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In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow
anisotropies have been observed. For the large opacity (ρσL ∼ 103) of the latter hydrodynam-
ics is a natural consequence, but for the small opacity (ρσL ∼ 1) of the former hydrodynamic
description is questionable. To shed light onto the situation, we simulate the expansion of a low
density Argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb
interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the
anisotropy depends on the initial spatial eccentricity and the density of the system. The results
may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its
role in the study of quantum chromodynamics.
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I. INTRODUCTION

In high energy heavy ion collisions [1] and interacting cold atom systems [2], large elliptic flow anisotropies have
been observed. The observations can be described by hydrodynamics [3, 4] with low viscosity to entropy density
ratio, close to the conjectured quantum low limit of 1/4π [5]. This suggests that both these systems are strongly
interacting [1, 3, 4, 6–8], because it is generally believed that strong interactions are a precursor for large anisotropic
flow.

Interaction strength can generally be quantified by the opacity ρσL, where ρ is the particle density in the system,
σ is the interaction cross section between the particles, and L is the system size. The opacity is the inverse of
the Knudsen number where 1/ρσ is the mean free path of particles in the system. The opacity of the cold atom
system, ρσL ∼ 103 [2], is indeed large and hydrodynamics is a natural consequence [9]. A recent parton transport
study [10] by AMPT (A Multi-Phase Transport) and MPC (Molnar’s Parton Cascade) indicates, however, that the
opacity of heavy ion collisions is small, ρσL ∼ 1. For such a small opacity (i.e. weak coupling), the anisotropic flow
should be small as shown by low-density limit studies [11, 12]. However, anisotropic flow from transport models are
large, as same as those observed in heavy ion collision data which are described by hydrodynamics. At low opacity,
however, hydrodynamic description is questionable [13–15]. In fact, the transport model study suggests that the large
anisotropic flow is generated by the escape mechanism at low densities [10].

The constituents of the two systems and the nature of the interactions are vastly different. Relativistic heavy
ion collisions involve the quark and gluon degrees of freedom under the strong interaction governed by quantum
chromodynamics (QCD). The cold atom system is composed of neutral atoms under the electromagnetic interaction.
That both these systems develop large elliptic anisotropy suggests that the physics is universal, not depending on
the nature or details of the interactions. In fact, it is generally believed that the generation of large anisotropic
flow is a universal strong coupling physics [6]. However, the low opacity suggested by the recent transport model
study [10] suggests that the physics may be universal even including weak coupling. Weak coupling should be relevant
in low energy heavy ion collisions, where elliptic flow has been also extensively studied [16, 17]. There, it is generally
established that, besides the strong nuclear force, the Coulomb interaction is also important for the development of
collective flow [18].

To shed further lights onto the physics of collective flow development, we simulate the anisotropic expansion of
low density Argon ion and atom systems under the Coulomb interaction and short-range contact interaction (elastic
scattering), respectively.
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II. SIMULATION DETAILS

We simulate systems of Argon 40Ar+ ions and Argon atoms. The particles are initially trapped in an elliptical region,
uniformly distributed. To set the half axle lengths of the ellipse, we consider the situation of Au+Au collisions with
impact parameter b = 8 fm, where the transverse overlap area is an ellipsoid with aspect ratio of a : b = 1 : 2.4 [19].
Since we study the systems on atomic length scale, not nuclei, the half axle lengths of the systems are set to a = 10 nm,
b = 24 nm, and c = 50 nm. The ellipsoidal eccentricity is quantified by ε2 = (b2 − a2)/(b2 + a2). The aspect ratio
is varied in the range from 1 : 1 to 1 : 3.6 in our study, keeping the volume fixed. The number of particles N
is varied from 100 to 5000. The particle momenta are determined by the Boltzmann distribution at temperature
T = 300 Kelvin. The initial average thermal velocity of the particles is 432 m/s.

We release the trap and let the system expand. Two cases of interactions are studied: the Coulomb interaction and
the short-range contact interaction (elastic scattering) for the Argon ion and atom system, respectively. The motion
of the particles under the respective interactions are calculated using the time-step approach. The time step is set
to 10−4 ns. During each step, particles undergo rectilinear motion. The positions and velocities of all particles in
the system are recalculated after each time step. The kinetic energies of the particles in our simulations are typically
small, not enough to ionize the atoms or further ionize the ions. So we do not consider ionization in our simulations.

