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We present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest
number of possible phenomenological parameters to date. SeaLL1 is defined by 7 significant phenomenological
parameters, each related to a specific nuclear property. It describes the nuclear masses of even-nuclei with a mean
energy error of 0.97 MeV and a standard deviation 1.46 MeV, two-neutron and two-proton separation energies
with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean
error εr = 0.022 fm and a standard deviation σr = 0.025 fm. SeaLL1 incorporates constraints on the equation
of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory
two-body (NN) interactions at N3LO level and three-body (NNN) interactions at the N2LO level. Two of the
7 parameters are related to the saturation density and the energy per particle of the homogeneous symmetric
nuclear matter; one is related to the nuclear surface tension; two are related to the symmetry energy and its density
dependence; one is related to the strength of the spin-orbit interaction; and one is the coupling constant of the
pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state
properties, but can be used to fine tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy
of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin
thickness.

I. INTRODUCTION

The accurate and precise calculation of ground-state nuclear
properties and nuclear dynamics represent a formidable chal-
lenge for quantummany-body theory. While there exist a variety
of techniques for directly solving the many-body Schrödinger
equation, most of them are often limited to static properties,
and do not scale well with the number of particles in the sys-
tem. In contrast, density functional theory (DFT) provides
a unified framework for computing both static and dynamic
properties. Although in principle exact, at least for atomic
systems [1, 2], the theory does not provide the form of the
energy functional. A successful implementation of DFT thus
requires a physically-motivated functional form, together with
carefully fitted phenomenological parameters, or alternatively,
a first-principle derivation. Most nuclear energy density func-
tional (NEDF) in the literature are typically constructed by
building the functional from the expectation value of effective
nuclear forces on Slater determinants, such as the Skyrme and
Gogny parameters, or by considering the average values of
effective Lagrangians as in the relativistic mean-field theory [3].
Despite a significant research investment [4–9], improvements
to these functionals have been incremental.

In this paper, we present a different approach, revisiting the
motivation behind the form of current DFTs. We systemati-
cally construct a truly minimal NEDF, which we call SeaLL1,
that cleanly separates the phenomenological parameters into
hierarchies. Unlike typical NEDFs which are built directly
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from the approach of Kohn and Sham [10], we start with a
minimal orbital-free formulation functional of neutron and
proton densities in the spirit of Hohenberg and Kohn [1], along
the lines delineated by Weizsäcker [11]. Built on a core of 4
dominant parameters, this orbital-free NEDF obtains a global
mass fit better than the 4-parameter Bethe-Weizsäcker mass
formula [12], but in addition provides quite accurate charge
radii. The orbital based SeaLL1 functional then minimally
extends this 4 parameters NEDF by adding 3 parameters to
describe shell effects, pairing correlations, and the density
dependence of the symmetry energy, the latter which governs
the neutron skin thickness of 288Pb and 48Ca. In this form, the
7 parameter SeaLL1 functional displays extremely reasonably
single-particle spectra, globally fitting masses, charge radii,
and two-nucleon separation energies. As the nucleon effective
mass in SeaLL1 is the bare nucleon mass, we expect the total
energy level densities to be in much better agreement with
experiment than for typical Skyrme-like NEDFs.
Since we advocate a new paradigm for constructing and

improving a NEDF, we begin in section II with a somewhat
lengthy historical background to motivate our approach in sec-
tion III. The form of the SeaLL1 functional is presented in
details section III along with its orbital-free formulation. Sec-
tion IV discusses a number of nuclear properties that have been
used to validate the predictive power of our NEDF. Section V
identifies how the NEDF could be systematically improved for
applications either to static or dynamical properties. Finally,
we summarize our results in section VI. The hurried reader
can just read section III and section IV, which contain all the
results.
For the interested reader, we provide additional material in

appendix A, where we discuss in more details the orbital free
formulation and illustrate the dominance or sub-dominance
of various parameters. Numerical values for the functional
parameters, as well as tables of quantities used in our fits are
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provided as supplementary material [13].

II. HISTORICAL BACKGROUND AND MOTIVATIONS

Almost a century ago, Aston [14] realized that a nucleus is
not quite the sum of its parts. This lead Eddington [15]
to correctly conjecture a link between nuclear masses, the
conversion of hydrogen into heavier elements, and the energy
radiated by the stars. An accurate theoretical model of nuclear
masses, particularly close to the neutron drip line and with an
uncertainty of better than 100 keV (an accuracy which has not
been achieved yet even for known stable nuclei) will have a
great impact on predicting the origin and the abundances of
elements in the Universe [16, 17].
When quantum mechanics was first applied to many-body

systems, Weizsäcker [11] proposed that an energy density
approach could be an effective tool for calculating nuclear
binding energies. This was the first instance of an energy
density functional being applied in nuclear physics, several
decades before the foundation of DFT [1, 2, 10] was formulated.
Bethe and Bacher [12] further developed Weizsäcker’s ideas
and introduced the nuclear mass formula (the Bethe-Weizsäcker
formula) for the ground state energies of nuclei with A = N + Z
nucleons (N neutrons and Z protons):

E(N, Z) = avA + asA2/3 + aC
Z2

A1/3 + aI
(N − Z)2

A
. (1)

Unlike electrons in atoms, nuclei are saturating systems with
a nearly constant interior density. This yields the terms in
Eq. (1) referred to as: a volume energy, a surface tension, a
non-extensive Coulomb energy, and a symmetry energy that
favors similar numbers of protons and neutrons. (Due to the
presence of the long-range Coulomb interaction, the terms
“volume” and “surface” do not have a strict thermodynamic
meaning.) As shown in the first row of Table I, these four terms
alone fit the AME2012 evaluated nuclear masses [18, 19] with
a rms error of χE=3.30 MeV per nucleus. This is a remarkable
result: the nuclear binding energy of heavy nuclei can reach
2000 MeV, hence the errors are at the sub-percent level.
A slightly better fit is obtained using a mass formula with

surface corrections terms to the symmetry and Coulomb ener-
gies, as well as odd-even staggering correction due to pairing:

E(N, Z) = avA + asA2/3 + aC
Z2

A1/3 + a′C
Z2

A2/3

+ aI
(N − Z)2

A
+ a′I
(N − Z)2

A4/3 + ∆. (2a)

∆ =


−δA−1/2 even-even nuclei,
0 odd nuclei,
δA−1/2 odd-odd nuclei.

(2b)

This pairing contribution is significantly smaller than the oth-
ers, with an amplitude ≈ 12 MeV/A1/2. It is also smaller

av as aI a′I aC a′
C

δ χE
−15.47 16.73 22.87 0 0.699 0 0 3.30
−15.49 16.78 22.91 0 0.700 0 12.29 3.18

−15.32 17.76 24.96 −22.60 0.767 −0.675 0 2.64
−15.34 17.80 25.01 −22.43 0.767 −0.661 11.46 2.50

−15.77 17.50 23.65 0 0.723 0 0 1.87
−15.46 18.29 25.72 −26.00 0.792 −0.773 0 1.53

Table I. Parameters and the energy rms of the mass formulas Eq. (1) or
Eq. (2), with or without the even-odd staggering correction Eq. (2b).
Here χ2

E =
∑
|EN,Z − E(N, Z)|2/NE and we fit the NE = 2375

measured (not extrapolated) nuclear masses of nuclei with A ≥
16 from Audi et al. [18] and Wang et al. [19] and an evaluated
uncertainty less than 1 MeV with the electronic correction. (All
quantities expressed in MeV.) The last two rows show how the mass
formulas Eq. (1) or Eq. (2) fit the theoretical nuclear masses computed
using the SeaLL1 functional.

than contributions arising from shell-correction energies (dis-
cussed below), changing the rms error χE by about at most
150 keV. This fit is shown in Table I and the residuals are
displayed in Fig. 1. The magnitudes of the various terms are
compared in Fig. 2, which shows that the volume, surface,
and Coulomb contributions are dominant, while the symmetry
energy contribution is roughly at the level of 10%.
There are several possible ways to determine the volume,

surface, symmetry, etc. coefficients of Eq. (1) or Eq. (2). For
example, one may turn off the Coulomb interaction, and extract
volume, surface, and symmetry energy from the asymptotic
behavior of the energy of nuclei with very large numbers of
protons and neutrons [20]. This corresponds to considering the
thermodynamic limit, which is not realized in real nuclei due
to the presence of the long-range Coulomb interaction among
the protons. We prefer instead a unified approach, determining
the parameters by directly fitting almost all nuclear binding
energies, whether experimental or computed. (See last two
rows of Table I.)
In a parallel development, properties of many-fermion sys-

tems were understood in mathematical physics by tying together
the roles of the geometry and of the periodic trajectories in
cavities. As early as 1911, Weyl [21, 22, 23, 24, 25, 26, 27] and
others related the wave eigenstate density in boxes of various
shapes and boundary conditions to the geometrical shape of the
box [28–31]. In a manner similar to the nuclear mass formula
Eq. (1), this approach can be applied to saturating systems,
relating the ground state energy to the volume (V), surface
area (A), and mean curvature radius R of the many-particle
system [20]:

E = aVV + aSS + aRR + . . . . (3)

The similarity between Eq. (3) and the nuclear mass formula
Eq. (1) becomes apparent after relating the volume to the
particle number n = A/V ≈ const. The ground state energy
can thus be rewritten in terms of particle number A (here for
only one kind of particles)

E = bV A + bS A2/3 + bRA1/3 + . . . . (4)
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Figure 1. (Color online) The differences Eexp − Eth in MeVs between
the evaluated ground state energies Eexp(N, Z) [18, 19] of 2375
nuclei with A ≥ 16 and fitted with the 6-parameter mass formula
Eth = E(N, Z) Eq. (2) with ∆ ≡ 0. One can easily identify the location
of closed shells (the blue regions) for protons and neutrons.
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Figure 2. (Color online) The binding energy per nucleon B/A =
|E(N, Z)|/A and the Coulomb, surface and symmetry energy per
nucleon in Eq. (2) for the measured 2375 nuclei with A ≥ 16 [18, 19].

