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The abundance of large clusters of nucleons in neutron-rich matter at sub-nuclear density is
found to be greatly reduced by finite temperature effects when matter is close to beta-equilibrium,
compared to the case where electron fraction is fixed at Ye > 0.1 as often considered in the literature.
Large nuclei and exotic non-spherical nuclear configurations called pasta, favored in the vicinity of
the transition to uniform matter at T = 0, dissolve at relatively low temperature Tu as protons
leak out of nuclei and pasta. For matter in β-equilibrium with a negligible neutrino chemical
potential we find that T βu ' 4 ± 1 MeV for realistic equations of state. This is lower than the
maximum temperature T βmax ' 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons, and
can be explained by a change in the nature of the transition to uniform matter called retrograde
condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta
makes a modest contribution to the opacity under the conditions encountered in supernovae and
neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures,
and at lower temperatures when clusters are present, Coulomb correlations between them suppresses
coherent neutrino scattering off individual clusters. Implications for neutrino signals from galactic
supernovae are briefly discussed.

I. INTRODUCTION

The properties of hot dense matter encountered in
core-collapse supernovae, newly born neutron stars called
proto-neutron stars, and in neutron star mergers is ex-
pected to play a key role in shaping their observable pho-
ton, neutrino and gravitational wave emission. In super-
novae, state of the art simulations indicate that neutrino
transport at high density influences the supernova mech-
anism [1, 2], the long term neutrino emission detectable
in terrestrial neutrino detectors [3–6], and heavy element
nucleosynthesis [7–11].

The presence of heterogeneous matter at high density
is expected to modify the neutrino scattering rates be-
cause the size of structures encountered in such matter
can be comparable to the neutrino wavelength, and neu-
trinos would couple coherently to the net weak charge
contained within them. A familiar example is neutrino-
nucleus coherent scattering, known to play an important
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role in trapping neutrinos during core-collapse [12]. Ad-
ditionally, heterogeneous phases are favored near first-
order phase transitions in neutron stars at high density
[13], and coherent neutrino scattering in such matter can
greatly increase the opacity [14]. Coherent neutrino scat-
tering from the nuclear pasta phase where large spheri-
cal and non-spherical nuclei coexist with a dense nucleon
gas for densities between 1013−1014 g/cm3 has also been
studied [15, 16].

Recently, the enhanced neutrino opacity in the high
density heterogeneous pasta phase was incorporated in
simulations of proto-neutron star evolution and found
to have a significant impact on the temporal structure
of the neutrino luminosity [17]. Motivated by this in-
teresting finding, we perform calculations of matter at
finite temperature to address if heterogeneous nuclear
pasta is present under the typical thermodynamic con-
ditions encountered in proto-neutron stars, and study its
influence on the neutrino scattering rates. We find that
the heterogeneous pasta phase dissolves at relatively low
temperature for the small values of the electron fraction
characteristic of dense matter in beta-equilibrium. Con-
sequently, the enhancement of neutrino scattering rates
due to coherent scattering is relatively modest and sig-
nificantly smaller than those employed in [17]. In ad-
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dition, we find that Coulomb correlations between clus-
ters suppresses scattering of neutrinos with wavelengths
larger than the inter-cluster distance in agreement with
earlier work [18, 19]. Interestingly, we also find that
at lower temperatures when large nuclei can be present
there could be a net reduction of the neutrino opacity as
nucleons get locked up inside nuclei.

The material is organized as follows. In §II we review
the basic nuclear physics of phase coexistence and show
that the simplified Gibbs construction for two-phase equi-
librium provides a useful bounds on the phase boundaries
between homogeneous and heterogeneous matter. This
allows us to provide an upper limit on the critical tem-
perature above which pasta dissolves to form a uniform
nucleon liquid, and its dependence on the nuclear equa-
tion of state is discussed. Implications for neutrino trans-
port in proto-neutron stars are discussed in §III, and our
conclusions are presented in §IV.

II. HOT MATTER AT SUB-NUCLEAR
DENSITY AND THE DISSOLUTION OF PASTA

The structure of matter at sub-nuclear density and zero
temperature is fairly well understood [45]. With increas-
ing density, nuclei become neutron-rich due to the rapid
increase in the electron Fermi energy. Neutrons drip out
of nuclei when the density exceeds ρdrip ' 4×1011 g/cm

3
,

and non-spherical or pasta nuclei are likely when the den-
sity exceeds ρpasta ' 1013 g/cm

3
[20]. Several studies

using different many-body methods and underlying nu-
clear interactions have all yielded similar qualitative be-
havior [20–22].

At finite temperature, the situation is less clear. Some
calculations indicate that at the highest densities, nuclei
and pasta persist up to T ' 10− 15 MeV when the elec-
tron (or proton) fraction Ye & 0.1 [23, 24]. Others find
that the large and coherent structures, such as rod, tubes,
and planes disappear at much lower temperature [47, 49].

