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This paper presents how thermal mean field effects are incorporated consistently in the hydrody-
namical modelling of heavy-ion collisions. The nonequilibrium correction to the distribution function
resulting from a temperature-dependent mass is obtained in a procedure which automatically satis-
fies the Landau matching condition and is thermodynamically consistent. The physics of the bulk
viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and
14-moment approaches in the relaxation time approximation. Constant and temperature-dependent
masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the
same value of the ratio of the bulk viscosity over its relaxation time. The inclusion of a temperature-
dependent mass leads to the emergence of the βλ-function in that ratio, and it is of the expected
parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared
cut-off. This suggests that the relaxation time approximation may be too crude to obtain a reliable
form of ζ/τR for gases obeying Bose-Einstein statistics.

1. INTRODUCTION

The vibrant experiment program pursued at the Rel-
ativistic Heavy Ion Collider (RHIC) and at the Large
Hadron Collider (LHC) have ushered in a new era of ex-
ploration of systems governed by the nuclear strong inter-
action. One of the remarkable features that emerged from
investigating the physics of relativistic heavy-ion colli-
sions is the fact that the created systems could be mod-
elled theoretically by relativistic fluid dynamics [1, 2].
This realization led to developments in the formulation
of relativistic viscous hydrodynamics in which observable
consequences of the dissipative effects have been isolated
[3–13]. Currently, second-order viscous hydrodynamics
provides a description of the fluid behavior [11–14] which
remedies the main failure of the Navier-Stokes – or first-
order – formulation: acausal signal propagation and nu-
merical instabilities plaguing relativistic systems.
While the hydrodynamic equations are universal and

provide a macroscopic picture of a relativistic fluid be-
havior in terms of conservation laws, transport coeffi-
cients are governed by the underlying microscopic theory
which must be used for their extraction. Although the
first applications of viscous hydrodynamics focused on
the shear viscosity, it has recently become clear that bulk
viscosity also plays an important role in the evolution of
the QGP system [15–17]. The calculation of bulk viscos-
ity from first principles, however, remains a challenging
project. It is on this aspect that we concentrate in this
paper.
The equations of the second-order hydrodynamics de-

scribe very efficiently the expansion of the system pro-
duced in heavy-ion collisions. This is a strong indication
that the system must thermalize very rapidly, which in
turn indicates that the system is strongly interacting at
presently achievable energies. Current estimates of the
bulk viscosity of QCD are mainly based on the equation
of state obtained from lattice QCD simulations [19, 20],

or rely on empirical extractions based on simulations of
relativistic nuclear collisions [15–18]. Application of lat-
tice QCD findings [21–23] and the hadron resonance gas
results [24, 25] allowed to determine that the bulk vis-
cosity is notably enhanced near the critical temperature
of the QCD phase transition while the shear viscosity is
substantially decreased in this region [26, 27]. Further-
more, the importance of bulk viscosity near the transi-
tion temperature region was shown to have a remarkable
impact on the elliptic flow coefficient v2 [25, 28, 29] and
other heavy-ion observables [15–18, 30, 31]. Recently, the
behavior of bulk viscosity was also obtained from hydro-
kinetic theory which incorporates thermal noise [32].

Despite the progress described above, there is still a
need to develop methods which provide a better insight
in the effects of bulk viscosity at different energy scales.
In particular, one may be interested in having a consis-
tent analytical approach to bulk viscosity physics in the
regime of very high temperatures. At this energy scale
the coupling constant is small and fundamental quantum
field theoretical tools can be used to study bulk viscos-
ity systematically. Having given a comprehensive fluid
dynamic formulation of a weakly coupled gas may also
provide an essential benchmark for different approaches
and phenomenological applications.

In Refs. [33, 34] it was shown that quantum field theory
is equivalent, at least at leading order of perturbative ex-
pansion, to kinetic theory. Later calculations then could
use this efficient and intuitive kinetic theory framework
to study transport phenomena, see [35–37]. It has also
provided a natural language to formulate fluid dynamics
concepts. Within the kinetic approaches, the Chapman-
Enskog and the Grad’s 14-moment methods are com-
monly employed to study the nonequilibrium processes
of a fluid. They, however, rely on different treatments of
the distribution function. While the Chapman-Enskog
theory deals directly with solving the Boltzmann equa-
tion [38], the Grad’s approach is based on an expansion
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of the nonequilibrium function in terms of the powers of
momenta [39]. To date, great progress has been made in
extraction of different transport coefficients within dif-
ferent theories. It seems, however, that the comprehen-
sive analysis of transport processes in a system exhibit-
ing conformal anomaly is not yet complete, especially in
cases involving a mean field interaction.

A violation of conformal symmetry has a different im-
pact on different transport coefficients. It does not affect
shear viscosity much, its leading order behavior is dom-
inated by the kinetic energy scale in weakly interacting
systems. On the other hand, the breaking of scale in-
variance dominates the physics of bulk viscosity. Conse-
quently, the behavior of bulk viscosity is largely deter-
mined by the sources of conformal symmetry breaking,
either the physical mass of plasma constituents or the
Callan-Symanzyk βλ-function, which fixes the coupling
as a function of the energy scale [33]. The parametric
form of bulk viscosity should then be dictated by the
sources of scale invariance breaking squared, as shown
in Ref. [40] for QCD. The bulk viscosity of systems ex-
hibiting conformal anomaly due to presence of a constant
mass only, was later studied within the Chapman-Enskog
approach and 14-moment approximation, mostly in the
relaxation time approximation [41–43], and also within
other approaches [44]. Moreover, quasiparticle models
were also examined for systems of various matter con-
tent in Refs. [45–53].

We observe, however, that there is still a need to re-
visit a formulation of nonequilibrium fluid dynamics with
the mean field background. Such a formulation is essen-
tial when one needs to include variable thermal masses
consistently in the equations of viscous hydrodynamics.
Having the correct form of a nonequilibrium momentum
distribution is also critical while studying some aspects of
nuclear matter behavior phenomenologically, in particu-
lar, when implementing the Cooper-Frye prescription in
hydrodynamic simulations or examining electromagnetic
probes in heavy-ion collisions [17, 54–56]. Furthermore,
such a consistent approach allows for an exhaustive cal-
culation of transport coefficients.

The central part of this paper is devoted to derivation
of the nonequilibium correction to the distribution func-
tion where thermal effects are consistently included. Sub-
sequently, it is shown how the correction influences the
bulk viscosity behavior in the relaxation time approxima-
tion. The analysis is done systematically and it comprises
different cases, namely, formulation of equilibrium and
nonequilibrium fluid dynamics and then computation of
the ratio of bulk viscosity over relaxation time. A com-
putation is provided for gases of Boltzmann and Bose-
Einstein statistics in both the Anderson-Witting model
of the Chapman-Enskog method and the 14-moment ap-
proximation. The analysis performed in this paper is
specific to single-component bosonic degrees of freedom.
Consequently, when the explicit form of the thermal mass
and the βλ function is needed, we will use those of the
scalar λφ4 theory [33, 34]. The method developed here

is not appropriate for one-component systems of Fermi-
Dirac distribution function. Such a system would be a
system of non-interacting fermionic degrees of freedom
where the thermal mass and bulk viscosity cannot be
determined. To count fermions accurately one needs to
consider a many-component system with the inclusion of
bosons mediating the interaction. This is not done here
and is left for future work.
The correction to the distribution function is found by

noticing that there is a twofold source of departure from
equilibrium. Firstly, there are hydrodynamic forces that
generate a deviation in the distribution function δf , that
is, they change the functional form of the distribution
function. The other source is related directly to inter-
particle interactions, the effect of which is statistically
averaged and emerges as the mean field. Therefore, the
correction is expressed by two terms, which, for the Bose-
Einstein gas, is

∆f = δf − T 2
dm2

eq

dT 2

f0(1 + f0)

Ek

∫

dKδf
∫

dKEkf0(1 + f0)
.

(1.1)

For the description of quantities, see Table I. The ob-
tained form of the correction allows one to formulate hy-
drodynamic equations in a coherent way, where the Lan-
dau matching condition and thermodynamic relations are
guaranteed. Since the thermal mean field has a negligible
impact on shear viscosity, we further concentrate on bulk
viscosity dynamics, where the influence of the thermal
background reveals itself through the Landau condition
and the speed of sound.
We show that both the Chapman-Enskog and the 14-

moment approaches lead to the same final expressions for
the ζ/τR ratio in the small mass limit, where τR is the
bulk relaxation time. In general, temperature dependent
mass results in the emergence of the βλ-function, which
dictates the very high temperature form of the ratio. In
the Boltzmann case the ratio is

ζBoltz

τR
≈ T 4

(

1

3
− c2s

)2(
60

π2
−

36mx

πT

)

, (1.2)

where (1/3 − c2s) is directly related to Mc, the noncon-
formality parameter: see Table I. This shows the ex-
pected behavior of the source of scale invariance break-
ing. One may observe that one factor of the scale invari-
ance breaking parameter is introduced directly by the
Landau matching, which comes from the small depar-
ture from equilibrium. The other factor emerges as a
correction to the pressure given by purely equilibrium
quantities, but not provided by the equation of state, as
argued in [40]. For a system with Bose-Einstein statis-
tics, the result is

ζ

τR
≈ T 4

(

1

3
− c2s

)2
(

2π3T

25mx
−

4π2

75

(

1−
9m2

eq

8m2
x

))

.