The coefficient bV is the energy per particle in infinite matter
and aS represents the surface tension. These types of expansion
are classical in character: Planck’s constant plays no explicit
role. Their accuracy for many-fermion systems is thus limited
by the lack of quantum effects (often referred to as shell effects).
It appears that for nuclei, the mass formula Eq. (2) is about
as good as one can achieve without introducing the quantum
effects.

There is a long debate in literature, fueled mainly by studies
of quantum chaos, about whether an expansion in powers of A
can be extended beyond the terms present in Eq. (4). Naïvely,
one might expect the next terms to be proportional to A0, A−1/3,
and so forth, but a a more careful analysis shows that that is
not correct. (See for example Brack and Bhaduri [31].) The

next term is instead proportional to A1/6 [32–35], arising from
the contribution of periodic orbits. Subsequent terms appear
to be stochastic, due to the inherent chaotic character of the
interacting many-body systems [36]. It is well established by
now that ideas originating from quantum chaos and random
matrices provide extremely useful tools to study properties
of neutron resonances, for example, in the region of nuclear
spectra where the level density is quite high. Subsequent works
have shown [37] that even the properties of ground states in
many fermion systems are amenable to study using similar
ideas. Thus it should not be surprising that small contributions
to the nuclear binding energies might be interpreted using
similar ideas.
Gutzwiller [38], Balian and Bloch [32, 33, 34], and Berry

and Tabor [39, 40] observed that quantum states in a finite
system can be quite accurately reproduced by quantizing the
periodic classical trajectories. (See also Brack and Bhaduri
[31].) Combining the idea of geometric quantization, with
the Thomas-Fermi model, the Pauli principle, and copious
empirical evidence that strongly interacting fermionic systems
share many similarities with non-interacting systems [41–47],
one can quite accurately construct the single-particle density of
states and binding energies as a function of the particle number,
eventually correcting this by the shape of the system.

The single-particle density of states n(ε) in a given potential
has a smooth and an oscillating components:

n(ε) = nTF(ε) + nosc(ε), (5a)

nosc(ε) =
∑
PO

aPO(ε) sin
(

SPO(ε)
~
+ φPO

π

2

)
+ . . . , (5b)

where the sum is performed over classical periodic orbits (PO)
(diameter, triangles, squares, etc.). Here, aPO(ε) is the stability
amplitude, SPO(ε) the action, and φPO the Maslov index of each
orbit at the energy ε [31–34, 48]. The single-particle density
of states in the Thomas-Fermi approximation nTF [21–31] has
a clear dependence on the size and shape of the system, and
leads to Eqs. (3) and (4) for a square-well potential. At the
same time, the nature of the periodic orbits also depends on the
size and shape of the single-particle potential. Knowing n(ε),
one can calculate the particle number A and shell-corrections
(SC) ESC = E − ETF for a many-fermion system by integrating
up to the chemical potential µ:

A =
∫ µ

−∞

n(ε)dε, ESC =

∫ µ

−∞

εnosc(ε)dε. (6)

The theory of periodic orbits and structure of these shell-
corrections has been studied extensively. For example, in
a 3-dimensional spherical cavity, quantum effects can be re-
produced by including only triangular and square orbits [31–
34, 48]. The emergence of magic numbers, and the role of the
shapes of many-fermion systems have been tested in theory
and validated against experimental results in fermion systems
with up to 3000 electrons [49–51]. In particular, in atomic
clusters, the emergence of super-shells has been predicted the-
oretically [48, 50, 52] and confirmed experimentally [49, 51].
(Nuclei are too small to exhibit of super-shells.)
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In nuclear physics, a similar line of inquiry is encapsulated
in the method of shell-corrections, developed by Strutinsky [53–
55] and many others [35, 56–68]. This method shows that n(ε)
has a well defined dependence on the particle number. The
smooth part of the density of states is quite well described
by the Thomas-Fermi approximation (and by the smoothing
procedure introduced by Strutinsky). The leading terms are the
volume (∼ A), surface (∼ A2/3), Coulomb (∼ Z2/A1/3), and
symmetry energy (∼ (N − Z)2/A) contributions encoded in the
Bethe-Weizsäcker mass formula (1). The oscillating part is
dominated by the nuclear shape and the shell effects from the
periodic orbits, where the amplitude depends on the particle
number as A1/6 [35].
The separation of n(ε) into the smooth and oscillating

parts (5a) is a general characteristic of the many fermion
systems. Both the macroscopic-microscopic method [35, 53–
68] and self-consistent approaches [3, 69–75] lead to the same
conclusions about the various contributions described above,
and agree with experimental data [76]. In all previous consid-
erations of mass tables, either in self-consistent approaches or
in microscopic-macroscopic models, the single-particle spec-
troscopic factors are modified only by pairing correlations. It
is well-known, however, that the coupling between collective
degrees of freedom and single-particle degrees of freedom lead
to a significant fragmentation of the single-particle occupation
probabilities, which are measured in pick-up and knock-out
reactions [64, 77]. This fragmentation of the single-particle
occupation probabilities is not taken into account in the single-
particle density of states Eqs. (5) or in the definition of the
single-particle densities Eqs. (10), and is likely to affect the
exact magnitude of the shell-effects. The order of magnitude
of these effects is perhaps a (small) fraction of the rms error
χE = 3.3 MeV of the Bethe-Weizsäcker mass formula (1). All
of this this begs the question: To what order can one expand the
density of states in powers of the particle numbers and periodic
orbits?
There is a reasonable consensus that, beyond the leading

contributions from the periodic orbits and shell-corrections,
any such expansion fails due to the effects of quantum chaos –
i.e. contributions from classically chaotic trajectories through
the many-body phase space [36]. Stable periodic orbits provide
the strongest shell effects in quantum systems, evidenced by the
appearance of magic numbers (see e.g. Fig. 19). Unstable peri-
odic orbits also produce shell effects, but with smaller weights.
In contrast, chaotic orbits appear to produce irregular oscilla-
tions in the single-particle density of states with a rather small
amplitude. Various estimates suggest that chaotic fluctuations
appear at the level of 0.5 MeV per nucleus [78–86], noticeably
smaller than shell effects contributions due to periodic orbits
and deformations, which are of the order of several MeVs.
The effect of periodic orbits is not limited to finite sys-

tems: the Casimir energy in quantum field theory [87, 88],
critical phenomena [89, 90], and strongly interacting infinite
inhomogeneous systems, e.g. nuclear pasta phase in neutron
stars [91–97], can also be explained and calculated to high
precision by evaluating the contributions from periodic orbits.
This method has become the standard approach for evaluating
the Casimir energy in a variety of fields [98–102].

It is somewhat surprising that shell effects from periodic
orbits appear at the same level as deformation effects in the
energy of nuclear systems. Naïvely one might expect the
deformation energy to be controlled by the surface area of a
saturating system, and thus to contribute as a correction to the
surface term in nuclear mass formulas like Eqs. (1) and (2).
However, the deformation energy in nuclei has a quantum
nature, and is determined by a delicate interplay between the
change in surface area and the shell effects. A similar behavior
has been observed in the case of atomic clusters with up to 3000
electrons [52]. This leads to a leveling of the peaks, which one
would otherwise expect in the absence of deformation, leaving
in place only the large negative shell-corrections for the magic
spherical systems, as seen in Fig. 19 for the case of nuclei.
The shape stability of a many-fermion system is controlled

by the single-particle level density at the Fermi level. In an
open-shell system this level density is high; the system can thus
deform quite easily and single-particle levels can rearrange
until the level density is low enough to render the system stable.
The stabilization process of the nuclear deformation in the
ground state is analogous to the Jahn-Teller effect in polyatomic
molecules [103], where the high degeneracy of the ground state
is lifted by the deformation of the system. Thismechanism leads
to new “magic numbers” in deformed systems as Strutinsky
discussed in his seminal papers [53–55]. The increase in
surface area and the energy penalty incurred (deformation
energy) is canceled to a large extent by the shell-corrections
(due to periodic orbits in the deformed potential), unless the
system is “magic” or “semi-magic”. The cancellation between
deformation energy and shell effects suggests that open-shell
systems should be easier to deform than magic systems. This
is consistent with the character of the residuals remaining after
fitting the nuclear binding energies with Bethe-Weizsäcker
formulas like Eqs. (1) and (2) as shown in Fig. 1 and Fig. 19.
The largest residuals appear as large (negative) spikes at the
shell closures for spherical nuclei with magic numbers of either
protons or/and neutrons, while the expected (positive) peaks
in between magic numbers are flattened. From the nature of
the residuals Eexp − Eth in Fig. 1 – sharp negative spikes at the
magic numbers, but roughly constant fluctuations in between
– one can conclude that mass formulas of the type Eq. (2) do
encode the role of the nuclear deformation. For open shell
nuclei it thus appears that the deformation energy is roughly
compensated by the shell-correction energy, and shell effects
only survive near magic and semi-magic nuclei.