In what follows we shall derive an upper bound on
the temperature for the dissolution of nuclei and pasta
for beta-equilibrated matter at densities in the range
ρ ' 1012 − 1014 g/cm

3
. We show that the dissolution

of clusters is related to a change in the nature of tran-
sition to the high density uniform phase, which turns
from an ordinary gas-to-liquid transition, during which
the volume fraction of the high density phase continues
to increase, into a less ordinary gas-to-liquid-to-gas tran-
sition also called retrograde condensation where the vol-
ume fraction of the high density phase decreases [26].
To begin we consider beta-equilibrium matter with zero
neutrino chemical potential because the outer regions of a
proto-neutron star, which may contain nuclear pasta, are
able to deleptonize rapidly and reach beta-equilibrium on
a short time scale compared to the timescales of relevance
to proto-neutron star evolution [3–6].

First, we identify the thermodynamic conditions favor-
able for the existence of nuclear pasta. Since surface and

Coulomb energies act to disfavor the heterogeneous state,
and shell effects are relatively small at the temperatures
of interest, the liquid-gas phase coexistence region pre-
dicted by the Gibbs construction, where these effects are
ignored, will likely enclose the phase coexistence region
predicted when such finite size effects are included. This
simple observation allows us to provide a useful upper
bound on the dissolution temperature by examining the
two-phase Gibbs construction for bulk matter. We note
that neglecting finite size effects has been shown to pro-
vide results comparable to the Thomas-Fermi approach
at finite temperature [48] (see Erratum of this reference),
as well as those obtained from a quantum molecular dy-
namics calculation [49].

In the following, we briefly recall the well-known Gibbs
construction applied to a nuclear system composed of
neutrons and protons [24–26]. For nuclei or pasta to
coexist with a gas of nucleons, the high density liquid
phase inside these structures have to be in equilibrium
with the low density gas outside. Denoting the pressure,
and the neutron and proton chemical potentials of the
high density liquid phase as Ph, and µhn and µhp , respec-

tively, Gibbs equilibrium requires Ph = P l, µhn = µln and
µhp = µlp, where P l, µln and µlp, are the corresponding
pressure and chemical potentials in the low density gas
phase. To find the coexistence region in the phase dia-
gram an equation of state which specifies how the energy
density of bulk nucleonic matter εnuc(nn, np, T ) depends
on the neutron and proton densities, and the temperature
is needed. In practice we work in the proton-canonical
ensemble where µn is fixed and np is the extensive vari-
able [25]. We have however checked that our results are
independent of the statistical ensemble.

At a fixed temperature, phase coexistence is possible
when there exists two pairs of nucleon densities, denoted
by nhn, n

h
p and nln, n

l
p, that can satisfy the Gibbs equilib-

rium criteria. These pairs can be depicted as two points
on a two-dimensional plot where the axes are neutron
and proton densities. In Fig. 1 these points are calcu-
lated for the model SLy4 and appear on the solid-black
curve. For a pair of points in Gibbs equilibrium, a Gibbs
construction can be used to find the state of matter at
intermediate densities. Therefore, a pair of points that
satisfy Gibbs equilibrium define a curve through neutron-
proton density space given by [46]

nn = unhn + (1− u)nln
np = unhp + (1− u)nlp, (1)

where u is fraction of the volume that is occupied by the
high-density liquid phase. The thin purple curves rep-
resent these curves for pairs of select Gibbs equilibrium
points. For example, in the middle panel of Fig. 1, the
pair of end points defined by the intersection labeled l
and h specify the neutron and proton densities of the
low and high density phases, nln, n

l
p and nhn, n

h
p , respec-

tively. Clearly, Ye varies along any Gibbs construction
curve, so a constant Ye curve crosses the Gibbs construc-
tions of many Gibbs equilibrium pairs in the mixed-phase
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FIG. 1. β-equilibrium path (thick full blue line) for SLy4 Skyrme interaction in the coexistence region (delimited by the thick
full black line) in the (nn, np) plane and for T=1–9 MeV. A sample of the Gibbs construction paths are shown (thin full purple
lines). The global density which intersect the β-equilibrium path line with the Gibbs construction one (see for instance the
”+”symbol at T=5 MeV), represents the equilibrium state connecting the 2 phases at equilibrium which are located at the
boundaries (see the points labeled l and h which are the low and high density phases associated to the global density identified
by the ”+” symbol at β-equilibrium). The constant Ye = 0.2, 0.3 and 0.4 paths are represented by the thick yellow dashed
lines. The spinodal instability region is also shown (thin full green line) and the critical points are shown with red solid dots
with error-bars.

region. In Fig. 1, the yellow dashed lines show curves of
constant Ye and the Gibbs equilibrium at a specific Ye
is defined by its intersection with the purple curve. The
thick-blue curve denotes the β-equilibrium path, along
which µn − µp = µe. Gibbs equilibrium is possible along
the β-equilibrium path when thick-blue curve lies within
the coexistence region. Once again, it can be seen that
the β-equilibrium curve moves across many Gibbs equi-
librium pairs as it traverses the coexistence region. The
β-equilibrium path for the homogeneous phase is also
shown as the dashed-blue curve for reference. The spin-
odal region where matter is unstable to small density
perturbations is the region enclosed by the thin green
curve, and the critical points associated with the first-
order transition are denoted by the red dots.