(1.3)
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The leading order term is not of the expected depen-
dence because of the factor T/mx, which comes from an
infrared cut-off. The same behavior is reflected either
if we neglect the constant mass term or thermally af-
fected quantities. Therefore, it rather indicates that the
relaxation time approximation, which assumes that τR is
energy independent, may not allow one to entirely cap-
ture microscopic physics, in particular, of soft momenta
in quantum gases of Bose-Einstein distribution function.
A similar conclusion was reached in Ref. [40].
The paper is organized as follows. In Sec. 2 the in-

gredients of the effective kinetic theory are briefly sum-
marized and the derivation of the noneqilibrium ther-

mal correction is provided. Sec. 3 is devoted to the
formulation of fluid dynamic basic equations with the
mean field background. In Sec. 4, the analysis of the
bulk viscosity over relaxation time ratio is presented
in the Chapman-Enskog theory within which we solve
the Anderson-Witting model. In Sec. 5 we use the 14-
moment approximation to derive the evolution equation
for the bulk pressure and then to calculate the bulk vis-
cosity over the relaxation time ratio and other transport
coefficients in the bulk channel in the relaxation time ap-
proximation. Sec. 6 summarizes and concludes the work.
Appendices contain some technical details.

description equilibrium quantity nonequilibrium quantity

physical, zero-temperature mass of a particle m0 m0

quasiparticle thermal mass meq mth

quasiparticle mass mx =
√

m2
0 +m2

eq m̃x =
√

m2
0 +m2

th

quasiparticle energy Ek =
√

k2 +m2
x Ek =

√
k2 + m̃2

x

quasiparticle four-momentum kµ ≡ (k0,k) = (Ek,k) k̃µ ≡ (k̃0,k) = (Ek,k)

Lorentz invariant measure dK = d3k/[(2π)3Ek] dK = d3k/[(2π)3Ek]

distribution function (in the local rest frame) f0 = 1/[eβEk − 1], with β = 1/T f = f0 +∆f

beta function for a coupling constant λ βλ = Tdλ/dT = 3λ2/(16π2)

temperature dependence of the thermal mass T 2dm2
eq/dT

2 = m2
eq + aT 2βλ, with a = 1/48

nonconformality parameter M = (−m2
0 + aT 2βλ)/3

TABLE I. The quantities characterizing the equilibrium and nonequilibrium dynamics of a gas with the Bose-Einstein statistics.
For the classical gas with the Boltzmann statistics some of these quantities have different values or forms and whenever there
is a need to distinguish them we add the subscript ‘c’: meq,c, f0,c = e−βEk , fc, mth,c, ac = 1/(8π2), and Mc.

2. NONEQUILIBRIUM DEVIATION FROM THE

EQUILIBRIUM DISTRIBUTION FUNCTION

A. Boltzmann equation with the mean field effect

Kinetic theory provides an efficient classical descrip-
tion of complex microscopic dynamics of an interacting
many-body system. It is a good alternative to quan-
tum field theory to study transport phenomena in the
weakly coupled limit dominated by quasi-particle dy-
namics. By quasiparticles one shall understand particles
which, apart from zero temperature mass, gain additional
thermal mass due to interactions with the medium: the
effect of the mean field. They are characterized by a
mean free path which is much larger than the Compton
wavelength of system’s constituents, and by a mean free
time, which is much larger than the time between colli-
sions [36]. The dynamics of quasiparticles is encoded in
the phase-space distribution function which evolves ac-
cording to the Boltzmann equation.

We consider a system of uncharged thermally influ-
enced particles of a single species for which the Boltz-
mann equation reads

(k̃µ∂µ − Ek∇Ek · ∇k)f = C[f ], (2.1)

where C[f ] is the collision term, f = f(x, k) is a distri-
bution function of quasiparticles1 and the second term
of the left hand side involves the force F = dk/dt =
−∇Ek. The quasiparticle four-momentum is defined as
k̃µ = (k̃0,k), where k̃0 ≡ Ek is the nonequilibrium energy
given by

Ek =
√

k2 + m̃2
x, (2.2)

which is a time and space dependent variable since m̃2
x ≡

m̃2(x) = m2
0 + m2

th(x), where m0 is the physical mass

1 We use here such a notation that whenever x and k appear as
arguments of a function, we mean xµ and k̃µ (or kµ in case of
f0), respectively.
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and mth(x) is the nonequilibrium thermal mass, which
varies in time and space. Knowing the x-dependence of
the energy, one may rewrite Eq. (2.1) as

(

k̃µ∂µ −
1

2
∇m̃2

x · ∇k

)

f = C[f ]. (2.3)

The central object of the kinetic theory is the phase-
space density function f(x, k). What we assume about
the system is that its departure from the equilibrium
state is small, which, in turn, means that the process
of the system equilibration is controlled by the small de-
viation in the distribution function, which we denote as

∆f(x, k) = f(x, k)− f0(x, k), (2.4)

where f0(x, k) is the equilibrium Bose-Einstein distribu-
tion function and, in a general frame, it has the form

f0(x, k) =
1

exp[uµ(x)kµ(x)β(x)] − 1
, (2.5)

where β ≡ β(x) = 1/T (x) with T (x) being the local tem-
perature, and uµ ≡ uµ(x) is the fluid four-velocity. The
four-velocity in the local rest frame is uµ = (1, 0, 0, 0).
The quasiparticle four-momentum is kµ = (k0,k), where
k0 component is the equilibrium x-dependent energy

Ek =
√

k2 +m2
x, (2.6)

where the dependence of x enters through the mass
m2

x ≡ m2(x) = m2
0 +m2

eq(x) with m2
eq(x) being the equi-

librium thermal mass, which is not the same as m2
th(x),

the nonequilibrium thermal mass. The Bose-Einstein
density function in the fluid rest frame takes the form

f0(x, k) =
1

exp
(

Ek(x)β(x)
)

− 1
. (2.7)

Let us add that in the forthcoming parts we will be de-
riving all equations for the Bose-Einstein gas, but these
equations may be analogously found for the classical
Boltzmann gas with the distribution function

f0,c(x, k) = exp(−β(x)uµ(x)k
µ(x)) (2.8)

and these will be briefly presented as well. Our aim is
to reformulate the equations of the viscous hydrodynam-
ics when the effect of fluctuating thermal mass is incor-
porated. Therefore, we assume that thermal influence
on the process of the system equilibration is controlled
by the nonequilibrium correction to the thermal mass,
∆m2

th = m2
th −m2

eq, which will be specified further.

B. Form of ∆f

As stated earlier, in this work we study systems with
distribution functions that are perturbed from their equi-
librium value. More specifically, the nonequilibrium
phase space density can be written as

f(x, k) = fth(x, k) + δf(x, k) (2.9)

The first part, fth(x, k), still retains the local-equilibrium
form of the distribution function, but the thermal mass
contains the nonequilibrium corrections

fth(x, k) ≡ f0(x, k)|m2
0+m2

eq(x)→m2
0+m2

eq(x)+∆m2
th
(x) (2.10)

=

[

exp
(
√

k2 +m2
0 +m2

eq(x) + ∆m2
th(x)β(x)

)

− 1

]−1

.

The second part, δf(x, k), is a change in the functional
form of f0(x, k) caused by hydrodynamic forces, or equiv-
alently, non-vanishing gradients of energy and momen-
tum densities. The nonequilibrium correction ∆f then
has two parts

∆f(x, k) = f(x, k)− f0(x, k)

= δf(x, k) + δfth(x, k), (2.11)

where to the leading order in small change, δfth(x, k) =
fth(x, k)− f0(x, k) is

δfth(x, k) = −f0(x, k)
(

1 + f0(x, k)
)∆m2

th(x)

2Ek(x)
β(x),(2.12)

which is obtained by expanding fth. Since ∆m2
th is the

nonequilibrium deviation, it itself is going to be a func-
tional of ∆f . Hence, the equation

∆f = δf − βf0(1 + f0)
∆m2

th

2Ek
(2.13)

must be solved self-consistently for ∆f .