A number of corrective termsmight be considered to improve
the accuracy of the nuclear mass formulas Eqs. (1) and (2).
For example, in the Coulomb term, one might replace Z2 with
Z(Z − 1) to correctly count the number of proton pairs, and
one might add an additional term proportional to Z to account
for the Coulomb exchange interaction and screening [104].
Motivated by Eq. (4), one might also consider including terms
proportional to A1/3 and A0. The symmetry energy terms
might also be “corrected” by replacing (N − Z)2/4 with T(T +
1) where T = |N − Z |/2. Finally, one might introduce an
additional correction to account for the Wigner energy ∝
|N − Z |, which appears as a cusp in the nuclear binding energies
as a function of N − Z (basically only for nuclei with small
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values of |N − Z |) [105]. However, including these corrections
lead to very small improvements in the energy rms χE below
the value 2.64 MeV obtained with the main terms of Eq. (2).
All these corrections are eclipsed by the shell effects as seen in
Fig. 1.
There are a variety of many-body approaches based

on the Schrödinger equation: the quantum Monte Carlo
(QMC) method [106, 107], the self-consistent Green func-
tion method [108], the coupled-cluster method [109], and the
in-medium renormalization method [110]. In all these ap-
proaches one has to specify the two-body (NN), three-body
(NNN), etc. interactions between nucleons, the form of which
is ambiguous and depends on how the theory is regularized.
Chiral effective field theory (EFT) [111, 112] provides a frame-
work for organizing these interactions using the symmetries
of the underlying theory quantum chromodynamics (QCD)
of quarks and gluons with the hope that physical results are
independent of the energy cutoff. In general, there is still no
guarantee, however, that this many-body expansion converges
fast enough using a naïve sum of diagrams [113, 114].
The DFT approach differs from approaches based on the

Schrödinger equation. For many-electron systems, it has been
established that there is a mathematical one-to-one correspon-
dence between the number density and the wavefunction of a
many-body system [1, 2], and this one-to-one correspondence
leads to the existence of an exact energy density functional. In
practice, however, this functional is extremely complicated and
establishing a useful form is more of an art than a science. One
particularly successful example is the unitary Fermi gas (UFG),
which shares many properties with dilute neutron matter, and
is also a superfluid with a large pairing gap [115]. In this case,
the form of a local energy density functional follows using
only dimensional arguments, renormalizability of the theory,
Galilean invariance, and symmetries. The functional and the
corresponding framework needed to treat fermionic superfluids
is called the superfluid local density approximation (SLDA)
(extending the local density approximation (LDA) acronym
of Kohn and Sham [10]), and has been verified and validated
against both QMC calculations and experiments at the few
percent level for a wide range of systems [116, 117]. Our
approach here is motivated by similar considerations, leading
to a simple and compact functional in which time-dependent
phenomena can be treated easily as well. Thus, unlike ap-
proaches based on Schrödinger equation, which are primarily
limited to static properties, the DFT can be applied to reactions,
fission, time-dependent non-equilibrium phenomena, and for
very heavy systems with remarkable accuracy.

III. FORM OF THE FUNCTIONAL

The lesson from our brief historical review is that, since nuclei
are saturating systems with a rather well defined saturation
density, the bulk of the nuclear binding energy should be fixed
by the geometry of the nuclei (volume, surface area, curvature
radius) to sub-percent accuracy. As demonstrated in Table I,
the accuracy of the mass formulas Eqs. (1) and (2) – which
both lack shell effects, deformation, spin-orbit effects, pairing,

etc. – suggests that such a nuclear energy density functional
(NEDF) should be capable of describing at a similar level of
accuracy both the nuclear binding energies, and the proton
and neutron matter density distribution. Therefore, we might
reasonably expect that a NEDF will also describe the nuclear
charge radii, for which there is a large amount of accumulated
data [118]. Shell effects, pairing correlations, and beyond
mean-field corrections, enter at the level of a few MeVs per
nucleus, reducing the rms energy error χE from around 3 MeV
to about 0.5 MeV [66–68], and are most pronounced for magic
or semi-magic nuclei, see Fig. 1.
We will describe a NEDF that depends on the smallest

number of phenomenological parameters needed to account
for all the contributions in the nuclear mass formulas Eqs. (1)
and (2). First we relate these parameters to various physical
quantities relevant for nuclear physics. For a large nucleus, the
Coulomb energy can be used to estimate the saturation density
n0 by approximating the nucleus as a uniformly charged sphere
with EC = 3Z2e2/5R = aCZ2/A1/3, where R = r0 A1/3 and
r0 ≈ 1.2 fm is a nuclear length scale:

n0 =
3

4πr3
0
, where r0 =

3e2

5aC
. (7a)

One can further estimate the ground-state energy of infinite
nuclear matter per nucleon ε0, the nuclear surface tension σ,
and their dependence on the isospin (N − Z)/2:

ε0 =
E(N, Z)

A
= av + aI

(N − Z)2

A2 , (7b)

σ = as + a′I
(N − Z)2

A2 . (7c)

Finally, one can relate the value of the coefficient a′C (or of the
alternative coefficient of the contribution a′′CZ2/A to the mass
formula [59]) with the nuclear surface diffuseness.

For a NEDF to be as accurate as the mass formula, one thus
expects no more than 5 or 6 significant parameters. As we
shall see, such a functional does exist, requiring as few as 4
parameters, and demonstrating better accuracy than the original
Bethe-Weizsäcker mass formula, with the additional property
of predicting charge radii. That a functional depending on
such a small number of phenomenological parameters can go
beyond the capabilities of the empirical mass formula and also
describe density distributions is truly remarkable.

We postulate a NEDF with three main contributions, which
significantly improves on the Weizsäcker’s original idea [11]:

E[nn, np] =

kinetic︷︸︸︷
Ekin + EC︸︷︷︸

Coulomb

+

interactions︷︸︸︷
Eint . (8)

The first two terms – the kinetic energy and Coulomb energy –
arewellmotivated and have no free parameters. All phenomeno-
logical parameters of the model appear in the interaction term
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Eint:

Eint =

homogeneous︷︸︸︷
Ehomo + E∇n︸︷︷︸

gradients

+

spin-orbit︷︸︸︷
ESO + E∆︸︷︷︸

pairing

+

entrainment︷ ︸︸ ︷
Eentrain, (9)

The Kohn-Sham formulation of the functional is specified
in terms of the single-particle orbitals vkσ(r), vkσ(r) through
the time-even number, anomalous, kinetic, and spin-current
densites (for both neutrons and protons),

n(r) =
∑
k,σ

v∗kσ(r)vkσ(r), (10a)

ν(r) =
∑
k

v∗k↑(r)uk↓(r), (10b)

τ(r) =
∑
k,σ

∇v∗kσ(r) · ∇vkσ(r), (10c)

J(r) =
∇ − ∇′

2i
×

∑
k,σ,σ′

v∗kσ(r)σσ,σ′vkσ′(r
′)

�����
r=r′

. (10d)

as well as the time-odd spin-density and current (which are
non-vanishing if time-reversal symmetry is broken)

s(r) =
∑

k,σ,σ′

v∗kσ(r)σσ,σ′vkσ′(r), (10e)

j(r) =
∑
k,σ

∇ − ∇′
2i

v∗kσ(r
′)vkσ(r)

����
r=r′

, (10f)

see [3, 119] and references therein for details. (Note: In
nuclear physics literature proton and neutron number densities
are typically denoted with the symbols ρn,p(r). In accordance
with thewider physics literature, we reserve ρ formass densities,
which are related to number densities by ρn,p(r) = mnn,p(r).)

Developing an orbital-free version of (9) would require
expressing all the various terms exclusively in terms of the
number density n(r). Whether such a NEDF exists and how it
should be implemented remains an open question. In this work
we will implement an orbital-free functional by approximating
all the auxiliary densities (10) as functions of the number
density; see section III H for details.