Several insights about the role of finite temperature
can be gleaned from examining the progression of the
phase coexistence region with temperature seen in the
three panels in Fig. 1:

• With increasing temperature the extent of the
phase co-existence region shrinks, and its inter-
section with the path of β-equilibrium decreases.
Above the critical temperature, T βmax (' 9MeV
for the model chosen) there is no intersection and
phase coexistence in β-equilibrium is not possible.

• In contrast, out of β-equilibrium for moderate val-

ues of Ye > 0.2 there exists a range of ambient con-
ditions that extends to higher temperature where
Gibbs equilibrium is possible. Nonetheless, with
increasing temperature the area enclosed by the
solid-black coexistence curve shrinks and its inter-
section with lines of constant Ye is reduced. Even-
tually, above the critical temperature denoted by
TYe

max ' 12 − 15 MeV there is no intersection and
phase coexistence is absent.

• Co-existence in β-equilibrium ends near the criti-
cal point. With increasing temperature, phase co-
existence ends by making a transition to the uni-
form low-density gas phase. This feature, called
retrograde condensation [26], implies that the path
along beta-equilibrium will favor fewer nuclei with
increasing density.

• For moderate values of Ye > 0.2 phase co-existence
ends by transiting to the high-density liquid phase
and large nuclei persist to higher temperature.

• With increasing temperature, the density contrast
between the high and low density phases associated
with Gibbs equilibrium is reduced.

The impact of retrograde condensation on the volume
fraction of the high-density liquid phase is seen more
clearly in Fig. 2. At low temperatures, u begins close
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FIG. 2. Volume fraction of the high density phase in het-
erogeneous matter for SLy4 Skyrme interaction. (a) for the
β-equilibrium path, (b) for the constant Ye = 0.2 path.

to zero at low densities and increases to one at high den-
sities, implying that it exits the coexistence region in the
high-density phase. But above a critical temperature,
u reaches a maximum of less than one and turns over,
implying the β-equilibrium path exits the coexistence re-
gion in the low-density gas phase. The fact that the
maximum volume fraction occupied by the high-density
phase, which corresponds to nuclei or pasta structures,
is rather small at temperatures high enough for retro-
grade condensation can significantly impact the contribu-
tion of coherent scattering to the neutrino opacity of β-
equilibrium matter. Since non-spherical shapes or pasta
nuclei are favored for u & 1/8 (for a pedagogic discussion
of pasta nuclei see Ref. [20]) we include the horizontal
dashed line at u = 1/8 to help extract the critical tem-
perature T βu above which pasta nuclei no longer appear
(note that T βu < T βmax). From panel (a) of Fig. 2 we see
that T βu is between 5 and 6 MeV (for SLy4 EOS). In con-
trast for matter at fixed Ye = 0.2, shown in panel (b),
pasta nuclei persist to higher temperatures until phase
coexistence ends at TYe

max

We can understand the physical mechanism for retro-
grade condensation at larger temperatures by examining
the evolution of the proton fraction in the gas phase.
Global charge neutrality (ne = np) and Eq. (1) require
the volume fraction of the high density phase to be

u =
ne − nlp
nhp − nlp

, (2)

where the electron density ne is assumed to be uniform
because the Debye screening length is large compared to
the typical size of electrically neutral Wigner-Seitz cells.
In the beta-equilibrium mixed phase the lowest energy
level for protons in the low density gas phase Elp > µp
and at T = 0 the proton density there denoted by nlp = 0.

At T = 0 the volume fraction u = ne/n
h
p increases rapidly

with increasing density because ne increases and nhp de-

creases. At finite temperature nlp > 0 because proton
states in the gas can be thermally populated. This is
illustrated in Fig. 3 where the occupied energy levels
of protons in both the low and high density phases are

protons

protons

thermal 
protons

high-density low-densityhigh-density low-density

µp

El
p

Eh
p

∆Ep

T ≃ ∆EpT = 0

FIG. 3. This schematic shows the occupied proton energy
levels in the low and high density phases that coexist in the
heterogeneous phase. The T = 0 situation is shown on the left
and finite temperature where a significant thermal population
exists in the low density phase is on shown the right. See text
for additional details.
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FIG. 4. (a) Energy differences ∆Ep/T and (b) charge particle
densities (ne, n

l
p, n

h
p) as function of the density and for differ-

ent temperatures T = 1-6 MeV. The SLy4 EOS is considered
here.

shown at zero and finite temperature.
The thermal population of protons in the gas [46]

nlp ' 2

(
mpT

2π

)3/2

e−∆Ep/T (3)

where ∆Ep = ElP − µp, becomes significant when T '
∆Ep and increases exponentially with temperature. In
contrast, the density of protons in the high density phase
still remains significantly larger and does not change ap-
preciably with temperature because of their high degen-
eracy.