C. Form of ∆m2
th

Recalling the basic foundations of effective kinetic the-
ory, the analysis here relies heavily on findings within the
scalar λφ4 theory, as provided in Refs. [33, 34], which
makes the introduction of thermal corrections analyt-
ically feasible. But the analysis presented here works
equally well whenever the equilibrium thermal mass has
the form ∼ gnT 2 where g is the dimensionless coupling
constant and n is a positive integer. We intend to pro-
vide an effective macroscopic framework to study weakly
interacting systems, where the strength of interaction is
determined by the coupling constant λ ≪ 1. The cou-
pling constant is scale (temperature) dependent and the
analysis performed here pertains only to the perturbative
regime. Within this approach the equilibrium thermal
mass is found to be

m2
eq =

λ(q0)

2
q0, (2.14)

where we have introduced the equilibrium scalar quantity
q0. The function q0 and its nonequilibrium counterpart q
are defined through the corresponding distribution func-
tions as

q0 =

∫

dKf0, (2.15)

q =

∫

dKf. (2.16)
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For the definitions of the symbols, see Table I. Therefore,
one can observe that Eq. (2.14) contains the coupling
constant λ(q0), which is temperature dependent since q0
is temperature dependent.
Throughout the analysis we always keep the assump-

tion that all nonequilibrium quantities are slowly vary-
ing functions of space points, which justifies that the
nonequilibrium dynamics is governed by small deviations
of the quantities from their equilibrium values. There-
fore, we further assume that the nonequilibrium thermal
mass is a function of the scalar quantity q only. The
same assumption is applied to the running coupling λ(q).
Thus, the nonequilibrium thermal mass can be expanded
as

m2
th(q) = m2

th(q0 +∆q) = m2
eq(q0) + ∆m2

th (2.17)

with

∆m2
th =

dm2
eq

dq0
∆q. (2.18)

The function q is uniquely defined by Eq. (2.16) and
should be obtained self-consistently from this equation.
Hence to evaluate ∆m2

th, we need to find ∆q which is
itself a function of ∆m2

th. The deviation of the scalar
quantity q can be written as

∆q =

∫

dKδf +
∂q0
∂m2

eq

∆m2
th. (2.19)

Eq. (2.18) then takes the form

∆m2
th =

1

1−
dm2

eq

dq0

∂q0
∂m2

eq

dm2
eq

dq0

∫

dKδf. (2.20)

On the other hand both m2
eq and q0 are related by tem-

perature, so that one can find

dm2
eq

dT
=

dm2
eq

dq0

dq0
dT

=
dm2

eq

dq0

(

β2

∫

dKEkf0(1 + f0) +
dm2

eq

dT

∂q0
∂m2

eq

)

.(2.21)

Extracting further
dm2

eq

dq0

∂q0
∂m2

eq
and inserting it to

Eq. (2.20) leads to

∆m2
th = 2T 2

dm2
eq

dT 2

∫

dKδf

β
∫

dKEkf0(1 + f0)
, (2.22)

where we used dm2
eq/dT = 2Tdm2

eq/dT
2.

Inserting Eq. (2.22) to Eq. (2.13), one gets

∆f = δf − T 2
dm2

eq

dT 2

f0(1 + f0)

Ek

∫

dKδf
∫

dKEkf0(1 + f0)
.(2.23)

Analogously, the correction for the Boltzmann gas is

∆fc = δfc − T 2
dm2

eq,c

dT 2

f0,c
Ek

∫

dKδfc
∫

dKEkf0,c
, (2.24)

where the subscript ’c’ has been used to emphasize that
the formula holds for the classical gas. Eqs. (2.23) and
(2.24) are one of the main results of this paper. In previ-
ous analyses [45–47, 49–53], the second term in Eq. (2.23)
was missing or was incomplete. When applying Cooper-
Frye formula in viscous hydrodynamics, it is ∆f , not δf
that should be used.

D. Temperature dependence of the thermal mass

The thermal mass is a function of the scalar quantity q0
and is defined by Eq. (2.14). Its temperature dependence
is dictated by

dm2
eq

dT
=

λ(q0)

2

dq0
dT

+
q0
2

dλ(q0)

dT
. (2.25)

q0 is one of the thermodynamic functions discussed in de-
tail in Appendix B and its leading order value is found to
be T 2/12. Additionally, the second term in Eq. (2.25) en-
codes the running of the coupling constant as a function
of the energy scale, which is the essence of the renormal-
ization group βλ-function, defined by

βλ ≡ β(λ) = T
dλ(q0)

dT
(2.26)

It should be obtained using diagrammatic methods. In
case of the scalar theory, βλ is positive and proportional
to λ2. Collecting these contributions, one finds

T 2
dm2

eq

dT 2
= m2

eq + aT 2βλ. (2.27)

where m2
eq = λT 2/24 and a = 1/48.

One can analogously consider a temperature-
dependent scaling for the classical Boltzmann gas. In
this case, the thermal effective mass may be assumed
to have the same form as (2.14). The only difference is
that one uses the Boltzmann distribution function f0,c
instead of f0. This gives q0c = T 2/(2π2) + O(m2

x), as
given by Eq. (B.16) and it leads to

T 2
dm2

eq,c

dT 2
= m2

eq,c + acT
2βλ, (2.28)

where m2
eq,c = λT 2/(4π2) and ac = 1/(8π2).

3. EQUATIONS OF HYDRODYNAMICS WITH

THERMAL CORRECTIONS

A. Local equilibrium hydrodynamics

First consider the system under strict local equilib-
rium. By that we mean that the functional form of the
distribution function is still f0 given in Eq. (2.5) or in
Eq. (2.8), but the temperature as well as the thermal
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mass is x-dependent. Such a system possesses a con-
served stress-energy tensor of the form

T µν
0 =

∫

dKkµkνf0 − gµνU0, (3.1)

where the metric tensor we use is gµν =
diag(1,−1,−1,−1). The extra term U0 ≡ U0(x) is
the mean-field contribution that guarantees the thermo-
dynamic consistency of hydrodynamic equations and the
conservation of energy and momentum, via the following
condition

dU0 =
q0
2
dm2

eq, (3.2)

where q0 is the Lorentz scalar defined by Eq. (2.15).
Since we study here a system with no conserved

charges, the Landau frame is a natural kinetic framework
to define the four-velocity uµ via

uµT
µν
0 = ǫ0u

ν , (3.3)

where the eigenvalue ǫ0 can be identified as the local en-
ergy density. With this definition the energy-momentum
tensor may be decomposed using two orthogonal projec-
tions uµuν and ∆µν = gµν − uµuν . The equilibrium
energy-momentum tensor becomes

T µν
0 = ǫ0u

µuν − P0∆
µν , (3.4)

where P0 is the local thermodynamic pressure. The en-
ergy density and the pressure are in turn given by

ǫ0 = ǭ0 − U0, (3.5)

P0 = P̄0 + U0, (3.6)

where

ǭ0 =
〈

(uµk
µ)2
〉

0
, (3.7)

P̄0 = −
1

3

〈

∆µνkµkν
〉

0
(3.8)

with the notation
〈

. . .
〉

0
=
∫

dK . . . f0. Let us point
out that the enthalpy is not changed by the mean field
ǭ0+ P̄0 = ǫ0+P0. One may also check that the definition
of energy density (3.5) and pressure (3.6), together with
the condition (3.2), guarantee that the thermodynamic
relation

Ts0 = T
dP0

dT
= ǫ0 + P0, (3.9)

where s0 is the entropy density, is satisfied.

B. Nonequilibrium hydrodynamics

The stress-energy tensor of fluid dynamics out of equi-
librium takes the following form

T µν =

∫

dKk̃µk̃νf − gµνU, (3.10)

which is formally the same as Eq. (3.1). The mean-field
correction U must be now a function of q =

∫

dKf only
[34]. We emphasize that the formulation of fluid hy-
drodynamic framework with the thermal correction still
has to conform with all assumptions that were made to
provide the effective kinetic theory, discussed in Sec. 2.
In particular, such a description requires the system to
be sufficiently dilute and quasiparticles’ mean free paths
to be much longer than the thermal width of its con-
stituents, which is maintained when the strength of inter-
action is weak. Furthermore, to allow for validity of hy-
drodynamics, the system has to be characterized by some
macroscopic length scale at which macroscopic variables,
such as pressure and energy density, vary. Under these
assumptions, nonequilibrium hydrodynamic description
applies to systems where departures of all quantities from
its equilibrium values are characterized by small correc-
tions. Therefore, the nonequilibrium function U , in par-
ticular, may be expanded as

U = U0 +∆U, (3.11)

where

∆U =
dU0

dq0
∆q. (3.12)

However, as discussed before and explicitly shown by
Eqs. (2.17) and (2.18), the thermal mass is also a func-
tion of q only. Therefore, applying the relation (2.18) to
(3.12), one finds

∆U =
q0
2
∆m2

th, (3.13)

As before, this is also the condition that U must sat-
isfy to maintain the energy-momentum conservation law
∂µT

µν = 0.
The stress-energy tensor of the viscous hydrodynamics

(3.10) may be next decomposed into the local equilibrium
part and the nonequilibrium deviation

T µν = T µν
0 +∆T µν , (3.14)

where T µν
0 is given by (3.4) and ∆T µν carries all dynam-

ical information needed in order to determine how the
nonequilibrium system evolves into equilibrium. Let us
notice that a separation of viscous correction from the
equilibrium part in Eq. (3.14) has been done not as a
rearrangement of Eq. (3.10) but rather as an expansion
of the stress-energy tensor around its local equilibrium
value. As shown in Appendix A, we have

∆T 00 =

∫

dKE2
k∆f, (3.15)

∆T 0i =

∫

dKEkk
i∆f, (3.16)

∆T ij =

∫

dKkikj∆f −
∆m2

th

2

∫

dK
kikj

E2
k

f0

+δij
∆m2

th

2

∫

dKf0, (3.17)
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where ∆m2
th and ∆f are given by (2.22) and (2.23), re-

spectively. Eqs. (3.15) and (3.16) shall dictate the form of
the Landau matching condition, and Eq. (3.17) contains
the definitions of the viscous corrections.