A. Kinetic Terms

The kinetic energy density derives from the energy density of
a non-interacting system of protons and neutrons and contains
no free parameters:

Ekin =
~2

2m
(τn + τp) −

δm
2m
~2

2m
(τn − τp) + O

(
δm
2m

)2
, (11)

where τn,p are the kinetic densities in the Hartree-Fock-
Bogoliubov (HFB) formulation with neutron and proton
mn,p = m ± δm/2. In principle, one should include an ex-
plicit isospin splitting due to the different proton and neutron

masses, but we follow here common practice in nuclear theory
to use a common average mass m = (mn + mp)/2 and neglect
δm = mn − mp. Note that since we are using the bare masses
here, the theory is covariant under Galilean boosts. The con-
sideration of terms with a more complex dependence on the
kinetic energy densities requires adding current terms to restore
the Galilean covariance of the theory (see e.g. [3, 120–123].)

B. Coulomb Terms

The direct Coulomb energy and exchange contribution in the
Slater approximation are:

EC(r) =
1
2

VC(r)nch(r) −
e2π

4

(
3np(r)

π

)4/3
, (12a)

VC(r) = e2
∫

d3r ′
nch(r ′)
|r − r ′ |

, (12b)

where e is the proton charge, and nch is the charge density,
which is obtained from the proton and neutron densities by
convolution (here noted as “*”) with the appropriate charge
form factors (see appendix A 5 for details):

nch = Gn
E ∗ nn + Gp

E ∗ np . (12c)

Including the form factors does not significantly improve the
mass fits, but improves somewhat the fit of the charge radii.
In principle, one might allow the coefficient of the Coulomb
exchange term to vary; this is done, for example, in atomic
physics in order to obtain better estimates of the Coulomb
exchange energy. We find, however, that fitting the nuclear
binding energies leads with high accuracy to the same coeffi-
cient presented in Eq. (12a), so we leave it fixed and do not
include this as a parameter in our model.
We require our energy density functional to be an isoscalar

and include no isospin breaking terms other than those due to the
neutron-proton mass difference (which we neglect here) and the
Coulomb interaction. Additional isospin violation due to up and
down quark mass differences and electromagnetic effects [124–
128] beyond these two contributions are much smaller and are
partly responsible for the Nolen-Schiffer anomaly [129], to
which the screening of the Coulomb exchange also contributes
at a comparable level [104, 130].

C. Homogeneous Terms: Infinite Nuclear and Neutron Matter

We parameterize the nuclear EoS as:

Ehomo =

2∑
j=0
E j(n)β2j (13a)

E j(n) = εj(n)n = ajn5/3 + bjn2 + cjn7/3, (13b)

where n is the total density, and β is the asymmetry:

n = nn + np, β =
nn − np

nn + np
. (13c)
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Figure 3. (Color online) The QMC results of Wlazłowski et al.
[131] for the interaction energy per neutron displayed as the ratio
1/nnεn/εFG defined in Eq. (15b) (with β = 1), where εFG =

3~2(3π2nn)2/3/(10mn). If an = 0 in Eq. (15b), the ratio εint/εFG

would tend to 0 for nn → 0. For densities n1/3
n |ann | < 1 (where

ann = −18.9 fm is the s-wave neutron-neutron scattering length) the
leading order correction to the kinetic energy density per particle
contribution would be instead linear in density 4π~2annnn/mn.

We have considered terms with powers of the density n8/3 ∼ nτ
and higher, but in all our fits of the nuclear masses, we found
such terms to be unconstrained in magnitude, barely improving
the quality of the fits.

In infinite homogeneous nuclear matter, as might be found in
a neutron star for example, the gradient, spin-orbit, entrainment,
and Coulomb terms vanish (charge neutrality is maintained by
a background of electrons). The semiclassical expansion of
the kinetic energy density Ekin becomes exact in the leading
Thomas Fermi term τ = τTF . Thus, neglecting the small
neutron-proton mass difference mn ≈ mp ≈ m, the functional
acquires the simple form:

E(nn, np) =
3~2(3π2)2/3

10m
(n5/3

n + n5/3
p )

+

2∑
j=0

(
ajn5/3 + bjn2 + cjn7/3

)
β2j, (14)

This portion of the functional is essentially an expansion in
powers of the Fermi momenta kF : kn,p = (3π2nn,p)1/3 with
only three terms k5

F , k6
F , and k7

F . This type of expansion is
ubiquitous in many-body perturbation theory, and also applies
to fitting the neutron matter EoS with high accuracy (np = 0,
β = 1):

En(nn) =
3~2

10mn
(3π2nn)2/3nn + Eint(nn), (15a)

Eint(nn) = ann5/3
n + bnn2

n + cnn7/3
n , (15b)

The coefficients an, bn, and cn are fixed by fitting the neutron
matter EoS as calculated with QMC including up to N3LO
two-body and up to N2LO three-body interactions from chiral

A
0 50 100 150 200 250 300

(N
-Z

)/
A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4. (Color online) The contribution to the ground state energies
of the terms quartic in isospin density δEI4 =

∫
d3r E2(n)β4, evalu-

ated perturbatively with NEDF-1, see Table IV. In the lower panel we
display the ratio (N − Z)/A for the nuclei we have considered. Among
the 2375 nuclei we have considered, there are 33 nuclei with N = Z ,
78 nuclei with Z > N , and 70 nuclei with |N − Z |/A > 1/4.

perturbation theory [131]:

an = a0 + a1 + a2 = −32.6 MeV fm2,

bn = b0 + b1 + b2 = −115.4 MeV fm3,

cn = c0 + c1 + c2 = 109.1 MeV fm4.

(16)

As seen from Fig. 3, all three terms (but no more) are needed
in Eq. (15b) for an accurate reproduction of the neutron EoS
(see also appendix A 4). When we include the j = 2 quartic
terms in Eq. (14) the values of a2, b2, and c2 are determined
from the values of an, bn, and cn describing the QMC results
(16), without adding additional free parameters to the NEDF.1

The contribution of quartic terms to nuclear masses is small
(typically less than 1 MeV) since in most nuclei β < 0.25, see
Fig. 4 and section III G. However, the best fit functional with
only quadratic β2 ( j = 1) terms, does not reproduce the neutron
matter EoS, especially near n ≈ 0.1 fm−3 (see Fig. 22). Quartic
terms are thus needed to reproduce the neutron matter EoS,
but are not constrained by nuclear binding energies. Therefore,
they provide a direct (and independent) way to incorporate the
EoS of neutron matter into the NEDF.
At this time we do not have an equally accurate QMC

calculation of nuclear matter with varying isospin composition,
so we must rely instead on a phenomenological approach. Our

1 We have also performed a fully self-consistent mass fit with additional
powers of densities

∑
j=0,1(a jn

5/3 + b jn
2 + c jn

7/3 + d jn
8/3)β2 j . While

this kind of fit leads to a lower energy rms χE ≈ 1.2 MeV, the charge
radii rms increases to χr ≈ 0.1 fm and the value of the incompressibility
K0 ≈ 170 MeV is very low. Typically in these cases the parameter a0
becomes significant and acquires relatively large negative values, similar to
the behavior seen in Fig. 7. See also the discussion in section III G.
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main assumption is that we can describe both the isoscalar
( j = 0, β0) and isovector ( j = 1, β2) parts of the nuclear EoS
using the same three powers of Fermi momenta Eqs. (15b) and
(16) as required to fit the EoS of pure neutron matter. This
approach differs from typical Skyrme-like parameterizations,
which include terms with higher powers of densities, e.g. n8/3

arising from τn type of terms, where τ is kinetic energy density.
One could in principle consider additional terms of the type

τn1/3 ∝ n2, τn2/3 ∝ n7/3, and τn ∝ n8/3, but the contribution
to the bulk energy of such terms would be practically indis-
tinguishable from terms n2, n7/3, and n8/3. Their contribution
might become important only in the surface region, and since

τn1/3 −
3
5
(3π2)2/3n2 ∝

|∇n|2

n2/3 , (17a)

τn2/3 −
3
5
(3π2)2/3n7/3 ∝

|∇n|2

n1/3 , (17b)

τn −
3
5
(3π2)2/3n8/3 ∝ |∇n|2, (17c)

most of these terms could be incorporated effectively in gradient
corrections (see sections III D and III H).
The terms ajn5/3 are somewhat unexpected and are not

included in Skyrme-like parameterizations. Tondeur [132]
introduced only a term a1 (without theoretical justification), but
it makes sense to include the other aj for several reasons. First,
the QMC calculations of Wlazłowski et al. [131], Gezerlis
and Carlson [133], and Gandolfi et al. [134] (see Fig. 3) are
consistent with the existence of a non-vanishing parameter an
in the neutron EoS, which implies that an =

∑2
j=0 aj , 0. Then,

these terms also appear naturally in the case of the unitary
Fermi gas (UFG) [135], which has been confirmed to high
precision in many experiments. The UFG is a system of two
species of fermions, interacting with an s-wave interaction
with zero range and infinite scattering length. In response to
the Many-Body X challenge posed by Bertsch in 1999, Baker
[136] showed that the system was stable. The energy density
of the UFG scales exactly like the kinetic energy density of a
free Fermi gas E ∝ n5/3. Since both neutron and protons have
similar s-wave interaction properties, one expects the nuclear
energy density to behave somewhat like the unitary Fermi gas
at low densities.2

Although the energy density of the UFG scales as the kinetic
energy, this is not necessarily due to a mass renormaliza-
tion as one might naïvely suspect. QMC calculations of the
single quasi-particle dispersion [138] and spectral weight func-
tion [139, 140] both arive at the conclusion that the effective
mass in the UFG is close to the bare mass ≈ m. However,
this does not preclude the interpretation that some part of the
energy arises from the kinetic energy density τ (if meff , m) as
is the case in the UFG [116, 123, 141]. The QMC calculations

2 Subsequent to our introduction of terms ∝ n5/3 in Ref. [137], Reinhard [6]
also considered these, but with a strength corresponding to a pure UFG,
which is quantitatively very different from neutron matter. His conclusions,
that the properties of the low-density neutron matter cannot be incorporated
into the NEDF, differ from ours.

are simply not yet of sufficient accuracy to confirm or exclude
an effective mass different from unity.

