be found around the ground state (β2 = 0.177, β3 = 0.166) in the

right part of Fig. 2, which are responsible for the formation of octupole ground state.

TABLE I. The components of single-particle level ν1/2[750] (denoted as red in Fig. 2(a)) at the

ground state (g.s.) with (β2, β3) = (0.172, 0.166) and quadrupole state (q.s.) with (β2, β3) =

(0.172, 0) at zero temperature in 292Cm, obtained by the constrained CDFT+BCS calculations

using PC-PK1 energy density functional. Only the components contributing no less than 1% are

listed. The octupole driving pairs Ω[N,nz,ml] and Ω[N + 1, nz ± 3,ml] of the components are

grouped with colors. The summed octupole-component contribution is listed at the bottom.

g.s. at T = 0MeV q.s. at T = 0MeV
1/2[750] 17.1% 1/2[741] 14.6% 1/2[860] 24.1%
1/2[770] 8.9% 1/2[871] 3.7% 1/2[851] 17.5%
1/2[840] 5.3% 1/2[611] 1.6% 1/2[840] 13.1%
1/2[640] 3.9% 1/2[721] 7.7% 1/2[871] 11.9%
1/2[970] 2.9% 1/2[851] 3.8% 1/2[880] 9.2%

1/2[10, 10, 0] 1.7% 1/2[981] 2.3% 1/2[831] 4.5%
1/2[990] 6.3% 1/2[530] 1.5% 1/2[660] 3.4%
1/2[860] 2.4% 1/2[660] 1.4% 1/2[651] 3.0%

1/2[11, 11, 0] 1.1% 1/2[761] 1.1% 1/2[10, 10, 0] 1.7%
1/2[710] 1.0% 1/2[640] 1.5%

1/2[820] 1.3%
Sum 68.2% 0%
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FIG. 2. (Color online) Neutron (a) and proton (b) single-particle levels as a function of temperature

(in MeV) for the nucleus 292Cm, obtained by the constrained CDFT+BCS calculations using PC-

PK1 energy density functional. The dash-dot lines denote the corresponding Fermi surfaces. In the

left portion, the quadrupole deformation β2 increase from 0 to 0.177 without octupole deformation

while in the right portion, the octupole defomation β3 increase from 0 to 0.4 with β2 = 0.177. The

single-particle level ν1/2[750] denoted as red will be analyzed in Table I.
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In axially deformed CDFT model, the s.p. levels are decomposed into various compo-

nents of the harmonic basis with the same quantum number Ω (projection of the total

angular momentum onto the symmetry axis), and further labeled by the primary one. As

the level components and their decomposition contributions vary with the deformations,

the primary component (a.k.a. level label) may change at certain deformations. Taking

the level ν1/2[750] near the Fermi surface at the ground state as an example, its primary

component changes to 1/2[770], and then 1/2[860] when β3 decreases from 0.166 towards the

purely quadrupole-deformed state. Since the octupole correlation couples the orbitals with

Ω[N, nz, ml] and Ω[N + 1, nz ± 3, ml] [47], it is interesting to investigate how the octupole

correlation plays the role in 292Cm by examining the detailed components of its s.p. levels,

at quadrupole-octupole deformed (octupole deformed for short) state or purely quadrupole

deformed state, before and after the shape transition temperature. The components of s.p.

level labeled as ν1/2[750] at the ground state and at the quadrupole deformed state (its label

changes into 1/2[860] as described above) are compared side by side in Table I. For saving

space, the left four columns are for the octupole deformed state while the right two columns

are for the quadrupole deformed state. Unfortunately, the octupole pairing partner of the

first leading component 1/2[750] cannot be found in the components contributing no less than

1%. For the second leading component 1/2[741], two octupole pairing parters can be found,

namely 1/2[871] and 1/2[611]. Together they compose two driving pairs 1/2[741]−1/2[871],

and 1/2[741] − 1/2[611], which satisfies the rule that the quantum number N differs by 1

and nz differs by 3. Similarly, for the third leading component, there are four driving pairs

1/2[770]−1/2[840], 1/2[770]−1/2[640], 1/2[840]−1/2[970], and 1/2[970]−1/2[10, 10, 0]; for

the fourth component, there are two pairs 1/2[721]− 1/2[851], and 1/2[851]− 1/2[981]; for

the remaining components, there are two pairs 1/2[990]− 1/2[860], and 1/2[530]− 1/2[660].