The typical evolution of ∆Ep/T is shown in panel (a)
of Fig. 4 for the SLy4 EOS. Except close to the transi-
tion density, ∆Ep/T � 1 leads to significant suppression
of the proton density in the gas phase. In the vicinity of
the transition density ∆Ep/T decreases rapidly and from
Eq. (3) the proton fraction in the gas increases exponen-
tially. The number densities of the charged particles as
function of the average baryon density are shown in panel
(b). Since electric charge neutrality in the uniform phase
requires ne = np = ngasp , the point at which ne and nlp
first intersect defines the low density boundary of the
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FIG. 5. (a) dissolution temperature Tu and maximal tem-
peratures Tmax at β-equilibrium, compared to Tmax at fixed
xe=0.2 and 0.4 for the set of EOS compatible with chiral
EFT EOS in neutron matter. (b) Highest density reached by
the pasta phase for beta equilibrium or at fixed Ye. These
predictions are shown versus Lsym.

coexistence region. In the vicinity of this point, nonuni-
form matter is predominantly composed of the gas phase.
The high density boundary is defined by the intersection
of the ne and nhp at low temperature, or by the second

intersection of the ne and nlp at high temperature as ex-
pected for retrograde condensation. These features are
also readily discernible from Fig. 2 where the evolution
of the volume fraction of the high density phase with
density is shown for various temperatures.

As expected from the preceding discussion and Eq. (2),
for matter in β-equilibrium where Ye is small, the volume
fraction u will decrease with density for T & ∆Ep. When
this criterion is met, the density of protons in the low
density gas phase will become comparable to the electron
density, and eventually as ∆Ep decreases with density the
volume fraction u→ 0.

We now turn to study the model dependence of the
critical temperatures denoted by T βm, T βmax, and TYe

max

discussed earlier. We first select a subset of model
Skyrme and relativistic mean field EOSs which predict
the energy per particle of neutron matter at nb = 0.06
and 0.10 fm−3) that are compatible with QMC [27] or
MBPT [28], which are based on two and three body
chiral EFT potentials. The pasta dissolution temper-
ature T βu for these models are shown in panel (a) of
Fig. 5. The names of the EOS are shown vertically
above the predictions and the EOS are ordered according
to the slope of the symmetry energy at nuclear satura-
tion density denoted by Lsym. The average prediction is
T βu = 5.0 ± 2 MeV and decreases with Lsym (the anti-
correlation coefficient is -0.81) and the dispersion reflects
the additional dependence on the EOS parameters. In
panel (b) of Fig. 5 we show the highest average density
of the coexistence region associated with T βu and TYe=0.4

max

for the EOSs in panel (a) and find that they are clearly
anti-correlated with Lsym.

The striking feature here is that the pasta dissolu-

tion temperature in β-equilibrium is much lower than the
maximal temperature of the phase coexistence, and that
the maximal temperature TYe

max even at a modest value
of Ye = 0.2 is about a factor of two higher than T βu . For
typical values of Lsym around 50–60 MeV, the dissolu-
tion temperature is estimated to be T βu ' 4 ± 1 MeV.
Since our analysis neglects finite size effects such as sur-
face, Coulomb and shell effects we believe that this is an
upper limit on the dissolution temperature.

It is interesting to compare our predictions with those
of other works. The maximal temperature at fixed elec-
tron fraction Ye = 0.3(0.5) was estimated from a quan-
tum molecular dynamics (QMD) simulations to be about
5(6) MeV [47]. In a similar approach and fixing Ye = 0.3,
the maximal temperature was found to be 6 and 9 MeV
for two different nuclear EOS with Lsym = 93 and
80 MeV [49]. In addition, another temperature scale
was introduced: the temperature at which the nuclear
surface is blurred due to proton drip out. This charac-
teristic temperature is qualitatively similar to the dis-
solution temperature Tu in our approach. It was esti-
mated to be around 3 MeV in Ref. [47] and around 3
or 4 MeV, depending on the nuclear EOS, in Ref. [49].
These two temperature scales are lower than ours, con-
firming that our temperature scales shown in Fig. 5 rep-
resent upper bounds. Notice also that the value of Lsym
of these nuclear EOS are significantly larger than the
ones we considered and our results imply that the larger
the value of Lsym the lower the temperature (see Fig. 5).
This also contribute in part to explain the differences be-
tween our results and the ones of the QMC approach.
Due to its computationally heavy framework, an ex-
tended model dependence of QMD in the nuclear EOS
has not yet been done. A more systematic study was
done based on a Thomas-Fermi approach, and the pasta
phase in β-equilibrium matter was shown to melt above
5-6 MeV [50]. This again is lower than our estimate for
the maximal temperature, as expected. Finally, a recent
quantum calculation (Hartree-Fock) has been performed
confirming that our estimate of T βu is an upper limit for
the melting of the crust [51].