Coulomb interactions have been extensively studied by Coulomb explosion simulations where an incident ion excites
the electron cloud in a solid and interacting with the transiently ionized atoms [20–22]. For our case of the Coulomb
interaction, the calculations are significantly simplified. The net Coulomb force on each ion is calculated from all
other ions at their respective positions. The typical Coulomb force for our system of 1000 ions is 10−10 N. This gives
a typical acceleration of 106 nm/ns2 for the ions. The acceleration is used to calculate the new position and velocity
after each time step. The typical Coulomb potential energy is on the order of 1 eV, larger than the thermal energy
of approximately 0.025 eV, so only the Coulomb force is considered for the ion system.

For the case of the short-range contact interaction, an elastic scattering is considered to happen when two atoms
are within a distance of 1 nm (i.e. cross section σ = π nm2). Since the atom speed in our simulation of elastic
scatterings is typically a few hundred m/s, atom pairs would not enter into a cross section of interaction region and
then leave the region within a single step. This ensures that situations do not happen where two particles should
really have interacted but the simulation program does not know it. This guided us in the choice of the time step
size. The scattering angle in the rest frame of the two incoming atoms is set to be isotropic (i.e. chosen randomly
in the 4π solid angle). The velocities of the outgoing atoms after an elastic scattering is determined by energy and
momentum conservations. Note that although an atom system is simulated, there is nothing special about atoms, and
one could have equally well simulated quarks, neutrons, molecules, or billiard balls with properly scaled dimensions
and scattering cross sections.

We investigate how anisotropies develop in the expansion of the systems. The anisotropy is quantified in momentum
space by [23]

v2 = 〈cos(2φ)〉, (1)

where φ is the azimuthal angle (on the x-y plane) relative to the short-axis (x) of the trap. The anisotropy magnitude
is studied as functions of the initial trap aspect ratio and the particle density of the system.

III. RESULTS AND DISCUSSIONS

We first consider only the Coulomb interaction with the Argon ion system. At the initial moment, the ion system
can be viewed as an ellipsoid of uniform charge distribution. The equipotential surfaces are elliptical. The electric
field produced by the ions is stronger in the x direction than in the y direction, and the electric field on the periphery is
larger than in the interior. The ions move under the influence of the elliptical electric field, gaining larger momentum
in x than in y direction. This results in an elliptic flow in the ion system. This is shown by the finite v2 in Fig. 1(a)
where three values of N are depicted.

To compare with the long-range effect of the Coulomb interaction, we further simulate a dilute system of Argon
atoms with only elastic scattering. After each scattering, the atom’s motion is isotropized in the pair c.m. frame
whether the initial motion is in the x-direction or in the y-direction. However, because of the anisotropic population
of the atoms in the x-y space, atoms moving in the y direction suffer more scatterings than those in the x direction.
More initially y-moving atoms are diverted into the x direction than initially x-moving atoms being diverted into the
y direction. This results in fewer y-moving atoms than x-moving ones, hence a positive v2 parameter. This is shown
in Fig. 1(b) where three values of N are depicted.

The powerhouse for the momentum space anisotropy is the configuration space anisotropy of particle distribution,
and the driving force to convert the configuration space anisotropy to momentum space anisotropy is the particle
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FIG. 1: (Color online) The elliptic flow parameter v2 as functions of time, for (a) the Coulomb interaction, and (b) elastic
scattering. Initial trap size: a = 10 nm, b = 24 nm, and c = 50 nm. Three values for the number of particles N are shown.

interaction, the Coulomb interaction or elastic scattering in our study. Therefore, the time evolution of v2 must root
in the spatial eccentricity of particle distribution. Figure 2(a) shows the time evolution of the spatial eccentricity ε2
for both cases. In the Coulomb interaction case, the electric potential energy is converted into the ions’ kinetic energy.
The ions gain momentum quickly (the ion velocity can quickly reach 104 m/s); the ion system expands rapidly; see
the dashed curve in Fig. 2(b) where the average radial distance of the ions is shown as a function of time. The gain
in velocity and the expansion rate are stronger for larger ion density. As a result, the spatial anisotropy diminishes
quickly; v2 quickly builds up and reaches maximum, as showed in Fig. 1(a).