Finally, all components composing octupole driving pairs contribute an outstanding portion

of 68.2% by counting only once. For the quadrupole deformed state, this level only has the

components with even N numbers, making the octupole pairs apparently absent.

For completeness, the contributions from octupole driving components for other s.p. levels

near the Fermi surfaces for octupole-deformed ground state and quadrupole-deformed state

are tabulated in the left part of Table II. It is clear that for the octupole-deformed ground

state, the octupole driving components contribute a large portion to all the neutron s.p.

levels and some proton s.p. levels near the Fermi surfaces. On the contrary, the octupole
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TABLE II. Summed contribution from the octupole driving pairs Ω[N,nz,ml] and Ω[N + 1, nz ±

3,ml] for single-particle levels near Fermi surfaces at the ground state (g.s.) with (β2, β3) =

(0.172, 0.166) and quadrupole state (q.s.) with (β2, β3) = (0.172, 0) at T = 0 MeV, as well as

the global minimum state (g.m.) with (β2, β3) = (0.161, 0.135) at T = 0.8 MeV and the global

minimum state (g.m.) with (β2, β3) = (0, 0) at T = 1 MeV in 292Cm, obtained by the constrained

CDFT+BCS calculations using PC-PK1 energy density functional. See Table I for summation

detail.

Level
g.s. q.s. g.m. g.m.

at T = 0MeV at T = 0MeV at T = 0.8MeV at T = 1MeV
ν3/2[752] 85.9% 0% 52.0% 0%
ν5/2[743] 69.6% 0% 67.9% 0%
ν1/2[750] 68.2% 0% 69.8% 0%
ν5/2[743] 46.9% 0% 53.3% 0%
ν7/2[734] 36.3% 0% 22.8% 0%
ν1/2[741] 62.7% 0% 66.1% 0%
ν3/2[741] 70.9% 0% 89.7% 0%
π3/2[521] 69.8% 0% 70.2% 0%
π7/2[514] 0% 0% 0% 0%
π9/2[505] 0% 0% 0% 0%
π1/2[521] 70.7% 0% 71.3% 0%
π5/2[642] 51.6% 0% 51.9% 0%

driving components contribute nothing to the s.p. levels for the quadrupole-deformed state

at zero temperature. In the right part of Table II, the contribution for such s.p. levels before

and at the shape transition temperature 1.0 MeV are listed. The situation for the global

minimum state at T = 0.8 MeV is very similar to the global minimum state at T = 0 MeV,

manifested by the existence of big octupole deformation at T = 0.8 MeV. After the shape

transition, the contributions of octupole driving components become zero, and consequently

the octupole deformation disappears as well at T = 1.0 MeV. Based on this table, the

contribution coming from the octupole driving pairs for s.p. levels near the Fermi surfaces

provides a good manifestation of the octupole correlation in the axially deformed CDFT

model.

Furthermore, we will discuss the deformations, and the pairing gaps of the global mini-

mum as functions of temperature for even-even 286−304Cm isotopes. Fig. 3 displays the defor-

mations β2, β3, β4 as functions of temperature for even-even 286−304Cm. At zero temperature,

the values of β2, β3 for even-even
286−296Cm are nearly identical. For 298,300Cm, the octupole

deformation β3 becomes smaller, and finally for 302,304Cm it disappears. Such results at zero
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FIG. 3. (Color online) The global minimum deformations β2, β3, β4 as functions of temperature (in
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temperature are consistent with calculations of parameter sets DD-PC1 [46], and NL3* [46].