C. Landau matching condition in the rest frame

The Landau matching is defined by the eigenvalue
problem

uµT
µν = ǫuν, (3.18)

where ǫ is the energy density of the nonequilibrium state
including the thermal correction U . In the fluid rest
frame it comes down to two equations, corresponding to
the conditions on the energy density and the momentum
density:

T 00 = ǫ, T 0i = 0. (3.19)

Under the Landau matching condition, the local equilib-
rium is defined to have the same local energy and the
momentum density

∆T 00 = 0, ∆T 0i = 0. (3.20)

Using Eqs. (3.15) and (3.16) with the correction to the
distribution function ∆f given by Eq. (2.23), we obtain

∆ǫ=

∫

dK

[

E2
k − T 2

dm2
eq

dT 2

]

δf, (3.21)

0=

∫

dK

[

Ekk
i − T 2

dm2
eq

dT 2

∫

dK ′k′if0(f0 + 1)
∫

dK ′E′
kf0(f0 + 1)

]

δf.(3.22)

However, the second term in Eq. (3.22) vanishes because
of rotational symmetry in equilibrium. Hence the Landau
matching conditions are

∫

dK

[

E2
k − T 2

dm2
eq

dT 2

]

δf = 0, (3.23)

∫

dKEkk
iδf = 0. (3.24)

The second condition indicates that δf cannot have a
vector component: it can only contain a spin 0 part and
a spin 2 part.

D. Shear-stress tensor and bulk pressure in the

local rest frame

The shear tensor πij and the bulk pressure Π are
found from Eq. (3.17) in the local rest frame, where the
Eqs. (2.22) and (2.23) are inserted. Then, as shown in
Appendix A, one obtains

∆T ij =

∫

dKkikjδf. (3.25)

We can reorganize (3.25) to separate the spin 0 part and
the spin 2 part as follows

∆T ij = πij + δijΠ, (3.26)

where

πij =

∫

dKk〈ikj〉δf, (3.27)

Π =
1

3

∫

dKk
2δf, (3.28)

where k〈ikj〉 = kikj − k
2δij/3. These coincide with the

commonly known forms of the shear-stress tensor and
bulk pressure in the local rest frame.

E. General frame

In a general frame where the flow velocity uµ may be
arbitrary, the energy-momentum tensor is2

T µν =

∫

dKkµkνf0 − gµνU0

+

∫

dK

[

kµkν − uµuνT 2
dm2

eq

dT 2

]

δf. (3.29)

The Landau condition then becomes
∫

dK

[

(uµk
µ)kν − uνT 2

dm2
eq

dT 2

]

δf = 0 (3.30)

and the viscous corrections are given by

πµν =
〈

k〈µkν〉
〉

δ
, Π = −

1

3

〈

∆µνk
µkν

〉

δ
, (3.31)

where 〈. . . 〉δ ≡
∫

dK(. . . )δf . We have also used the no-

tation A〈µν〉 ≡ ∆µν
αβA

αβ , where ∆µν
αβ ≡ (∆µ

α∆
ν
β+∆µ

β∆
ν
α−

2/3∆µν∆αβ)/2. The definitions (3.31) have the well-
known structures, but the thermal mass that enters them
is now x-dependent and the Landau matching contains
a correction due to the temperature dependent mass.
These arguments are essential when one aims at examin-
ing transport properties of the medium.

4. NONEQUILIBRIUM CORRECTION IN THE

CHAPMAN-ENSKOG APPROACH

Chapman-Enskog theory provides a way to directly
find the solution to the Boltzmann equation for near-
equilibrium systems. Solving the full Boltzmann equa-
tion, however, is formidable task. In this paper, we

2 In Ref. [33], the energy-momentum tensor correction was written
down incorrectly, but the mistake vanished with the imposition
of the Landau matching condition, ensuring the validity of the
subsequent derivations.
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use the Anderson-Witting model [57] to find the explicit
leading order solution. In this section, we focus on the
bosonic quantum gas case. Treatment for the Boltzmann
gas case is identical if one replaces f0(1 + f0) with the
Boltzmann factor f0,c.

A. Solution of the Anderson-Witting equation in

the rest frame

With the medium dependent thermal mass, the
Anderson-Witting model is given by

(

k̃µ∂µ − Ek∇Ek · ∇k

)

f = −
(u · k̃)

τR
∆f, (4.1)

where k̃µ = (Ek,k). In the fluid cell rest frame uµ =

(1, 0, 0, 0) and u · k̃ = Ek.
To use the Chapman-Enskog method, we let

f = f0 + f1 + f2 + · · · (4.2)

where each fn contains only the n-th derivatives of the
thermodynamic quantities and the flow velocity. The
first order equation is obtained by identifying ∆f = f1
in the right hand side and using all other quantities in
their equilibrium forms

(

kµ∂µ −
1

2
∂im

2
eq

∂

∂ki

)

f0(x, k) = −
Ek

τR
∆f(x, k), (4.3)

where now kµ = (Ek,k).
Evaluating the left hand side yields

(

kµ∂µ −
1

2
∂im

2
eq

∂

∂ki

)

f0(x, k) = −βf0(x, k)(1 + f0(x, k))

×

[(

c2s

(

E2
k − T 2

dm2
eq

dT 2

)

−
k
2

3

)

(∂iu
i)− k〈jki〉∂jui

]

,

(4.4)

where the equations of motion from the ideal hydrody-
namics

∂0u
i =

∂iT

T
, (4.5)

∂0T = −Tc2s∂iu
i (4.6)

are used to remove time derivatives.
The ∆f in the right hand side of the Anderson-Witting

model is just Eq. (2.23). Letting δf = f0(1 + f0)φ, we
get

∆f(k) = f0(k)(1 + f0(k))

×

(

φ(k)−
T 2

Ek

dm2
eq

dT 2

∫

dKφ(k)f0(k)(1 + f0(k))
∫

dKEkf0(k)(1 + f0(k))

)

, (4.7)

where the x dependence of all quantities is suppressed
for the sake of brevity. In previous derivations, the last
term was missing [47, 52, 53]. Dividing φ into the shear

and the bulk parts φ = φs+φb, and comparing Eqs. (4.4)
and (4.7), the shear part of φ is trivially obtained as

φs(k) = −
τR
TEk

k〈jki〉∂jui, (4.8)

since the angle integration over the spin-2 tensor k〈jki〉

vanishes. For the bulk part, letting

φb(k) =

(

aEk +
b

Ek

)

∂iu
i (4.9)

and comparing Eqs. (4.7) and (4.4), we get

a = τRβ

(

c2s −
1

3

)

(4.10)

and

b =
−MβτRJ1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0
, (4.11)

where we defined

M = −
1

3

(

m2
x − T 2

dm2
eq

dT 2

)

. (4.12)

With m2
eq ∝ λT 2, we have

M = −
1

3

(

m2
0 − aβλT

2
)

, (4.13)

where βλ is the coefficient function of the coupling con-
stant renormalization group and a = O(1) depends on
the theory. The parameterM can be identified as the pa-
rameter of nonconformality of the system (or the source
of the conformal invariance violation). We have also in-
troduced a notation for thermodynamic integrals

Jn,q = aq

∫

dK(u · k)n−2q(−∆µνk
µkν)q f0(k)(1 + f0(k)),

(4.14)

where aq = 1/(2q + 1)!!, which can be evaluated in the
fluid cell rest frame. The bulk part of the leading or-
der Chapman-Enskog solution of the Anderson-Witting
equation is then

φb(k) = τRβ(∂iu
i)

×

(

(c2s − 1/3)Ek −
1

Ek

MJ1,0
J1,0 − T 2(dm2

eq/dT
2)J−1,0

)

.