D. Gradient terms

We include a gradient term of the following form, similar to
terms considered in Skyrme NEDFs [142]:

E∇n = ηs
∑
q=n,p

~2

2m
|∇nq |2. (18)

One might consider a more general term of the form

E∇n = η0
~2

2m
|∇nn + ∇np |

2 + η1
~2

2m
|∇nn − ∇np |

2. (19)

Note that this form of gradient term alone in an orbital-free
theory leads to unphysical density profiles with a discontinuity
in ∇n at a finite radius, beyond which the density vanishes
exactly. However, in the presence of Ekin in an orbital-based
approach the density is well behaved. We have found that
the nuclear mass fits are basically insensitive to the linear
combination ηm = η0 − η1, and we use ηs = (η0 + η1)/2 and
ηm = (η0−η1)/2 = 0. The linear combination ηm = (η0−η1)/2
can instead be used to independently fit the static isovector
dipole polarizability of nuclei, as it favors a small separation
between the neutron and proton surfaces if η1 > 0.

E. Spin-Orbit Coupling

Related to the gradient term is the spin-orbit coupling, which
we include in the same form as in the Skyrme NEDF [142]:

ESO = W0J · ∇n (20)

where J = Jn + Jp is the total spin current. Following Fayans
[143], we only include the isoscalar portion here as the isovector
contribution is small; see section VA for possible extensions).

F. Pairing interaction

The pairing energy depends on the anomalous density

E∆ =
∑
q=n,p

∫
d3r geff(r)|νq(r)|

2 (21)

and the effective pairing coupling strength geff(r) is obtained
via a renormalization [144–146] of the bare pairing strength,
which may depend on neutron and proton densities.

In the case of pairing one can consider volume, surface,
or mixed pairing coupling constants, but previous studies of
large sets of nuclei have shown [145, 147] that there is little
evidence preferring one form to another. Phenomenological
studies [147] also show that the proton pairing coupling is
stronger than the neutron pairing coupling, a result at odds with
the naïve expectation that the proton pairing coupling should
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be weaker due to the Coulomb interaction [148–150]. It would
also be peculiar to find that isospin invariance is broken by
the pairing interaction in this manner, when no other more
important terms of the NEDF break isospin symmetry. For
now, we will also not account for the role of the Coulomb
interaction on the pairing of the protons.
In an orbital-free approach the role of pairing is revealed

only by the presence of the odd-even staggering of the energy
term. As shown in Table I, it has a small effect on the overall
quality of global mass fits and it may be omitted as a variational
parameter.

G. SeaLL1 NEDF

We characterize the parameters of the theory according to their
significance for mass fits and dynamics. We define a parameter
as dominant if varying this parameter by less than 5% or so
reduces the χE of the best fit by 0.1 MeV per nucleon. We
define a parameter as subdominant if it can be varied by 10%
or more with a similar decrease in the quality of the fit. We
define a parameter as unconstrained if it can be set to zero at
this level of accuracy.

Our analysis shows that a minimal orbital-free NEDF has 4
dominant parameters, and 2 subdominant parameters, consis-
tent with the analysis presented above.

Kinetic (none): The kinetic energy density Ekin Eq. (11) con-
tains no free parameters - just ~ and the bare nucleon
masses mn and mp and the kinetic densities τn,p. How-
ever, since the orbital-free approach depends on densities
alone, an approximation of the kinetic energy densities
in terms of densities introduces a single parameter κ.
This is discussed in sections III A and III H.

Coulomb (none): The Coulomb interactions EC Eq. (12) also
contains no free parameter in either formulation. In
principle, the proton and neutron form-factors can be
included, but these have only a small effect. This is
discussed in section III B.

Homogeneous (3 dominant, 1 subdominant): The homoge-
neous portion of the functional Ehomo Eq. (13) adds only
3 significant parameters. In principle, up to 9 param-
eters aj , bj , and cj for j ∈ {0, 1, 2} describe the EoS
for homogeneous nuclear matter. However, three of
these nine (for j = 2) are fixed by the EoS of neutron
matter as determined in ab initio calculations. Two of
the remaining six parameters (a0, and the combination

of a1 − b1n1/3
0 , where n0 is symmetric matter saturation

density) are found to be unconstrained at the level of
changing the energy rms by δχE < 0.1 MeV and are
thus set to 0. In our full SeaLL1, we keep c1 as a fitting
parameter, although it is significantly less dominant than
the others. We fix c1 sometimes in the orbital-free theory
to provide a reasonable description of the neutron skins,
see appendix A 2. Either c1 or the linear combination
a1 − b1n1/3 can be used to tune the density dependence
of the symmetry energy.
This counting echoes the dominant and subdominant
roles of the various nuclear saturation and symmetry
properties in fitting masses. In particular, the dominant
parameters fix the saturation density n0, saturation energy
ε0, and quadratic symmetry energy S2. The slope of
the quadratic symmetry energy L2 is subdominant as far
as mass fits are concerned, but important for properties
such as the neutron skin thickness, which is why we keep
an additional parameter in the SeaLL1 functional.

Gradients (1 dominant): The gradient corrections E∇n
Eq. (18) add a single new parameter ηs .

Spin-orbit (1 subdominant): The spin-orbit coupling term
ESO Eq. (20) add a single new parameter W0. This
parameter is subdominant for the mass fits, but is crucial
for producing the shell structure of nuclei. In the orbital-
free approach this term is practically incorporated in the
gradient contribution.

Pairing (1 parameter): The pairing interaction E∆ Eq. (21)
adds an additional parameter g0 in the orbital-based ap-
proach. Its contribution is practically incorporated in
the homogeneous isoscalar terms in the orbital-free ap-
proach. A different parameter δ measuring the odd-even
staggering is required for the orbital-free formulation.
However, as is seen for the liquid drop models in Table I,
this additional parameter is quite unconstrained.

The orbital-based approach is specified by 7 parameters: b0,
c0, characterizing isoscalar nuclear properties, b1, c1, defin-
ing the isovector nuclear properties, ηs defining the surface
tension, W0 the strength of the isoscalar spin-orbit interaction,
and bare (unrenormalized) pairing coupling constant g. In
the orbital-free approach, we are left with only 4 significant
phenomenological parameters: ηs, b0, c0, and a linear combi-
nation a1 = b1n1/3, since c1 is unconstrained. The orbital-free
approach has the additional parameter κ controlling the Padé
gradient approximation of the kinetic energy density.
The full form of the functional SeaLL1 is:
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E[nn, np] =

kinetic︷         ︸︸         ︷
~2

2m
(τn + τp)+

homogeneous︷                                    ︸︸                                    ︷
2∑
j=0

(
ajn5/3 + bjn2 + cjn7/3

)
β2j +

gradient︷                  ︸︸                  ︷
ηs

∑
q=n,p

~2

2m
|∇nq |2

+W0J · ∇n︸     ︷︷     ︸
spin-orbit

+
∑
q=n,p

geff(r)|νq(r)|
2

︸                   ︷︷                   ︸
pairing

+
e2

2

∫
d3r ′

np(r)np(r
′)

|r − r ′ |
−

3e2

4

(
np(r)

3π

)4/3

︸                                                  ︷︷                                                  ︸
Coulomb

. (22)

SeaLL1 hydro Comments

n0 0.154 0.154 Adjusted (see Fig. 5)
a0 0 same Insignificant
b0 −684.5(10) −685.6(2)

c0 827.26 828.76 2c0n
2
3
0 = −

3~2

10m

(
3π2

2

) 2
3
− 3

2 b0n
1
3
0

a1 64.3 50.9 a1 = n1/3
0 b1

b1 119.9(61) 94.9(14)
c1 −256(25) −160.0 Fixed in orbital-free theory
a2 −96.8 −83.5 a2 = an − a0 − a1
b2 449.2 475.2 b2 = bn − b0 − b1
c2 −461.7 559.6 c2 = cn − c0 − c1
an −32.6 same from neutron matter EoS (16)
bn −115.4 same from neutron matter EoS (16)
cn 109.1 same from neutron matter EoS (16)
ηs 3.93(15) 3.370(50)
W0 73.5(52) 0.0 Fixed in orbital-free theory
g0 −200 N/A g0 fit in Ref. [145]
κ N/A 0.2 Semi-classical (see section III H)

~2

2m 20.7355 same units (MeV = fm = 1)
e2 1.439 96 same cgs units (4πε0 = 1)

χE 1.74 3.04 606 even-even nuclei
2.86 2375 nuclei

χr 0.034 0.038 345 charge radii
0.041 883 charge radii

Table II. Best fit parameters for the SeaLL1 functional (in bold) and the
orbital-free approximation (next column in italic when different). The
errors quoted for the fit parameters should be interpreted as estimating
by how much this parameter can be independently changed while
refitting the other and incurring a cost of at most δχE < 0.1 MeV.