III. NEUTRINO SCATTERING

Coherent neutrino scattering from nuclei and pasta can
be estimated using the two-phase Gibbs construction dis-
cussed in the preceding section if their typical size is
known. The nuclear size is set by the competition be-
tween the surface and Coulomb energies, the mass num-
ber and charge of the energetically favored nuclei can be
calculated by specifying the surface tension [20]. Shell ef-
fects can also play a role but we can expect their impact
to be less important at the temperatures of interest, and
we neglect them in the following analysis. Further, al-
though we should expect a distribution of nuclei at finite
temperature, to obtain a simple first estimate we shall
assume that the distribution is dominated by a single
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nucleus. In this case, the radius of the favored nucleus
is [20].

r3
A =

3σ

4πe2(nhp)2f3(u)
with f3(u) =

2− 3u1/3 + u

5
,

(4)
where σ is the surface tension between the low and high
density phases, and f3(u) is the geometrical factor asso-
ciated with the Coulomb energy of the Wigner-Seitz cell
in d = 3 dimensions [29]. The surface tension is a func-
tion of the density, Ye and T . We use the ansatz from
Ref. [30] (see also Ref. [31]) and parameters obtained for
the SLy4 interaction. Note that this simple ansatz ne-
glects the influence of the protons in the low density gas
phase on the surface tension [32] .

For the purpose of calculating coherent neutrino scat-
tering, we shall, for simplicity, assume that nuclei are
spherical for all values of u. This is reasonable because
angle averaged coherent scattering rates from rod-like
and slab-like structures have been calculated earlier and
found to be comparable or smaller than those from spher-
ical nuclei of similar size [33]. Further, as noted earlier,
close to β-equilibrium the pasta region is relatively small
even for T < T βu , and absent for T > T βu .

The differential coherent elastic scattering rate from
the nuclei in the heterogeneous phase is given by [14, 52]

dΓcoh

d cos θ
=
G2
F E2

ν

8π
nA (1 + cos θ) S(q) N2

w F 2
A(q) (5)

where the total weak charge of a nucleus is defined as [14]

Nw =
4π

3
r3
A (nhn − nln) , (6)

and nA = 3u/(4πr3
A) is the density of nuclei. We have

neglected the proton contribution in the vector response
because of their weak charge ' 1 − 4 sin2 θW ≈ 0,
and subtracted the density of neutrons from the low
density phase because neutrinos only scatter off the
density contrast. The static structure factor S(q) ac-
counts for correlations between nuclei due to long-range
Coulomb interactions (weakly screened by electrons) that
tends to suppress scattering at small momentum transfer
q = Eν

√
2(1− cos θ) . 1/a where a = (3/4πnA)1/3 =

rA/u
1/3 is the average distance between nuclei. Scatter-

ing with high momentum transfer with q & 1/rA is sup-
pressed by the form factor of the nucleus FA(q) which
we take to be that of a sphere of constant density and
radius rA. More realistic choices such as the Helm form
factor [34], have a negligible impact on our results.

In a one component plasma, S(q) depends on a and
the Coulomb coupling parameter Γ = Z2e2/akBT where
Z is the ion charge, e2 = 1/137 and kBT is the thermal
energy. In our simple model for the heterogeneous state
where we assume a single spherical nucleus captures the
essential physics and 56Fe being the ground state at zero
density,

Z ≈ 26

(
σ

σ0

) (
n0

2nhp

) (
f3(0)

f3(u)

)
, (7)

where we used Eq. (4) and the following parameters:
σ0 ' 1.2 MeV/fm2 is the surface tension of symmetric
nuclei in vacuum, n0 ' 0.16 fm−3 is the nuclear satura-
tion density. Typically we find Z ' 50 at the density for
which we expect an appreciable fraction of large nuclei or
pasta, and Γ� 1. For large Γ the static structure factor
S(q)� 1 unless qa� 1, and for Γ > 10 the interference
of amplitudes for neutrino scattering off different clusters
is strong and destructive at small qa < 2–3. At interme-
diate qa ' 4–5, constructive interference can enhance
scattering, and for qa � 5 where interference is negligi-
ble S(q) ' 1. In this work we employ S(q) obtained from
recent fits to accurate MD simulations of one-component
plasmas [35] to properly account for screening for Γ in
the range 1–150. We note that for T > 2 MeV, Γ < 150
even at the highest density, and crystallization is not fa-
vored and its reasonable to work with S(q) obtained for
the liquid state.