(4.15)

To show that φb(k) is in fact proportional to (c2s − 1/3),
we can use

c2s =
dP0/dT

dǫ0/dT
=

J3,1
J3,0 − (T 2dm2

eq/dT
2)J1,0

, (4.16)

where P0 and ǫ0 are the pressure and the energy density
given in Eqs. (3.6) and (3.5). Using the identities from
Appendix B 2, one can also show that

1

3
− c2s = −

MJ1,0
J3,0 − T 2(dm2

eq/dT
2)J1,0

. (4.17)
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Hence finally

φb(k) = τRβ(∂iu
i)(c2s − 1/3)

×

(

Ek −
1

Ek

J3,0 − T 2(dm2
eq/dT

2)J1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0

)

. (4.18)

Eq. (4.18) is another main result in this work. This equa-
tion slightly differs from the analogous one for the Boltz-
mann statistics shown in Ref. [17, 46, 49].
In hydrodynamic simulations, it is practical to replace

the system expansion rate by the bulk viscous pressure
using the Navier-Stokes relation Π = −ζθ, which gives

φb(k) = β

(

−
Π

ζ/τR

)

(c2s − 1/3)

×

(

Ek −
1

Ek

J3,0 − T 2(dm2
eq/dT

2)J1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0

)

. (4.19)

Having given the solution of the Anderson-Witting
equation, one can also find ∆f explicitly. Inserting
Eqs. (4.18) and (4.8) into (4.7) one finds

∆f(k) = f0(k)(1 + f0(k))τRβ

[

− (∂jui)
k〈jki〉

Ek

+(∂iu
i)(c2s − 1/3)

(

Ek −
1

Ek

J3,0
J1,0

)]

.(4.20)

The phase space density correction ∆f has a much sim-
pler form than φ. However, for transport coefficient cal-
culations, it is φ (equivalently δf), rather than ∆f , that
is needed.

B. Energy conservation and Landau matching in

the Anderson-Witting case

By multiplying k̃ν = (Ek,k) and integrating over dK,
the left hand side of Anderson-Witting equation Eq. (4.1)
turns into ∂µT

µν , where the stress-energy tensor T µν is
defined in Eq. (3.10). Assuming that the mean-field con-
tribution U satisfies

∂µU(x) =
∂µm̃

2
x(x)

2

∫

dKf(x, k), (4.21)

we get ∂µT
µν = 0.

Under the same condition, the right hand side of the
Anderson-Witting model within the Chapman-Enskog
approach must also vanish

−
1

τR

∫

dK Ekk
µ ∆f = 0 (4.22)

to ensure energy-momentum conservation. This condi-
tion for energy-momentum conservation is actually ex-
actly the same as the Landau conditions we derived in
Section 3C. Upon using ∆f in Eq. (2.23) in the fluid rest
frame, these become

0 =

∫

dK

(

E2
k − T 2

dm2
eq

dT 2

)

δf (4.23)

and

0 =

∫

dKEkk
iδf. (4.24)

Eq. (4.24) is automatically satisfied by the δf = f0(1 +
f0)(φs + φb) obtained in the previous subsection since it
does not contain a vector part. In the condition (4.23),
the shear part φs also vanishes because it contains a spin-
2 tensor. Using Eqs. (4.18) and (4.14), it is easy to show
that the energy conservation and the Landau condition
are indeed fulfilled. This automatic fulfillment of the
Landau condition for the quasi-particle case would not
have been possible if one missed the ∆m2

th correction in
∆f .

C. The shear and the bulk viscosities in the

Anderson-Witting model

The full leading order Chapman-Enskog solution to the
Anderson-Witting model is given by Eq. (4.7) with φs

and φb obtained above. The shear viscosity can be eval-
uated by using Eq. (3.27) for πij and Eq. (4.8) for φs

as

πij =
2β

15
τR

∫

dK f0(1 + f0)
k
4

Ek
σij , (4.25)

where σij = −1/2(∂iuj+∂jui−2/3gij∂ku
k). Identifying

πij = 2ησij , we get

η

τR
= βJ3,2 (4.26)

and subsequently find the shear viscosity in the relax-
ation time approximation, which was examined in few
papers, see, for example, [41, 43, 49], and has the form

η

τR
=

ǫ0 + P0

5
. (4.27)

For the bulk viscosity, we start with Eq. (3.28)

Π =

∫

dK
k
2

3
δf. (4.28)

Using the Landau condition, Eq. (3.23), one gets

Π = M

∫

dKδf, (4.29)

in which only the bulk part is relevant

Π = M

∫

dK f0(k)(1 + f0(k))φb(k) (4.30)

with φb(k) given by Eq. (4.18). Since Π = −ζ∂iu
i, one

can read off the bulk viscosity to the relaxation time ratio
from Eq. (4.30) as

ζ

τR
= βM2

(

J−1,0J1,0
J1,0 − T 2(dm2

eq/dT
2)J−1,0

−
J1,0J1,0

J3,0 − T 2(dm2
eq/dT

2)J1,0

)

(4.31)
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The integrals present in Eq. (4.31) have been computed
in Appendix B 2. Using them one gets the value of the
ratio as

ζ

τR
≈

M2

2π2

(

πT

4mx
−

11

12

(

1−
9m2

eq

44m2
x

))

. (4.32)

For the application in relativistic viscous hydrodynamics,
it is more useful to use the speed of sound. Applying
Eq. (4.17) and (4.31) one can explicitly show that the
ratio is proportional to (1/3− cs)

2, namely

ζ

τR
≈ T 4

(

1

3
− c2s

)2
(

2π3T

25mx
−

4π2

75

(

1−
9m2

eq

8m2
x

))

.

(4.33)

Note the appearance of T/mx in the expression (4.33).
This is in clear contrast to the Boltzmann statistics case
which does not show such a behavior. The analysis for
the Boltzmann statistics case is identical to the analysis
above except that in place of Jn,q, we have

In,q = aq

∫

dK(u · k)n−2q(−∆µνk
µkν)qf0,c(k), (4.34)

where f0,c(k) = e−βkµuµ . In this case, one gets

ζBoltz

τR
≈ T 4

(

1

3
− c2s

)2(
60

π2
−

36mx

πT

)

. (4.35)

The origin of this discrepancy is the fact that the Bose-
Einstein factor behaves like f(k) ∼ T/Ek in the infrared
limit which makes the thermodynamic integral J−1,0 in
Eq. (4.31) diverge in the mx → 0 limit while I−1,0 does
not. As a result, soft momenta govern the structure of
ζ/τR. However, since the calculation was performed in
the relaxation time approximation, which assumes that
τR is independent of energy, it may not capture the right
soft physics. A similar behavior was seen in Ref. [40],
where QCD bulk viscosity is studied. The authors claim
that the correct behavior of bulk viscosity is obtained
in the relaxation time approximation by neglecting the
infrared divergent term. But in principle there is no rea-
son why this term should be ignored within the present
framework.
Further, notice that starting from Eq. (4.4), the spin 0

part (the bulk part) and the spin 2 part (the shear part)
of the analysis are totally independent. Hence, it is pos-
sible to generalize the leading order Anderson-Witting
equation as
(

kµ∂µ −
1

2
∂im

2
eq

∂

∂ki

)

f0(x, k)

= −
Ek

τπ
∆fs(x, k)−

Ek

τΠ
∆fb(x, k), (4.36)

where ∆fs and ∆fb is the shear and the bulk part of ∆f .
In fact, when the dominant physical processes for the
shear relaxation and the bulk relaxation are different, this
is the most natural form of the Anderson-Witting model.

The analysis of this generalized Anderson-Witting model
follows exactly the same route as for the single τR except
that the shear viscosity and the bulk viscosity have dif-
ferent relaxation times.
As discussed in Ref. [33, 34], the dominant physical

process for the shear relaxation and the bulk relaxation
can be indeed very different and the bulk relaxation can
be dominated by the soft sector. Hence, the appearance
of T/mx is not entirely unnatural given that τΠ can have
very different mx dependence from τπ and the bulk relax-
ation is dominated by the soft number-changing process.

D. Comparison of ∆f to previous works

The phase space correction ∆f in Eq. (4.20) ultimately
comes from solving the first order Chapman-Enskog ap-
proximation. Hence, it should come as no surprise that
Eq. (4.20) is consistent to similar results found in other
similar works provided that the right expression for the
speed of sound is used. For instance, in Ref. [49] one
finds that the bulk part of the phase space correction in
the Boltzmann case is derived to be

∆fR(k) = f0,c(k)φR(k) (4.37)

with

φR(k) = τRβ(∂iu
i)

(

(c2sR − 1/3)Ek (4.38)

−
1

Ek

(

c2sRmxT
dmx

dT
−

m2
x

3

))

,

where the speed of sound is c2sR = (3+zK2(z)/K3(z))
−1,

with z = mx/T and Kn(z) being the modified Bessel
functions of the second kind. This φR is different than
φb in Eq. (4.19) since φR is a part of ∆f while φb is a
part of δf . The phase space correction ∆fR is, however,
equivalent to the bulk part of ∆f in Eq. (4.20) if one
uses the speed of sound expression (4.16) with Jn,q →
In,q. As mentioned above, this is as it should be since
both are solutions of the first order Chapman-Enskog
approximation.
The big difference between the previous treatments

and ours is in computing the bulk viscosity. The bulk
viscosity must be calculated using δf and not ∆f as ex-
plained in the previous section. If one uses ∆f (or ∆fR)
instead of δf , the ratio ζ/τR would be incorrectly calcu-
lated.