The parameter values for the SeaLL1 functional are summa-
rized in Table II. The 7 shaded parameters b0, c0, b1, c1, ηs,
W0 and g are significant for fitting nuclear masses and radii.
The other parameters are either fixed independently (e.g. by
the properties of neutron matter) or have been determined to
be unconstrained for mass fits through a principle component
analysis described in appendix A 2.
Our fitting strategy is described in details in appendix A 2

and we only recall here its most important characteristics. First,

we explored the parameter space with a simplified version
of the orbital-free NEDF. This NEDF is characterized by
seven parameters (a0, a1, b0, b1, c0, c1, and ηs) which we
fitted on NE = 2375 experimentally-measured atomic masses
(with errors less than 1 MeV) and Nr = 883 nuclear charge
radii as listed in Audi et al. [18] and Wang et al. [19]. From
this series of fits and its statistical analysis, we found that
(i) the parameters a0 and c1 are unconstrained and can be
set to zero; (ii) the mass and radii are sensitive only to a
single linear combination of the parameters a1 and b1. The
parameter c1 can be used interchangeably with the linearly
independent combination a1 − n1/3

0 b1 to control the slope L2
of the symmetry energy, which also controls the neutron skin
thickness of neutron rich nuclei, see below Eq. (30b) and the
related discussion in section IVC. We will fix here a1 = n1/3

0 b1,
where n0 = 0.154 fm−3 is the saturation density (see discussion
below) and c1 to obtain a reasonable neutron skin-thickness
in 208Pb. With c1 = 0 the neutron skin-thickness of 208Pb is
about 0.2 fm and the χE increases by at most 0.1 MeV.
The next step consists in minimizing the residuals χ2

E =∑
|EN,Z − E(N, Z)|2/NE over the NE = 196 spherical even-

even nuclei with A ≥ 16measured (not extrapolated) fromAudi
et al. [18] and Wang et al. [19] with the full orbital-based func-
tional. This involves adjusting the 5 dominant parameters
shaded in Table II – the saturation density having been fixed
from the study of charge radii. Note that the pairing parameter
g0 is fixed at the value suggested in Ref. [145]: Although
this is in principle a fitting parameter, it plays only a minor
role in global mass fits as discussed in the introduction. The
SeaLL1 parameters of the orbital-based NEDF (in bold) yield
χE = 1.51 MeV over the NE = 196 spherical even-even nu-
clei, while the orbital-free NEDF yield χE = 2.86 MeV over
NE = 2375 nuclei.3 The pairing fields were treated using the
renormalization procedure described in Refs. [144, 145] with
a cut-off energy of 100 MeV.

As discussed in appendix A 2, we find that fitting the binding

3 At first sight it is surprising that the value of χE in the orbital-free approach
over 606 even-even nuclei is larger than the value obtained for 2375 nu-
clei. The reason is simple: the value χE = 3.04 MeV was obtained with
parameters obtained by fine-tuning the masses for spherical nuclei only in
the orbital-based approach. This does not minimize the value of χE in the
orbital-free approach.
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Figure 5. (Color online) Saturation density n0 dependence of the
energy residual χE and charge radii residual χr of the SeaLL1
functional. After holding n0 fixed (through the parameter c0), the
remaining 5 shaded parameters in Table II were fit by minimizing
only χ2

E =
∑
|EN,Z − E(N, Z)|2/NE over the NE = 196 spherical

even-even nuclei with A ≥ 16 measured (not extrapolated) from Audi
et al. [18] and Wang et al. [19]. The value n0 = 0.154 fm−3 fixed
in the SeaLL1 functional represents a compromise between these
residuals here both χE and χr increase by about 10%.

energies alone in the orbital-free approach results in quite a
low saturation density n0 ≈ 0.14 fm−3, and a poorer fit to both
charge radii and density profiles. To explore the influence of
saturation density n0 on the quality of the fit, we performedmass-
only fits for the remaining 5 parameters with various saturation
densities n0 ranging from 0.15 fm−3 to 0.16 fm−3. For each
fit, we also calculate the rms radii residuals χ2

r =
∑
|δr |2/Nr

for the Nr = 123 corresponding nuclei in [118]. These results
are shown in Fig. 5, which demonstrates that the charge radii
strongly prefer n0 ≈ 0.155 fm−3 in contrast to the rather weak
lower bias from the mass fits. To incorporate this preference
in our fits, we fix the saturation density n0 = 0.154 fm−3 by
adjusting c0 using the Eq. (A10). This represents a compromise
between the two biases where both χE and χr increase by
about 10%. With this fixed value of n0, we fit the remaining 5
parameters of the SeaLL1 functional by minimizing only χE
over the NE = 196 spherical even-even nuclei as summarized
in Table II.

H. Orbital-Free Functional

Although we advocate working with the full orbital-based
SeaLL1 functional presented above, for tasks such as globally
fitting mass parameters, one can work with a much simpler
orbital-free formulation. The main challenge in formulating
an orbital-free theory is to express terms with the auxiliary
densities τn,p , Jn,p , and jn,p by an appropriate functional of the
number densities nn,p . Although formally possible, it is still an
open research question as to how best reduce an orbital-based
DFT to an orbital-free version. We discuss in more detail
our approach based on a semiclassical approximation in ap-
pendix A 1. To summarize here, we suggest using the following
combination for the kinetic and spin-orbit contributions in an

orbital-free theory:

Ekin[nn, np] + ESO[nn, np] = (orbital-free)

=
~2

2m

∑
q=n,p

τTF [nq]F(Xq) −
W2

0
2

2m
~2 n|∇n|2. (23a)

where

F(X) =
1 + (1 + κ)X + 9κX2

1 + κX
, X =

τ2[n]
τTF [n]

, (23b)

τTF [n] = 3
5 (3π

2)2/3n5/3, τ2[n] =
1
9
|∇
√

n|2. (23c)

The ratio X characterizes the size of the gradients in the system
in terms of the leading τTF and subleading τ2 terms of the semi-
classical expansion [2, 31, 151] of the kinetic density τ. The
Padé approximant F(X) suggested by DePristo and Kress [152]
and advocated in [2] interpolates between the semiclassical
limit X � 1 valid in the core of large nuclei, and the approxi-
mation τ ≈ τTF + |∇

√
n|2 introduced byWeizsäcker [11] which

correctly reproduces the asymptotic fall off of the density when
X � 1. When spin-orbit is missing, τTF [nq]F(Xq) gives a
semi-classical approximation of the kinetic density τ. This
approximation requires a single additional parameter κ. The
value of κ can be chosen approximately by comparisons be-
tween τ and τTF [nq]F(Xq), and between their resulting kinetic
energies Ekin, for the same set of single-particle wavefunc-
tions. We found κ ≈ 0.2 will give a reasonable semi-classical
approximation for τ and Ekin.
The semi-classical spin-orbit contribution is suggested by

Brack et al. [57], which brings a parameter W0 corresponding
to the one in Eq. (20). Like the full self-consistent theory, this
parameter is also subdominant for the mass fits and its contri-
bution can be incorporated in the gradient term. Furthermore,
due to the missing of shell structure in the orbital-free theory,
this parameter is even more unconstrained.
The orbital-free formulation of the NEDF requires the ad-

ditional parameter κ to approximate the gradient corrections.
As discussed above we choose κ = 0.2. Following SeaLL1,
we fix the saturation density n0 = 0.154 fm−3, and fit the 3
parameters b0, b1 and ηs shaded in Table II. The spin-orbit
contribution was absorbed in the gradient term and if desired
the unconstrained parameter c1 can be used to fix the neutron
skin thickness. The parameter values are determined by per-
forming the same least squares minimization of the binding
energy residuals as SeaLL1, but over all NE = 2375 nuclei
(including the deformed even-even, odd-even, and odd-odd
ones) with A ≥ 16 measured from Audi et al. [18] and Wang
et al. [19].