The neutrino scattering rate from non-relativistic nu-
cleons in the gas phase is given by [53]

dΓν
d cos θ

=
G2
F E2

ν

8π

∑
ij

[
(1 + cos θ) CivC

j
vS

ij
v (q)

+(3− cos θ)CiaC
j
aS

ij
a (q)

]
, (8)

where the labels i and j can be either neutrons or pro-
tons, Civ and Cia are their corresponding vector and axial
vector charges. In the long-wavelength limit, which is
adequate to describe low energy neutrino scattering, the
static structure factors (unnormalized) can be related to
thermodynamic functions [46],

Sijv = T

(
∂2P

∂µj∂µi

)
T

(9)

where P is the pressure of the gas phase and µi is the
chemical potential of either neutrons or protons, and the
axial or spin response

Sija = T

(
∂2P

∂δj∂δi

)
T

, (10)

where δi is the chemical potential associated with the spin
density of species i. When interactions between nucleons
can be neglected, the structure functions greatly simplify
and are given by

Sijv = Sija = δijSgas(µi, T ) , (11)

where [54]

Sgas(µi, T ) =

∫
d3p

(2π)3

eβ(p2/2m−µi)

(1 + eβ(p2/2m−µi))2
, (12)

where β = 1/T and only correlations due to Fermi statis-
tics are included. Strong nuclear interactions induce ad-
ditional correlations between nucleons in the gas and can
alter the structure factors. At the sub-nuclear densities
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of interest, calculations suggest a modest enhancement
of the vector response, and a suppression by up to 50%
of the axial response [36–40]. Since our primary interest
here is to asses the role of coherent scattering, in what
follows we shall neglect corrections due to strong inter-

actions and use Eq. (11) to calculate the scattering rates
in the gas phase.

To asses the importance of coherent scattering from
heavy nuclei in the heterogeneous phase we define the
ratio

R =
σtran
het (Eν)

σtran
hom(Eν)

=
σtran
coh (Eν) + σtran

gas (Eν)

σtran
hom(Eν)

=
nAN

2
w〈Scl(Eν)〉+ (1 + 5(CnA)2)Sgas(µ

het
n , T ) + 5(CpA)2Sgas(µ

het
p , T )

(1 + 5(CnA)2)Sgas(µhomn , T ) + 5(CpA)2Sgas(µhomp , T )
,

(13)
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FIG. 6. Ratio R from Eq.(13) in two different conditions: (a)
fixed proton fraction Ye = 0.4 and (b) β-equilibrium (right
panel). The gray band indicates the region in density where
non-spherical pasta may be present, and the curves terminate
with a dot for the density at which u = 1/8. Dotted curves
indicate the contribution of the external gas only. Neutrino
are considered at thermal equilibrium, except for the black
dashed curves where Eν = 30 MeV.

where σtran =
∫
d cos θ (1−cos θ) dΓ/d cos θ is the elastic

transport cross section per unit volume for neutrinos. R
is analogous to the parameter ξ introduced in [17], and
quantifies the change in neutrino scattering rates in het-
erogeneous phase, where both coherent scattering from
nuclei (σtran

coh ) and scattering from free nucleons in the gas
phase contribute. The term 〈Scl(Eν)〉 in the cross section
from clusters indicates angle averaging of the corrections
due to correlations and nuclear form factors [17],

〈Scl(Eν)〉 =
3

4

∫ 1

−1

d cos θ(1− cos θ)(1 + cos θ)S(q) F 2
A(q)

(14)

and is a function of Eν trough q = Eν
√

2(1− cos θ). We
note that neglecting both the correlations in the gas and
the protons has a small impact of . 10% on the ratio.
However, a strong suppression of the nucleon axial re-
sponse due to spin correlations would reduce the opacity
of the homogeneous phase, and favor larger R.

The results for the ratio of cross section R are dis-
played in Fig. 6. Panel (a) show results at fixed proton

fraction Ye = 0.4 and on panel (b) results for matter in
β-equilibrium are shown. In both cases, with the excep-
tion of the black dashed line, neutrinos are assumed to
be thermal and their energy Eν = 3T . The energy de-
pendence of the cross sections is shown in Fig. 7. The
strong suppression of coherent scattering at low energy
is clearly visible, and the dot on each curve correspond-
ing to Eν = 3T shows that Coulomb correlation sup-
presses scattering for neutrino energies of interest. The
Coulomb parameter Γ for the plots in Fig. 7 range from
Γmin = 4(6) for nB = 0.01 fm−3 and T = 10(6) MeV
to Γmax = 150(74) for u = 1/8 and T = 1 MeV at
fixed proton fraction (beta-equilibrium). The value of
Γ at select points is shown in Table I. At the lowest
temperature of T = 1 MeV and large proton fraction
Ye = 0.4, our simple ansatz in Eq. 7 predicts a large
Z > 60 and Γ > 200. At these very low temperatures,
it would be appropriate to use S(q) from simulations of
the solid phase. However, here we adopt the approxi-
mate treatment suggested in earlier studies [19, 41] where
they circumvent the problem by limiting the value of the
Coulomb coupling to Γmax = 150, and is indicated by
an asterisk in Table I. These low temperature conditions
are encountered only at late times in the proto-neutron
star phase when the neutrino luminosity is greatly re-
duced and undetectable even for close by supernovae in
detectors such SuperKamiokande where energy thresh-
old is about 5 MeV. Additionally, shell effects can be
important in the determination of Z at low tempera-
ture and smaller values of Z ≈ 40 − 50 are obtained
at T = 0 [21, 42]. Nonetheless, we included these low
temperature results, which despite the approximations
mentioned, provide useful insights about trends and al-
low for comparison with earlier work.