5. TRANSPORT COEFFICIENTS IN THE

14-MOMENT APPROXIMATION

When a system features a conformal anomaly, first or-
der transport coefficients reveal different sensitivity to
the source of the conformal symmetry violation, as ex-
plicitly shown in the previous section. In particular,
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shear viscosity is fully determined by the dominant en-
ergy scale, which is the temperature T , and thus the
shear viscosity over its relaxation time ratio behaves as
T 4 at leading order in the conformal symmetry break-
ing making the effects of scale anomaly negligible. On
the other hand, bulk viscosity over the relaxation time
is fully determined by breaking of conformal symmetry.
Such a difference makes it justified to omit the analysis
of shear viscous effects and to evaluate first and second
order transport coefficients related to bulk pressure be-
cause the additional term in Eq. (2.23) indeed concerns
only the scalar part. The analysis is performed at leading
order in the conformal breaking parameter while includ-
ing the thermal mass consistently.
The bulk pressure is given by Eq. (4.29). Noting that

Eq. (2.23) can be expressed as

M∆f = Mδf − T 2
dm2

eq

dT 2

f0(1 + f0)

Ek

Π
∫

dKEkf0(1 + f0)
,

(5.1)

one can rewrite Eq. (4.29) as

Π = M̃

∫

dK∆f, (5.2)

where

M̃ =
MJ1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0
. (5.3)

To obtain the equation of motion for the bulk pressure,
we first take the time derivative of Π

Π̇ = ˙̃M

∫

dK∆f

+M̃

[
∫

dK∆ḟ −
ṁ2

eq

2

∫

dK
1

E2
k

∆f

]

, (5.4)

where we adopted the notation Ȧ = uµ∂µA for an arbi-
trary quantity A, which reduces to the time derivative in
the rest frame of the fluid. From the Boltzmann equation

(

k̃µ∂µ − Ek∇Ek · ∇k

)

f = C[f ], (5.5)

where C[f ] is the collision integral, one finds

uµ∂µ(∆f) =
1

(u · k̃)

[

C[f ]− k̃µ∂µf0 − k̃µ∇µ∆f

+
1

2
∇m̃2

x∇kf0 +
1

2
∇m̃2

x∇k∆f

]

. (5.6)

Inserting the expression (5.6) to Eq. (5.4) and keeping
only leading order terms, that is, terms which are evalu-
ated with k̃ → k, we have

Π̇− C = −M̃

[

− β̇
(

J1,0 − T 2(dm2
eq/dT

2)J−1,0

)

+
β

3
θ
(

J1,0 −m2
xJ−1,0

)

]

+

(

˙̃M

M̃
−

2

3
θ

)

Π

−M
(ṁ2

eq

2
+

m2
x

3
θ
)

ρ−2 −Mρµν−2σµν , (5.7)

where θ ≡ ∇µu
µ and σµν = ∂〈µuν〉 is the Navier-Stokes

shear tensor. In Eq. (5.7) we adopted the following no-
tation for the collision term

C = M̃

∫

dK(u · k)−1C[f ] (5.8)

and for the irreducible moments

ρn = 〈(uαkα)
n〉δ, ρµνn = 〈(uαkα)

nk〈µkν〉〉δ. (5.9)

Evaluating uν∂µT
µν = 0 and implementing the for-

mula (4.16) for the speed of sound squared, one obtains

β̇ =
Πθ − πµνσµν

J3,0 − T 2(dm2
eq/dT

2)J1,0
+ c2sβθ. (5.10)

Next, calculating time derivatives ˙̃M and ṁ2
eq, Eq. (5.7)

simplifies to

Π̇− C = −βM̃

[(

1

3
− c2s

)

(

J1,0 − T 2
dm2

eq

dT 2
J−1,0

)

+MJ−1,0

]

θ −
(2

3
+

2c2saT
2βλ

3M̃
−A

)

θΠ

−πµνσµνA+M2ρ−2θ −Mρµν−2σµν , (5.11)

where

A = M̃
J1,0 − T 2(dm2

eq/dT
2)J−1,0

J3,0 − T 2(dm2
eq/dT

2)J1,0
= c2s −

1

3
(5.12)

with the quantity (c2s − 1/3) given by Eq. (4.17).
To close Eq. (5.11) in terms of Π and πµν , one can

apply the 14-moment approximation, which allows to ex-
press the irreducible moments by Π and πµν as follows

ρ−2 = γ
(0)
2 Π, (5.13)

ρµν−2 = γ
(2)
2 πµν , (5.14)

where the coefficients γ
(0)
2 and γ

(2)
2 are combinations of

different thermal functions Jn,q. Their particular forms
are presented in Appendix C. Also, using the Anderson-
Witting model for the collision term

C[f ] = −(u · k)
∆f

τR
, (5.15)

where ∆f is given by Eq. (2.23), the collision integral
becomes

C = −
Π

τR
. (5.16)

Applying the collision term in the relaxation time ap-
proximation (5.16), the irreducible moments, Eqs. (5.13)
and (5.14), and the relation for the speed of sound (4.17)
to the evolution equation (5.11), one obtains

Π̇ +
Π

τR
= −

ζθ

τR
−

δΠΠ

τR
θΠ+

λΠπ

τR
πµνσµν , (5.17)
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where

ζ

τR
= βM2

[

J1,0J−1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0

−
J1,0J1,0

J3,0 − T 2(dm2
eq/dT

2)J1,0

]

(5.18)

is identical to the expression obtained in the Chapman-
Enskog approach found in the previous section,
Eq. (4.31). The remaining transport coefficients are

δΠΠ

τR
= 1− c2s +M2γ

(0)
2 +

2aT 2βλ

9M̃
, (5.19)

λΠπ

τR
=

1

3
− c2s −Mγ

(2)
2 . (5.20)

Converting M to the speed of sound and taking m0 → 0
limit, one gets

δΠΠ

τR
≈

4

3

(

1 +
T 2

2

dm2
eq

dT 2

J−1,0

J1,0

)

+

(

1

3
− c2s

)

+γ
(0)
2

(

J3,0
J1,0

− T 2
dm2

eq

dT 2

)2
(

1

3
− c2s

)2

, (5.21)

λΠπ

τR
≈

(

1 + γ
(2)
2

(

J3,0
J1,0

− T 2
dm2

eq

dT 2

))

(

1

3
− c2s

)

,(5.22)

where γ
(0)
2 and γ

(2)
2 are calculated in Appendix C and

are given by Eqs. (C.14) and (C.15), respectively. When
inserted, one gets the leading orders of the coefficients

δΠΠ

τR
≈

4

3

(

1 +
3

8π

meq

T
−

3

16π2

m2
eq

T 2

)

+

(

1

3
− c2s

)(

6

15π

T

meq
+ 1

)

+0.97

(

1

3
− c2s

)2
T 4

m4
eq

, (5.23)

λΠπ

τR
≈ 1.05

(

1

3
− c2s

)

, (5.24)

where the numerical factors come from evaluating
g0 (12/15)

2 ≈ 0.97 and (1 + 12g2/15) ≈ 1.05 with g0 and
g2 given by Eqs. (C.16) and (C.17). As seen, the coef-
ficient δΠΠ/τR is affected by the soft physics even more
strongly than the bulk viscosity which is manifested by
the factors 1/meq and 1/m4

eq.

Repeating the same analysis for the Boltzmann gas,
which leads simply to replacement of the thermody-
namic functions Jn,q → In,q, one obtains the same value
of ζBoltz/τR as within the Chapman-Enskog approach,
Eq. (4.35). The other two coefficients have the forms

(5.21) and (5.22) with γ
(0)
2 and γ

(2)
2 given by Eqs. (C.19)

and (C.20). The explicit expressions in the m0 → 0 limit

are then found to be

δΠΠ,Boltz

τR
≈

4

3

(

1 +
1

4

m2
eq, c

T 2

)

+ 5

(

1

3
− c2s

)

−10.8

(

1

3
− c2s

)2

, (5.25)

λΠπ,Boltz

τR
≈ 1.6

(

1

3
− c2s

)

, (5.26)

where the numerical factors were found from 144g0c ≈
−10.8 and (1 + 12g2c) ≈ 1.6 with g0c and g2c written
up below Eq. (C.20). One can also see from Eqs. (5.19)
and (5.20) that when thermal quantities are neglected
and the constant mass is kept, we reproduce ζBoltz/τR,
λΠπ,Boltz/τR and the two first terms of δΠΠ,Boltz/τR from
Ref. [41].