The parameter values and rms residuals of orbital-free theory
are also summarized in Table II. As expected, the rms residuals
χE = 2.86 MeV is larger than the χE of SeaLL1 due to the lack
of shell corrections in the orbital-free theory, but are comparable
with results from the liquid-drop formula in Table I.
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I. Principal Component Analysis

The parameters listed in Table II are highly correlated. To ana-
lyze these, we consider as significant changes δχE ≈ 0.1 MeV
since this is the typical level of sensitivity of the mass fits. We
keep the changes relatively small because otherwise the model
is not well approximated by a quadratic error model if δχE >
0.1 MeV. Numerically we find that even 0.1 MeV is too large,
but yields qualitatively correct information after a full refitting.
Note that δ(χ2

E ) = (χE + δχE )
2 − χ2

E = 2 χE δχE + (δχE )2,
so we must normalize δ(χ2

E ) by 2 χE · 0.1 MeV in order to
consider changes δχE ≈ 0.1 MeV.
To compare the parameters in a meaningful way, we must

make them dimensionless and of order unity. We do this by
scaling them with appropriate powers of n0 = 0.154 fm−3 and
εF =

~2

2m (3π
2n0/2)2/3 = 35.294 20 MeV, which we take as

fixed parameters close to the saturation values:

ãj =
ajn

2/3
0

εF
, b̃j =

bjn0

εF
, c̃j =

ajn
4/3
0

εF
. (24)

(It is important to retain a significant number of digits for
isoscalar quantities, as it will be come clearer below.) In
particular, we consider the covariance matrix C such that the
residual deviation is

δ(χ2
E )

2χE · 0.1 MeV
≈ δT · C−1 · δ =

∑
n

(δpn)2

λ2
n

. (25a)

where δ is the deviations vector of the dimensionless parameters
Eq. (24) from their best fit values as listed in Table II, and
we have diagonalized Cvn = λ2

nvn to obtain the principal
components pn

pn = vn ·
(
ã0 b̃0 · · · η̃s W̃0

)
. (25b)

Since the parameters are of order unity, we may directly
consider the λn as a measure of the errors: changing pn by λn
will affect the fit on the scale of δχE ≈ 0.1 MeV. Therefore, the
smaller the value of the parameter λn, the more precisely the
fit to nuclear masses constrains the value of the corresponding
linear combination of NEDF parameters. A similar approach
was used by Bertsch et al. [153] in the analysis of Skyrme
NEDFs.
In Fig. 6 we show a principal component analysis of the

SeaLL1 functional. The orbital-based analysis includes only
196 spherical even-even nuclei used to fine-tune the parameters
of the functional, while the analysis of the orbital-free functional
includes all 2375 nuclei as described in Table I. Their features
can be understood in terms of the saturation and symmetry
parameters, see Eqs (29).

S =
E(n0, 0) − E(n0/2, n0/2)

n0
, (26a)

L = 3n
d

dn

(
E(n, 0)

n

)����
n0

= 3n0ε
′
n(n0) (26b)

=
6
5
~2

2m
(3π2n0)

2/3 + 2ann2/3
0 + 3bnn0 + 4cnn4/3

0 .

λ0 = 0.00058

λ1 = 0.001

b̃0 b̃1 η̃s

λ2 = 0.0097

(a)

λ0 = 0. 00049

λ1 = 0. 0053

λ2 = 0. 017

λ3 = 0. 062

b̃0 b̃1 c̃1 η̃s W̃0

λ4 = 0. 071

(b)

Figure 6. The principal component analysis of the SeaLL1 NEDF in
the case of the orbital-free (a) and orbital-based (b) approach.

where εn(n) is the energy per particle of the neutron EoS (15a).
Since the saturation density n0 minimizes the energy of sym-
metric matter, the slope of the full symmetry energy L at n0
depends only on the EoS of pure neutron matter. Thus, the
QMC neutron EoS alone fixes the global density dependence
of the symmetry energy L = 3n0ε

′
n(n0) ≈ 30 MeV. We may

express these as follows:

ε0

εF
= +

3
5
+ ã0 + b̃0 + c̃0, (27a)

0 = +
3
5
+ ã0 +

3
2

b̃0 + 2c̃0, (27b)

K0

εF
= −

6
5
− 2ã0 + 4c̃0, (27c)

S
εF
=

3
5
(22/3 − 1) + (ã1 + b̃1 + c̃1) + (ã2 + b̃2 + c̃2), (27d)

L
εF
=

6
5

22/3 + 2ãn + 3b̃n + 4c̃n, (27e)

whereK0 is the isoscalar incompressibility. Themost significant
component p0 in both fits is the sum of the j = 0 coefficients
ã0 + b̃0 + c̃0 which fixes the saturation energy ε0 Eq. (27a),
see also Fig. 21. (Remember that we have chosen a0 = 0 and
that c0 is determined from Eq. (27b).) Next are mixtures of ηs
and the symmetry energy S, Eq. (27d), which are correlated
by the finite size of the nuclei; the latter is the sum of the
j = 1 coefficients ã1 + b̃1 + c̃1. While we have chosen to keep
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Figure 7. (Color online) The changes in χE and χr for the NE = 196
even-even spherical nuclei with A ≥ 16, similarly to Fig. 5 as a
function of the fixed parameter a0, while the rest of the 7 parameters
of SeaLL1 specified in Table II are optimized.

the value of the parameter a0 = 0, its value can be varied
without affecting significantly the quality of the overall mass
and charge radii fit, see Fig. 7. By changing the adopted value
a0 = ±20 fm−3 and keeping ε0 and the saturation density fixed
one can change the incompressibility by δK0 = ±2δã0εF =

±2δa0n2/3
0 ≈ ±23 MeV. The power of this kind of analysis

resides in formulating a “power-counting” scheme, which
organizes the various linear combinations of parameters in the
order of relevance in the mass fit.

IV. PHYSICAL PROPERTIES

A. Global mass table

Since our orbital-based NEDF was fit on spherical even-even
nuclei only, we validate its predictive power by performing a
fully microscopic calculation of the nuclear binding energies
of 606 even-even nuclei with A ≥ 16 in [18, 19]. We used
an extension of the axial DFT solver hfbtho code [154–156]
that includes the SeaLL1 and the regularization of the pairing
channel [144]. Calculations were performed in a deformed
basis of 20 harmonic oscillator shells. In the pairing channel, a
cut-off of 100 MeV was adopted in accordance with [145].

Figure 8 shows the residuals of the nuclear masses calculated
with SeaLL1 with respect to the experimental values of these
even-even nuclei. The rms of the residuals is χE = 1.74 MeV.
Besides the larger residuals in light nuclei, we observe the
typical arc-like features common to many NEDF calculations,
both for isotonic and isotopic chains. The poor performance of
SeaLL1 in light nuclei is likely related to the center-of-mass
corrections (not accounted for here) and is also observed in
the UNEDF functionals [73–75]. Since the center-of-mass
correction is larger for light nuclei, our parameter fit limited
to spherical nuclei leads to an underestimate of the masses
of heavier spherical nuclei, see Fig. 8. Overall the masses
have a bias εE = 〈δE〉 = 0.93 MeV and a standard deviation
σE = 1.74 MeV, see Fig. 9. This bias enters the rms error
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Figure 8. (Color online)Mass residuals between SeaLL1 andmeasured
masses for 606 even-even nuclei, of these 410 deformed nuclei and 196
spherical nuclei, plotted with red squares and blue bullets respectively
as a function of proton number Z (a) and neutron number N (b).
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Figure 10. The residual of the two-nucleon separation energies
between SeaLL1 and experiment for 606 even-even nuclei: S2p(Z)
for constant N (a) and S2n(N) for constant Z (b) chains connected by
lines.

χ2
E = σ

2
E + ε

2
E which leads to a value of χE = 1.46 MeV. This

σE is an upper estimate of the rms energy χE we expect if
the SeaLL1 parameters would have been instead fitted to all
even-even nuclei.
The residuals for the two-nucleon separation energies for

the same set of even-even nuclei are shown in Fig. 10 and they
are naturally less affected by the errors induced by errors on
binding energies.

B. Charge radii and density distribution

Using the parameters determined from the mass fits, SeaLL1
also models the neutron and proton densities in the nuclei,
allowing us to extract the charge densities for these nuclei
using Eq. (12c). As a good benchmark, in Fig. 11 we compare
the proton and charge densities of 48Ca and 208Pb calculated
with SeaLL1 with the charge densities extracted from electron
scattering experiments [157]. The calculated 208Pb has a
slightly larger radius and slightly smaller diffuseness compared

0 2 4 6 8 10

r [fm]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

n
(r

)
[f

m
−

3
]

Figure 11. (Color online) The calculated proton np(r) (dashed)
and charge nch(r) (dotted) densities for 48Ca (red) and 208Pb (blue),
calculated with SeaLL1 compared to charge densities (solid) extracted
from electron scattering experiments [157].

to those extracted from data, which is consistent with the charge
radii comparison between SeaLL1 and experiment in Fig. 12.
The residuals of radii for 345 matching even-even nuclei

in [118] are also calculated, with a bias εr = 0.022 fm and a
standard deviation σr = 0.025 fm, which gives a rms residual
of χr = 0.034 fm, as shown in Fig. 12.