A related quantity of interest to neutrino transport are
the diffusion coefficients

Dn =

∫ ∞
0

dxxnλ(Eν)f(Eν) [1− f(Eν)] (15)

with x = Eν/T and f the Fermi-Dirac distribution [4].
Results forD2 andD4 at T = 4 MeV and nB = 0.01 fm−3

for both β-equilibrium and fixed Ye = 0.4 are presented in
Table II assuming that the neutrino chemical potential µν
is negligible. In the first row we also show the result for



8

TABLE I. Values of neutrino mean-free-path and diffusion
coefficients at T = 4 MeV and nB = 0.01 fm−3.

HOM HET HOM HET
Ye = 0.4 Ye = 0.4 β β

λ(Eν = 3T ) [m] 14.91 98.03 14.19 14.87
D2 [m] 67.01 575.01 63.77 74.47
D4 [m] 220.79 1326.91 210.12 208.71

1 10 100
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 [MeV]
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 =
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T=4 - u=1/8
T=6 - 0.01
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T=10 - 0.01
T=10 - u=1/8
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E
ν
 [MeV]

(a) Y
e
 = 0.4 (b) β-equilibrium

FIG. 7. Energy dependence of the total ratio of cross sec-
tion R at various temperatures and for two different densi-
ties: nB = 0.01 fm−3 (full lines) and the threshold density
for which u = 1/8 (dashed lines). As for Fig.6 panel (a) is for
fixed proton fraction Ye = 0.4 and panel (b) for β-equilibrium
conditions. In both cases the full dots indicate the energy for
thermal neutrinos (Eν = 3T ).

the mean-free-path λ(Eν) = 1/σ(Eν) at Eν = 3T . These
results are compatible with the general trend observed
in the results above that predict little effects of pasta at
beta equilibrium and a reduced scattering at fixed proton
fraction.

From Figs. 6 and 7 we can draw the following conclu-
sions:

• At low temperature when large nuclei are present
and persist up to high density, the opacity to high
energy neutrinos with Eν & 4/a where a the dis-
tance between nuclei is enhanced, but coherent
scattering is greatly reduced for low energy thermal
neutrinos due to Coulomb correlations between nu-
clei. We find a net reduction in the scattering rates
in the heterogeneous phase because a large fraction
of free nucleons are tied up inside nuclei. In the
homogeneous phase these nucleons make a signif-
icant contribution to neutrino scattering because
they couple to the axial current.

TABLE II. Values of Coulomb coupling Γ for Fig. 7.

T nB = 0.01 u = 1/8 nB = 0.01 u = 1/8
in MeV Ye = 0.4 Ye = 0.4 β β
1 150∗ 150∗ 72.7 74.0
4 69.8 138.8 14.2 4.0
6 35.1 75.4 6.3 –
10 4.0 17.4 – –

• In β-equilibrium coherent scattering makes a rela-
tively small contribution to the total neutrino opac-
ity for all temperatures of interest. At low temper-
ature, when nuclei and pasta are present, Coulomb
correlations reduce coherent scattering, and at high
temperature, pasta and large nuclei melt. We find
that scattering off nucleons in the gas phase dom-
inates unless nuclear correlations can greatly sup-
press the spin response of dilute nuclear matter.

• Large opacity due to coherent scattering reported
in Ref. [17] arose because the neutrino energy was
chosen to be large to ensure that the suppression
due to Coulomb correlations was mild, and it was
assumed that pasta nuclei would survive up to T '
10 MeV in matter close to β-equilibrium.

• Fig. 7 illustrates that the heterogeneous phases can
act as a low-pass filter for neutrinos. In the diffusive
regime the strong energy dependence of the neu-
trino cross-sections would imply non-linear thermal
evolution where cooling would accelerate rapidly
with decreasing temperature.