In the elastic scattering case, the atoms do not gain extra momentum on average. The initially random momentum
directions become more radially aligned due to scatterings. The system expands slowly and the ε2 decreases slowly;
see the solid curves in Fig. 2(a). Consequently, the v2 builds up slowly and saturates when ε2 diminishes after a
relatively long time, as seen in Fig. 1(b). No significant difference is observed in the time variations of ε2 or radial
positions of the atoms for the three cases of atom densities, shown in Fig. 2(a) and 2(b), respectively. There is,
however, a large difference in the v2 at a given time. This can be understood as follows. During the same amount of
time, the atoms move over the same distance on average because there is no gain in the atom velocity. Thus the ε2
changes are similar during the same amount of time for the different densities. But, the denser the system, the larger
scattering frequency. Because of the more scatterings during this time, more rearrangement of the momentum vector
into x direction is achieved, hence larger v2 for the denser system.

Our simulations show that the very different Coulomb interaction and short-range contact interaction can both
generate elliptic anisotropy. How the anisotropy develops differs, depending on details such as how quickly the spatial
anisotropy diminishes. In particular, because of the rapid increase in ion’s velocity and the rapid expansion of the ion
system under the Coulomb interaction, the spatial eccentricity rapidly decreases and becomes slightly negative. This
should contribute to the decreasing v2 after it reaches maximum as shown in Fig. 1(a). However, when ε2 becomes
negative, the system has grown very large. The negative ε2 and the Coulomb interaction over the large volume are
insufficient to cause the v2 decrease observed in Fig. 1(a). We believe the v2 decrease is mainly due to the long-range
nature of the Coulomb interaction, as follows. When two ions move in parallel in x direction, their mutual Coulomb
repulsion give them extra momentum kick in the y direction, thus reducing their v2 anisotropy.

The long-range Coulomb interaction and the short-range elastic scattering have an important distinction. The
Coulomb interaction in our simulation may be considered as a classical field effect, having nothing to do with local
thermal equilibrium or the existence of a pressure tensor. The flow buildup under the Coulomb interaction is therefore
unlikely hydrodynamic. The anisotropy under the Coulomb interaction may be more straightforwardly considered in
the following way. The Coulomb equal-potential surfaces are elliptical, and hence force more particles towards to the
large potential gradient (shorter axis) direction, resulting in positive v2.

While the Coulomb interaction is continuous and cannot be viewed as individual collisions, elastic scatterings can
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FIG. 2: (Color online) (a) The average ε2 and (b) the average radial distance as functions of time. Initial trap size: a = 10 nm,
b = 24 nm, and c = 50 nm. Three values for the number of particles N are shown.

be quantified by the number of collisions, Ncoll. It is interesting to examine the development of v2 as a function
of Ncoll, in addition to the time evolution studied in Fig. 1(b). Figure 3 shows the ε2 and v2 as functions of Ncoll

for three values of N . The ε2 decreases sharply at initial stage. The ε2 decreases to zero over different numbers of
collisions. Because the time span between successive collisions is longer for smaller densities, it takes approximately
the same amount of time to reach spatial isotropy (see Fig. 2(a)). This makes sense because the average velocities are
the same with different N , it takes approximately same amount of time to expand to the state of spherical symmetry.
On the other hand, the v2 follows roughly the same trend as a function of Ncoll. This is because the v2 is generated
by interactions, and should depend on the amount of interactions. When ε2 approaches to zero, the v2 saturates as
expected.

0 1 0 2 0 3 0 4 0
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 1 0 2 0 3 0 4 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4 N = 1 0 0
 N = 4 0 0
 N = 1 0 0 0

( a )

N c o l lN c o l l

 

 

( b )

ε 2 v 2

 
 

FIG. 3: (Color online) (a) The ε2 and (b) v2 after the given number of elastic scatterings, Ncoll. Initial trap size: a = 10 nm,
b = 24 nm, and c = 50 nm. Three values of the number of particles N are shown.