6. SUMMARY AND CONCLUSIONS

In this paper we analyzed the influence of the mean
field on fluid dynamics in weakly interacting systems of
a single species, where all occurring masses are much
smaller than the system’s temperature. The main atten-
tion was paid to proper determination of the form of the
nonequilibrium correction to the distribution function
which depends on the mass varying as the temperature
varies. The correction guarantees a consistent hydro-
dynamic description which satisfies thermodynamic rela-
tions and the conservation of energy and momentum and
furthermore gives an accurate fixing of the temperature
through Landau matching. The correction plays a central
role in studying thermal dependence of bulk viscous dy-
namics. Therefore, we further considered the Anderson-
Witting model of the Chapman-Enskog approach and
computed ζ/τR of single-component Bose-Einstein and
Boltzmann gases. We also derived the evolution equa-
tion for the bulk pressure in the 14-moment approxima-
tion and obtained relevant transport coefficients. Both
methods provide the same result for ζ/τR.
The ratio ζ/τR obtained for the Boltzmann statistics

behaves as expected, that is, it is given by the noncon-
formality parameter squared. When thermal effects are
omitted, we reproduce the result from Refs. [41, 43]. On
the other hand, for very high temperatures the ratio gets
dominated by the βλ-function. We also see that in spite
of breaking conformal invariance, bulk viscosity vanishes
at some critical temperature where c2s = 1/3. In case
of the Bose-Einstein gas, we have shown that the lead-
ing order term of ζ/τR is different than expected either
if we neglect the physical mass or thermal effects. The
ratio in this case is strongly redounded by the infrared
physics, which introduces an additional energy scale de-
pendent factor T/mx. We suspect that the relaxation
time approximation used here does not include the en-
tire microscopic physics of a quantum gas, in particular,
it is insensitive to phenomena at the soft scale. There-
fore, we conclude that to compute the bulk viscosity over
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its relaxation time for quantum gases of Bose-Einstein
statistics, one needs to use more advanced methods and
solve an integral equation. It can be done starting from
either the linearized Boltzmann equation or Kubo for-
mulas, in which case the formula for the bulk relaxation
time has been recently found [59].
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Appendix A: Components of the energy-momentum

tensor correction

The correction to the energy-momentum tensor is

∆T µν =

∫

dKkµkνδf +
∂T µν

0

∂m2
eq

∆m2
th (A.1)

and its particular components are derived as follows. For
µ = ν = 0, one gets

∆T 00 =

∫

dKE2
kδf +

∆m2
th

2

∫

dKf0

−
∆m2

th

2
β

∫

dKEkf0(1 + f0)−∆U

=

∫

dKE2
k∆f, (A.2)

where the condition on ∆U , given by (3.13), and
Eq. (2.13) have been used. Using Eq. (2.23) for ∆f , one
has

∆T 00 =

∫

dKE2
k∆f,

=

∫

dKE2
k

[

δf

−T 2
dm2

eq

dT 2

f0(1 + f0)

Ek

∫

dKδf
∫

dKEkf0(1 + f0)
.

]

=

∫

dK

(

E2
k − T 2

dm2
eq

dT 2

)

δf (A.3)

Analogously, one gets the momentum density variation

∆T 0i =

∫

dKEkk
iδf −

∆m2
th

2
β

∫

dKkif0(1 + f0)

=

∫

dKEkk
i∆f. (A.4)

The stress tensor variation is

∆T ij =

∫

dKkikjδf −
∆m2

th

2
β

∫

dK
kikj

Ek
f0(1 + f0)

−
∆m2

th

2

∫

dK
kikj

E2
k

f0 + δij∆U

=

∫

dKkikj∆f −
∆m2

th

2

∫

dK
kikj

E2
k

f0

+δij
∆m2

th

2

∫

dKf0, (A.5)

where Eq. (2.23) has been applied. Eqs. (A.3) - (A.5)
reproduce these provided by Eqs. (3.15) - (3.17). Among
all these expressions, ∆T ij needs further simplifications
to show how one can obtain Eq. (3.25). The second and
the third term of the first line in Eq. (A.5) may be com-
bined to get

∆T ij =

∫

dKkikjδf −
∆m2

th

2

∫

dKkikj∂Ek

(

f0
Ek

)

+δij∆U. (A.6)

Next, using ∂Ek
(. . . ) = Ek

k ∂k(. . . ) and then integrating
by parts leads to

∆T ij =

∫

dKkikjδf − δij
∆m2

th

2

∫

dKf0 + δij∆U

=

∫

dKkikjδf, (A.7)

where the condition (3.13) has been used.

Appendix B: Details of the thermodynamic integrals

1. Boltzmann statistics

Our strategy to evaluate the integrals with the Boltz-
mann statistics is to use the integral representation of
the modified Bessel functions of the second kind

Kn(z) =

∫ ∞

0

dθ cosh(nθ) exp (−z cosh θ), (B.1)

We will also need the Bickley functions defined by

Kir(z) =

∫ ∞

0

dθ
exp (−z cosh θ)

(cosh θ)r
. (B.2)

We will need the following series in the small z limit

K1(z) ≈
1

z
−

z

4

(

1− 2γE + ln 4− 2 ln z
)

, (B.3)

K2(z) ≈
2

z2
−

1

2
+

z2

32

(

3− 4γE + 2 ln 4− 4 ln z
)

, (B.4)

K3(z) ≈
8

z3
−

1

z
+

z

8
, (B.5)

K4(z) ≈
48

z4
−

4

z2
+

1

4
, (B.6)

K5(z) ≈
384

z5
−

24

z3
+

1

z
, (B.7)
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where γE = 0.577 is the Euler constant and ln 4 = 1.386
and the higher order terms in z were neglected. For the
Bickley function [58], we need

Ki1(z) ≈
π

2
− z(1− γE − ln(z/2)) (B.8)

Using |k| ≡ k = mx sinh θ, the thermodynamic func-
tions In,q, defined by (4.34) and evaluated in the fluid
rest frame, can be expressed as

In,q(T, z) = aq
T n+2zn+2

2π2

×

∫ ∞

0

dθ(cosh θ)n−2q(sinh θ)2q+2 exp (−z cosh θ), (B.9)

where z = mx

T and aq = 1/((1 + 2q)!!). Using coshx =
(ex+e−x)/2 and sinhx = (ex−e−x)/2, and the definition
Eq. (B.1), these integrals can be expressed in terms of the
modified Bessel functions of the second kind.

Let us consider I3,0 first. After the angle integral, we
have

I3,0 =
1

2π2

∫ ∞

0

dk k2 E2
k e

−Ek/T . (B.10)

Using k = mx sinh θ, this becomes

I3,0 =
m5

x

2π2

∫ ∞

0

dθ sinh2 θ cosh3 θ e−z cosh θ, (B.11)

where z = mx/T . By using coshx = (ex + e−x)/2 and
sinhx = (ex − e−x)/2 and the definition Eq. (B.1), one
gets

I3,0 = −
m5

x

32π2
(2K1(z)−K3(z)−K5(z))

≈
m5

x

32π2

(

384

z5
−

16

z3

)

=
12T 5

π2

(

1−
z2

24

)

. (B.12)

The other useful integrals are found in a similar way

I1,0 ≈
T 3

π2

(

1−
z2

4

)

, (B.13)

I−1,0 ≈
T

2π2

(

1−
zπ

2

)

, (B.14)

I3,1 ≈
4T 5

π2

(

1−
z2

8

)

, (B.15)

I0,0 ≈
T 2

2π2

(

1−
z2

4

(

1− 2γ + ln 4− 2 ln z
)

)

,(B.16)

where I0,0 ≡ q0 is needed for the thermal mass evalua-
tion. For ǫ+ P , we have

ǫ+ P ≈
T 4

π2

(

4−
z2

2
+

z4

16

)

. (B.17)

2. Bose-Einstein statistics

The thermodynamic integrals for the Bose-Einstein gas
are defined by Eqs. (4.14)

Jn,q = aq

∫

dK(uµkµ)
n−2q(−∆µνk

µkν)q[f0(1 + f0)].