These results have significant implications for the im-
pact of coherent pasta scattering on proto-neutron star
cooling. In Ref. [17], it was shown that if coherent scat-
tering from nuclear pasta increases the neutrino opacity
relative to that of a homogeneous gas, pasta formation in
the outer layers of the proto-neutron star can trap neu-
trino energy for the first few seconds after a successful
core collapse supernova explosion. This heat trapping
causes the temperature of the outer layers of the proto-
neutron to increase until they reach the pasta melting
temperature. This heats up the entire region over which
neutrinos decouple from matter, increasing the average
energy of neutrinos escaping from the proto-neutron star.
Additionally, the energy that is trapped initially gets out
at later times. Both of these effects contributed to a
more detectable late-time neutrino signal. A pasta melt-
ing temperature of 10 MeV was used in their parameter-
ized simulations, but it was suggested that reducing the
melting temperature of the pasta could reduce the impact
of the pasta on the neutrino signal.

Here, we have found that the pasta dissolution temper-
ature for β-equilibrated matter is T βu ≈ 4 ± 1 MeV and
that the presence of a high-density phase can reduce the
neutrino opacity. First, this implies that even if coher-
ent scattering from nuclear pasta increased the neutrino
opacity, the impact of pasta on the proto-neutron star
neutrino signal would be smaller than the impact pre-
dicted by Ref. [17], since nuclear pasta would be present
for a shorter portion of proto-neutron star cooling. The
reduced melting temperature would also cause a smaller
perturbation in the temperature gradient near the neu-
trino sphere, which would reduce the enhancement of
the neutrino luminosity even when the pasta is present.
Second, we predict that correlations among high-density
structures act to reduce the neutrino opacity for neutri-
nos with energies . 4/a, which is an energy scale that is
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often significantly above the thermal energy. Therefore,
the presence of pasta may allow the majority of thermal
neutrinos to escape more easily and potentially speed up
neutrino cooling, thereby reducing the late-time neutrino
detection rate from a nearby supernova.

IV. CONCLUSIONS

In this paper, we have analyzed the properties of the
hot nuclear pasta phase and we have shown the large
qualitative differences between matter in β-equilibrium
and at modest electron fraction Ye > 0.2. In beta-
equilibrium, we find that pasta melts or dissolves at rel-
atively low temperature, reducing drastically the volume
fraction occupied by the large nuclei. With increasing
temperature protons leak out of nuclei, enter the gas
phase and alter the nature of the transition to bulk mat-
ter. Here, nuclei dissolve with increasing density in a
phenomena referred to as retrograde condensation. We
have introduced a new temperature, the pasta dissolu-
tion temperature Tu, above which the volume fraction
of nuclei cannot exceed 1/8. In β-equilibrium the dis-
solution temperature T βu ' 4 ± 1 MeV for EOS with
Lsym = 50 − 60 MeV and compatible with EFT predic-
tions in neutron matter. The dissolution temperature T βu
was found to decrease with increasing Lsym. For matter
with Ye > 0.2 large nuclei and pasta persist to higher
temperatures Tu ' 15 MeV and retrograde condensation
is absent. Our work confirms results obtained in earlier
work in Refs. [47, 49] and expands on them by delineating
the mechanism and defining a dissolution temperature Tu

to provide an upper limit for any equation of state inde-
pendent of finite size corrections.

In the second part of our paper, we have analyzed
the impact of the coherent scattering off nuclear clusters
on the neutrino opacities, for thermodynamical condi-
tions corresponding to core-collapse supernovae or neu-
tron star mergers. We found that both the retrograde
condensation and the Coulomb correlations in the static
structure factor contribute to reduce the impact of co-
herent scattering on neutrino opacities. For matter far
out of beta-equilibrium where heavy nuclei and pasta
persist to high temperatures, Coulomb correlations be-

tween clusters greatly reduce the coherent scattering
rates at high density. Here, rather than an increase, we
found a net reduction in the opacity for thermal neutri-
nos when clusters are present. This may be important
at very early times post bounce during the supernova
when matter with large Ye is encountered briefly during
the period when lepton number is trapped. On longer
timescales characteristic of proto-neutron star evolution,
beta-equilibrium favors much smaller values of Ye, and
for T < T βu only a moderate increase by less than 20% is
found for thermal neutrinos, at variance with the factor
5 reported in Ref. [17]. We find such an increase only
for high energy non-thermal neutrinos, for which corre-
lations between nuclei enhance the scattering rates.

While we believe the physical effects mentioned above
are robust, additional work is warranted to obtain more
quantitative predictions. Hartree-Fock calculations, such
as those being reported in Ref. [43, 44] which self-
consistently include the surface tension, Coulomb, and
shell effects, would provide improved estimates for T βu to
better constrain the temperature range in which pasta is
present. It will also be desirable to go beyond the single-
nucleus approximation in calculating the ion structure
factor, and include in addition non-spherical shapes. Ul-
timately, these modifications to the neutrino opacities
need to be incorporated self-consistently with the un-
derlying equation of state in proto-neutron star and su-
pernova simulations to asses if the presence of nuclear
clusters at sub-nuclear density can influence supernova
observables. Nonetheless, it seems likely that retrograde
condensation and ion-correlations will together disfavor
the large changes to the temporal structure of the neu-
trino signal predicted in Ref. [17].
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