We have so far studied the time development of v2. We now examine how the final-state integral v2 depends on the
two driving factors: the initial-state spatial eccentricity and the interaction strength. The initial eccentricity is varied
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by the trap aspect ratio in the x-y plane. The interaction strength is varied by the particle density of the system.
Figure 4 shows v2 as a function of ε2. We vary the initial trap a : b aspect ratio, hence the ε2, while keeping c

and the volume fixed. The v2 increases linearly with ε2 at small ε2 (indicated by the dashed lines), after which the
increase appears to be stronger than linear. This may indicate higher order effects in the ε2 dependence of v2.
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FIG. 4: (Color online) The final v2 as a function of the initial ε2. Initial trap size: ab = 240 nm2, c = 50 nm. The number of
particles is N = 1000. The dashed lines are to guide the eye.

Figure 5 shows v2 as a function of N . The v2 increases with N for the elastic scattering case. The increase is less
significant when N becomes large. We can transform N linearly into opacity ρσL with the known cross section used
in our simulation, ρσL ≡ 3

4πNσ(abc)−2; this is shown by the values above the upper axis in Fig. 5. (Note these ρσL
values refer only to the elastic scattering case, not the Coulomb interaction case.) The v2 is significant even for small
ρσL, and increases rapidly with ρσL at small ρσL and less rapidly at large ρσL. The v2 will presumably saturates
when ρσL approaches infinity.

In the case of the Coulomb interaction, the v2 increases quickly at small N and saturates for most of the simulated
N values. This may be expected because the Coulomb interaction is long range and its effective cross-section is
infinite. The magnitude of v2 is smaller for the Coulomb interaction case than the elastic scattering case for most of
the simulated N . This is because the particles quickly gain speed under the Coulomb interaction so that the system
quickly expands, diminishing the spatial eccentricity.

IV. SUMMARY

Anisotropic flow has been extensively studied in heavy ion collisions governed by the short-range strong interaction
and QCD. Hydrodynamical and transport calculations involving quark and gluon degrees of freedom are the two
main approaches. Hydrodynamical calculations assume high density and strong interactions. It is generally believed
that strong interactions in a dense system are a necessary condition for the generation of anisotropic flow, converting
the initial configuration space anisotropy into final-state momentum space anisotropy. However, the recent transport
model studies by AMPT and MPC have casted this belief into doubt, suggesting that the anisotropic flow may be
produced by the low density escape mechanism.

To shed light onto the situation, we have simulated the expansion of low density Argon ion and atom systems,
initially trapped in an elliptical region. Significant elliptic anisotropies are found in the expansion under the Coulomb
interaction and elastic scattering, respectively. The anisotropy increases with increasing initial spatial anisotropy
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FIG. 5: (Color online) The final v2 as a function of the number of particles N for the two interaction cases: the Coulomb
interaction and the elastic scattering. The values above the upper axis are the corresponding opacity ρσL for the elastic
scattering case only. Initial trap size: a = 10 nm, b = 24 nm, and c = 50 nm.

and increasing particle density of the system (but still at low densities), to large values compatible to those from
hydrodynamic calculations at high densities. These results provide new insights and may help us understand the
nature and the physics mechanisms of anisotropic flow in high energy heavy ion collisions and its role in the study of
QCD, as follows.

This is the first simulation study of elliptic anisotropy of ion system under the Coulomb interaction. The study
confirms that anisotropy development is universal, not only in the strong interaction, but also in Coulomb interaction.
The simulation of the short-range contact interaction of neutral atoms is performed by a home-made, straightforward
two-body elastic scattering computer program. The anisotropy results qualitatively confirm those from AMPT and
MPC with more extensive physics modeling. The ion and atom systems we studied have rather low densities, but our
results demonstrate that large elliptical flow develops in these low-density systems as well. This suggests that large
elliptic flow can not only develop in high density systems, as widely perceived, but also in low density systems. Large
anisotropic flow is not unique to strongly interacting systems.

Given an observed large anisotropy, how does one tell if it is a result of a high-density strongly interacting (hydrody-
namic) system or a low-density weakly interacting system? A unique distinction between the two is the development
of strong collective radial flow in the former and a lack of strong radial flow in the later. We postpone the study of
collective radial flow to a future work.
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