(B.18)

In the fluid rest frame and after the angle integrals Jn,q
becomes

Jn,q =
aq
2π2

∫ ∞

0

dk
k2

Ek
Fn,q(Ek) f0(Ek)(1 + f0(Ek))

(B.19)

and

Fn,q(Ek) = En−2q
k k2q = En−2q

k (E2
k −m2

x)
q. (B.20)

Using ∂kf0(Ek) = − k
TEk

f0(Ek)(1+f0(Ek)) and integrat-
ing by part, we can rewrite the above as

Jn,q =
aqT

2π2

∫ ∞

0

dk f0(Ek) ∂k (kFn,q(Ek)) . (B.21)

Changing the integration variable to Ek, we further get

Jn,q =
aqT

2π2

∫ ∞

mx

dEk Gn,q(Ek) f0(Ek), (B.22)

where

Gn,q(Ek) = (Ek/k)∂k(kFn,q(Ek))

=
(E2

k −m2
x)

qEn−2q−1
k ((n+ 1)E2

k +m2
x(2q − n))

√

E2
k −m2

x

(B.23)

using k =
√

E2
k −m2

x.
Our strategy to evaluate this integral is to separate

the high momentum contribution and the low momentum
contribution. We know how to evaluate
∫ ∞

mx

dEkE
l
kf0(Ek) = T l+1

∫ ∞

z

dxxl
∞
∑

n=1

e−nx (B.24)

where x = Ek/T and z = mx/T in terms of the poly-
logarithmic functions Lin(z). Hence, we first expand
the square-root in m2

x/E
2
k and identify the non-negative

power terms in Ek. Denoting the collection of such terms
as Hn,q(Ek), we then separate the integral as

Jn,q =
aqT

2π2

∫ ∞

mx

dEk Hn,q(Ek) f0(Ek)

+
aqT

2π2

∫ ∞

mx

dEk (Gn,q(Ek)−Hn,q(Ek)) f0(Ek)

(B.25)

One can show that the reminder Gn,q(Ek)−Hn,q(Ek) =
O(1/E3

k) for all n and q. Then expanding f0 in the small
Ek/T limit,

f0(Ek) =
T

Ek
−

1

2
+

Ek

12T
+ O

(

(Ek/T )
3
)

(B.26)
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we can keep the first three terms in the integrand to
calculate the soft contribution. This integral can usually
be exactly evaluated.
Let us consider J3,0. From Eq. (B.22), we have

J3,0 =
T

2π2

∫ ∞

mx

dEk
4E4

k − 3m2
xE

2
k

√

E2
k −m2

x

f0(Ek). (B.27)

Expanding the square-root in powers of m2
x/E

2
k, we get

G3,0(Ek) = 4E3
k −m2

xEk +O(1/E3
k). (B.28)

We can then separate the hard and the soft parts

J3,0 =
T

2π2

∫ ∞

mx

dEk

(

4E3
k −m2

xEk

)

f0(Ek)

+
T

2π2

∫ ∞

m

dEk

[

4E4
k − 3m2

xE
2
k

√

E2
k −m2

x

− 4E3
k +m2

xEk

]

f0(Ek).

(B.29)

Since the square bracket behaves like 1/E3
k, we can use

f0(Ek) ≈ T/Ek − 1/2 + Ek/12T to evaluate the second
integral. It is

J soft
n,q ≈

T 5

2π2

(

z3

3
−

3z4

16
+

7z5

180

)

(B.30)

with z = mx/T . The hard part is

Jhard
3,0 =

T

2π2

∫ ∞

mx

dEk

(

4E3
k −m2

xEk

)

f0(Ek)

=
T 5

2π2

∫ ∞

z

dx
(

4x3 − z2x
) 1

ex − 1

=
T 5

2π2

(

24 Li4(e
−z) + 24z Li3(e

−z) + 11z2 Li2(e
−z)

+3z3 Li1(e
−z)
)

=
T 5

2π2

(

4π4

15
−

π2z2

6
−

z3

3
+

z4

4
−

7z5

180
O
(

z6
)

)

.

(B.31)

Adding the two yields

J3,0 = Jhard
3,0 + J soft

3,0 ≈
T 5

2π2

(

4π4

15
−

π2z2

6
+

z4

16

)

.(B.32)

This formula works better than 1 part in 104 up to z =
mx/T = 1.
The usual way of evaluating Bose-Einstein integrals is

to use the modified Bessel functions of the second kind

J3,0 =
T

2π2

∫ ∞

0

dk
k

Ek

4E4
k − 3m2

xE
2
k

k

∞
∑

n=1

e−nEk/T

=
Tm4

x

2π2

∞
∑

n=1

(

1

2
K4(nz) +

1

2
K2(nz)

)

. (B.33)

Using the small x expansion of Kn(x) and collecting only
the terms converging under the infinite sum, we get

JBessel
3,0 ≈

Tm4
x

2π2

∞
∑

n=1

(

24

n4z4
−

1

n2z2

)

=
T 5

2π2

(

4π4

15
−

π2z2

6

)

. (B.34)

which gets only the first two terms.
The useful integrals are then found using the former

method

J1,0 ≈
T 3

6

(

1−
3z

2π
+

3z2

4π2

)

, (B.35)

J3,1 ≈
2T 5π2

45

(

1−
15z2

8π2

)

, (B.36)

J−1,0 ≈
1

8π

T

z

(

1−
2z

π
+

z2

6

)

. (B.37)

These formulas provide very good approximation up to
z = 1. In evaluating J−1,0 one would expect to use the
Bickley functions equivalently but this method does not
work because the sum cannot be easily evaluated, even
for the leading behavior.
For the enthalpy, one gets

ǫ+ P ≈
2π2T 4

45

(

1−
15z2

8π2

)

(B.38)

and for the thermal mass

q0 ≈
T 2

12

(

1−
3z

π

)

. (B.39)

Appendix C: Irreducible moments

To express the irreducible moments of the distribution
function one can apply the Grad’s 14-moment approxi-
mation, where the correction to the distribution function
of the Bose-Einstein gas is a generalization of the Boltz-
mann one, shown in [14, 41, 43], and takes the form

δf = f0(1 + f0)
[

E0 +B0m
2
x +D0(u · k)− 4B0(u · k)2

]

Π

+f0(1 + f0)B2p
αpβπαβ . (C.1)

The coefficients E0, B0, D0, and B2 are functions of mx,
T , and uµkµ and they read

B2 =
1

2J4,2
, (C.2)

D0

3B0
= −4

J3,1J2,0 − J4,1J1,0
J3,0J1,0 − J2,0J2,0

≡ −C2, (C.3)

E0

3B0
= m2

x + 4
J3,1J3,0 − J4,1J2,0
J3,0J1,0 − J2,0J2,0

≡ −C1, (C.4)

B0 = −
1

3C1J2,1 + 3C2J3,1 + 3J4,1 + 5J4,2
, (C.5)
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where terms related to the particle diffusion have been
dropped. Therefore, the irreducible moments ρ−n and
ρµν−n can be expressed by Π and πµν as follows

ρ−n = γ(0)
n Π, (C.6)

ρµν−n = γ(2)
n πµν , (C.7)

where the coefficients γ
(0)
n and γ

(2)
n are

γ(0)
n = (E0 +B0m

2
x)J−n,0 +D0J1−n,0 − 4B0J2−n,0,(C.8)

γ(2)
n =

J4−n,2

J4,2
. (C.9)

Only γ
(0)
2 and γ

(2)
2 are needed here.

Using the prescription shown in Appendix B for eval-
uating relevant thermodynamics functions one finds that
the leading order terms of coefficients E0, B0, and D0,
which are

E0 ≈
e0

z2T 4
, D0 ≈

d0
z2T 5

, B0 ≈
b0

z2T 6
(C.10)

where

e0 =
48π2(π8 − 10125ζ(3)ζ(5))

5(19π6ζ(3)− 2835ζ3(3)− 300π4ζ(5))

≈ 22.36, (C.11)

d0 =
−216π4(π2ζ(3)− 25ζ(5))

19π6ζ(3)− 2835ζ3(3)− 300π4ζ(5)

≈ −22.29, (C.12)

b0 =
3π2(π6 − 405ζ2(3))

19π6ζ(3)− 2835ζ3(3)− 300π4ζ(5)

≈ −0.84. (C.13)

Therefore, the leading order of γ
(0)
2 and γ

(2)
2 is

γ
(0)
2 ≈

g0
z4T 4

, (C.14)

γ
(2)
2 ≈

g2
T 2

(C.15)

where

g0 =
32(π8 − 10125ζ(3)ζ(5))

5(19π6ζ(3)− 2835ζ3(3)− 300π4ζ(5))

≈ 1.51, (C.16)

g2 =
ζ(3)

20ζ(5)
≈ 0.06 (C.17)

For the Boltzmann statistics, one needs to change all
integrals Jn,q → Inq and M → Mc. The leading order
results for the classical gas are

E0 ≈
π2

2T 4
, D0 ≈ −

π2

3T 5
, B0 ≈ −

π2

96T 6
, (C.18)

which lead to

γ
(0)
2 ≈

g0c
T 4

, (C.19)

γ
(2)
2 ≈

g2c
T 2

, (C.20)

where g0c = −(5 + 12γE − 12 ln 2) ≈ −0.075 and g2c =
1/20.
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