For example, the ground-state deformation (β2, β3) for 296Cm reads (0.204, 0.190) for PC-

PK1, (0.190, 0.164) for DD-PC1, and (0.189, 0.154) for NL3*. The increasing quadrupole

deformation for even-even 286−304Cm ground states can be associated with the fact that

the neutron number is departing from 184, where shell closure is predicted in the CDFT

calculations, toward the middle of a new shell closure. For each isotope, when the temper-

ature rises, the global minimum deformations evolve with the temperature similarly, where

they change slowly for temperatures far below the transition temperature and then quickly

drop to zero approaching the transition temperature. The quadrupole and octupole tran-

sition temperatures for 298,300Cm are separated, similar to the case of 224Ra and even-even

144−154Ba discussed in Ref [39]. The hexadecapole deformation β4 behaves like β2 and β3

for 286−296Cm, while it drops little at the octupole transition temperature and vanishes at

the quadrupole transition temperature for 298,300Cm. The quadrupole and octupole shape

transition temperatures T2 and T3 increase with the corresponding deformations as well. We

will analyze in more detail their relations in Fig. 5 and 6.
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FIG. 4. (Color online) The pairing gaps for neutrons and protons ∆n, ∆p (in MeV) as func-

tions of temperature (in MeV) for even-even 286−304Cm (a-j), obtained by the finite-temperature

CDFT+BCS calculations using PC-PK1 energy density functional.
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The pairing gaps for neutrons and protons ∆n, ∆p as functions of temperature are dis-

played in Fig. 4. Both neutron and proton pairing correlations exist for even-even 286−304Cm

at low temperatures. The neutron pairing gaps are 0.4 ∼ 0.5 MeV while the proton pairing

gaps are 0.7 ∼ 0.9 MeV. All critical temperatures for pairing phase transition basically fol-

low the rule Tn,p = 0.6∆n,p(0) where Tn,p is the neutron or proton pairing phase transition

temperature and ∆n,p(0) is the neutron or proton pairing gap at zero temperature. This

rule is discovered for spherical nuclei in Ref. [17, 19, 33].
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FIG. 5. (Color online) The quadrupole (octupole) transition temperatures T2 (T3) versus the

corresponding ground-state deformations β2 (β3) (0) for even-even
284−304Cm obtained by the con-

strained CDFT+BCS calculations using PC-PK1 energy density functional. The dash-dotted line

indicates the proportional relation Tc = 6.6β(0). The solid and open symbols refer to quadrupole

and octuopole deformations correspondingly.

Prompted by the simple relation between the pairing transition temperatures and the

pairing gaps at zero temperature, we study the possible relation between the shape transi-

tion temperatures and the deformations at zero temperature. In Fig. 5, the critical shape

transition temperatures T2 (T3) versus the ground-state quadrupole and octupole deforma-

tions β2 (β3) (0) for even-even
284−304Cm are plotted. It turns out that a good proportional

relation between the critical temperature and deformation is found, which is T2,3 = 6.6β2,3(0)

for both quadrupole and octupole shape transitions. This ratio is obtained based on our
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microscopic calculations from covariant density functional. From Ref.[2], it indicates a larger

ratio, where the difference may come from the different functionals or different ways to treat

pairing correlations. So more studies based on different microscopic theory framework are

encouraged. In a previous study, the ratio was estimated to be 40A−1/3[48], which is consis-

tent with our results. Since the nuclei we considered here are heavy nuclei, the dependence

on mass number is unnoticeable. However, further systematic investigation will be done in

the future.

In Fig. 6, for even-even 284−304Cm, the shape transition temperatures T2,3 and the

quadrupole and octupole deformations at zero temperature β2,3(0) as well as 6.6β2,3(0) as

functions of the neutron numbers are plotted in panel (a) and (b); the pairing transition

temperatures for neutrons and protons Tn,p, the pairing gap at zero temperature for neu-

trons and protons ∆n,p(0), as well as 0.6∆n,p(0), are plotted in panel (c) and (d). Similar

to Ref. [24], the quadrupole deformation at zero temperature β2(0) monotonously increases

starting from 286Cm with rising neutron numbers since it starts from the shell closure and

is reaching to the middle of the shell. The quadrupole shape transition temperature T2 has

the same behavior as β2(0) in Fig. 6(a). In between purely quadrupole-deformed 284Cm

and 302Cm, the octupole deformation β3(0) first slowly increases and quickly decreases after

nucleus 298Cm. Such pattern should also hold for β2(0) if more neutron-rich isotopes are

included. From panel (a) and (b) we can see for both quadrupole and octupole shape

transitions, the critical temperature follows Tc = 6.6β(0) very well. Similarly, in panel(c)

and (d), the critical temperature for pairing transition also follows Tc = 0.6∆(0).

Finally, the specific heat Cv as a function of temperature for even-even 286−304Cm is

plotted in Fig. 7. The specific heat is the derivative of the relative excitation energy E∗,

and the discontinuities in this quantity is customarily interpreted as a signature of phase

transitions. There are three discontinuities for even-even 286−304Cm except 298Cm, indicating

neutron pairing transition, proton pairing transition, and shape transition from octupole-

quadrupole deformed shape to spherical shape. Since the quadrupole and octupole ground-

state deformations for 298,300Cm are separated, two separated shape transitions occur, namely

one from octupole-quadrupole deformed shape to quadrupole deformed shape and the other

from quadrupole deformed shape to spherical shape. So for 298Cm, there are four transitions:

pairing transitions at T =0.3 and 0.5 MeV, octupole shape transition at T =1.1 MeV, and

quadrupole shape transitions at T =1.5 MeV. For 300Cm, the proton pairing transition
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FIG. 6. (Color online) The ground-state quadrupole, octupole deformations β2(0), β3(0), as well

as 6.6β2(0), 6.6β3(0), and their corresponding shape transition temperatures T2, T3 (a-b); together

with the ground-state pairing gaps for neutrons and protons, ∆n(0), ∆p(0), as well as 0.6∆n(0),

0.6∆p(0), and their corresponding pairing transition temperatures Tn, Tp (c-d), as functions of

neutron number for even-even 284−304Cm, obtained by the constrained CDFT+BCS calculations

using PC-PK1 energy density functional. The transition temperatures and pairing gaps are in

MeV.

coincides with the octupole shape transition at T =0.5 MeV, making three discontinuities

in Cv. With increasing neutron numbers, the discontinuities caused by pairing transitions

almost stay the same at T =0.3 and 0.5 MeV, while the discontinuity caused by shape

transitions move to high temperatures monotonously. All the discontinuities in the specific

heat will be more moderate if the quantum fluctuation is further considered.

IV. SUMMARY

In summary, the shape evolutions of even-even 286−304Cm with temperature are studied

using the finite-temperature axially deformed CDFT+BCS theory. As a typical example

in these isotopes, we studied in detail the free energy surface, the Nilsson single-particle

levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study,

the formation of octupole equilibrium is understood by the contribution coming from the

octupole driving pairs with Ω[N, nz , ml] and Ω[N + 1, nz ± 3, ml] for single-particle levels
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FIG. 7. (Color online) The specific heat Cv as functions of temperature (in MeV) for even-even
286−304Cm, obtained by the finite-temperature CDFT+BCS calculations using PC-PK1 energy

density functional.

near the Fermi surfaces as it provides a good manifestation of the octupole correlation in

the axially deformed CDFT model. Furthermore, the deformations, and the pairing gaps

of the global minimum together with the specific heat as functions of the temperature for

even-even 286−304Cm isotopes are discussed. A simple relation between the shape transition

temperatures and the deformations at zero temperature Tc = 6.6β(0) is found valid for both

octupole shape transition and quadrupole shape transition for isotopes considered.
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