C. Symmetry Energy and Neutron Skin Thickness

The isoscalar parameters j = 0 and quadratic isovector param-
eters j = 1 (β2) may be directly related to the saturation and
symmetry properties respectively by expanding the energy per
nucleon of homogeneous nuclear matter Eq. (14) about the
symmetric saturation point nn = np = n0/2:

E(nn, np)

n
= ε0(n) + ε2(n)β2 + ε4(n)β4 + O(β6). (28)

The saturation density n0, energy per nucleon ε0, and incom-
pressibility K0 are then defined by the minimum ε′0(n0) = 0,
and depend only on the j = 0 isoscalar parameters a0, b0, and
c0. Expanding about n0 in δ = (n − n0)/3n0 and in powers of
β = (nn − np)/n, one can define various “local” contributions
to the symmetry energy S2,4, its density dependent slope L2,4,
etc.:

ε0(n) = 6
5εF + a0n2/3 + b0n + c0n4/3

= ε0 + 1
2 K0δ

2 + O(δ3),

ε2(n) = − 4
15εF + a1n2/3 + b1n + c1n4/3

= S2 − L2δ + 1
2 K2δ

2 + O(δ3),

ε4(n) = S4 − L4δ + 1
2 K4δ

2 + O(δ3)

(29)

Since we include also quartic terms β4, we must differentiate
between these local symmetry parameters S2, L2, etc. and the
full symmetry parameters defined as the difference between
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Figure 12. Radii residuals between SeaLL1 and experiment for 345
even-even nuclei. Isotonic (a) and isotopic (b) chains are connected
by lines.

symmetric matter and pure neutron matter (see also the discus-
sion of Lattimer [158]). Using a1 = b1n/30 , see Table II, we
obtain the values for S2 and L2 given by relations:

S2 =
1
3
εF + 2a1n2/3

0 + c1n4/3
0 , (30a)

L2 =
2
3
εF + 5a1n2/3

0 + 4c1n4/3
0 . (30b)

Neutron skin
NEDF ρ0 −ε0 K0 S L L2

208Pb 48Ca
[fm−3] [fm] [fm]

SeaLL1 0.154 15.58 230.0 31.7 32.4 31.6 0.131 0.155

Table III. Saturation, symmetry, and neutron skin properties for
SeaLL1. All values in MeV unless otherwise specified.

As shown in Table III, the binding energy of nuclear matter
and the symmetry energy predicted by SeaLL1 fit agrees
well with the value obtained with the mass formula (2). Our

fits generally estimate the slope of the symmetry energy L2
from 29 MeV to 36 MeV. However, our fits with orbital-free
functionals demonstrate that this quantity is not well constrained
by the masses and can be adjusted independently with the
combination a1 − b1n1/3

0 and/or coefficient c1; see also the
discussion in appendix A 2 and Table V.
We also compute the neutron skin thickness of 48Ca and

208Pb, for which precision measurements CREX and PREX
are underway; see [159] for details. The 208Pb neutron skin is
consistent with the value 0.156+0.025

−0.021 fm of Tamii et al. [160] ex-
tracted frommeasurements of the dipole polarizability using the
method suggested by Reinhard and Nazarewicz [161] based on
observed correlations between these two quantities in Skyrme
models, and with the recent measurement of 0.15(3) fm [162].
Here again, our work with orbital-free functionals showed
that the neutron skin is controlled by the same combination
a1 − b1n1/3

0 as L2, and hence is unconstrained by the masses.

D. Spherical shell structure

Shell structure is a fundamental property of atomic nuclei.
In an independent-particle picture, the shell structure can be
associated with the single-particle spectra of the mean-field
potential. Reproducing the correct ordering and distribution of
single-particle levels is essential for nuclear structure theories,
and also important for the application of the NEDF in nuclear
dynamics, such as nuclear fission and collision. Figure 13
display the single-particle levels for neutrons and protons in
48Ca and 208Pb for the SeaLL1, UNEDF0, UNEDF1, and
UNEDF2 NEDF. Single-particle energies were obtained by
blocking calculations in the neighboring odd nuclei following
the procedure outlined in [75, 163].

In 48Ca, the rms deviations for the single-particle energies of
UNEDF0, UNEDF1, UNEDF2 and SeaLL1 with the empirical
values (Exp) [164] are 1.50, 1.71, 1.92 and 1.88 MeV and 1.22,
1.08, 1.22 and 1.17 MeV for neutrons and protons, respectively.
In 208Pb, these are 0.82, 0.61, 0.69 and 0.62 MeV and 0.77,
0.49, 0.50 and 0.54 MeV for neutrons and protons, respectively.

Compared with the empirical values, the N = 28 and Z = 20
gaps in 48Ca are clearly too small with SeaLL1. The single
particle proton levels in 208Pb show that the Z = 82 gap is
also smaller in SeaLL1. Such patterns are also observed in
UNEDF2 functional which, however, included single-particle
spin-orbit splittings in their fit [75]. This might point to the
need to consider the contribution from the isovector spin-
orbit contribution in Eq. (37) proportional to W1. Overall,
however, the SeaLL1 single-particle spectra, as quantified in
the corresponding rms, are of better quality than UNEDF2.

E. Fission pathway of 240Pu

One of the important applications of nuclear DFT is the descrip-
tion of nuclear fission [165]. In this context, characteristics
of fission pathways such as the excitation energy of fission
isomers or the height of fission barriers are often used to
gauge the predictive power of NEDFs. To this purpose, we
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Figure 13. (Color online) Single particle energies in 48Ca (a) and 208Pb (b) for a variety of functionals UNEDF0-2 [73–75] and SeaLL1
(calculated using the hfbtho DFT solver [154]).

computed the potential energy surface of 240Pu with SeaLL1
by performing constrained HFB calculations with constraints
on the mass quadrupole Q20 and octuple moment Q30 in the
region 0 ≤ Q20 ≤ 200 b, 0 ≤ Q30 ≤ 40 b3/2. The definitions
and units of Q20 and Q30 are consistent with Ref. [166] and the
characteristics of the harmonic oscillator (HO) basis used in
the calculation are the same as in [167]. All calculations were
performed with the hfbtho DFT solver [154]. The results are
shown in Fig. 14.
From this two-dimensional potential energy surface, we

extracted the least-energy trajectory starting at the ground-
state. Figure 15 shows the potential energy curve of 240Pu
as a function of Q20 along this (asymmetric) fission pathway.
To gain an idea of the quality of SeaLL1, we repeated the
calculations with the SkM* [168], and UNEDF1-HFB [169]
energy functionals, both of which were designed for fission

studies.
Since all these calculations were done with the hfbtho DFT

solver, triaxiality is not included and the height of the first
fission barrier is typically overestimated for all 3 functionals by
about 2 MeV [167]. Compared with SkM* and UNEDF1-HFB,
SeaLL1 underestimates the excitation energy of the fission
isomer (EI = 0.54 MeV compared with an experimental value
of 2.8 MeV) and the heights of both fission barriers (EA =

6.84 MeV vs. 6.05 MeV, and EB = 4.20 MeV vs. 5.15 MeV,
respectively for the inner and outer barriers) agree within
1 MeV.

This result deserves a few comments. First, we note that
both SkM* and UNEDF1 were constrained specifically on the
height of the first fission barrier (SkM*) or excitation energy
of the fission isomer (UNEDF1). By contrast, we did not
include any specific information for nuclei at large deformation



17

in the fit protocol of SeaLL1. It is, therefore very encouraging
that, without any such constraint, the resulting NEDF is still in
reasonable agreement with experiment: especially the height
of the two barriers. Our results are definitely better than
predictions with, e.g., SLy4 [142], another popular NEDF
without constraints on large deformations, which predicts the
second fission barrier much higher than the first one [174].
Second, the error in fission barriers of NEDFs designed for
fission can reach 2.5 MeV, as can be seen in Ref. [75] where
fission barriers and the energy of the second isomer in chains
of Ra, Th, U, Pu, Cm, and Cf, are compared to the UNEDF1-2,
Gogny D1S [175], and FRLDM [176] functionals. We also
point to a recent study of the surface energy coefficient as (see
Eq. (1)) for 76 parameterizations of the Skyrme NEDF [177]
and the rather complex interplay between the roles of the
shell-effects and of the surface energy on the values of the
fission barriers in 240Pu. The energy of the fission isomer and
the height of the outer fission barrier, are shown to vary by
several MeVs with respect to the ground state energy. Third,
we should repeat here the usual warnings about taking at face
value calculations of fission barrier heights: these quantities
are not physical observables, but are extracted from data in a
(very) model-dependent manner.

Ultimately, the predictive power of SeaLL1 (or any other
NEDF for that matter) should be judged on their ability to
reproduce fission half-lives, or fission fragment distributions.
As recently shown [178], within a real-time formulation of
DFT extended to the time-dependent superfluid local density
approximation (TDSLDA) [117], the SeaLL1 NEDF provides
a very accurate description of the features of the dynamics
for the induced fission in 240Pu, comparable to that of SkM∗,
whose fission properties are similar to UNEDF1-HFB.

F. Neutron and Proton Drip Lines

In Fig. 16 we compare the proton and neutron drip lines
obtained with SeaLL1 against the predictions of UNEDF1, as
well as those obtained with other Skyrme parametrizations
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Figure 14. (Color online) Two-dimensional potential energy surface
of 240Pu with SeaLL1 for 0 ≤ Q20 ≤ 200 b, 0 ≤ Q30 ≤ 40 b3/2. The
least-energy fission path is marked as white dashed line.
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Figure 15. (Color online) Fission pathway for 240Pu along the mass
quadrupole moment Q20 calculated using hfbtho with SeaLL1,
SkM*, and UNEDF1-HFB.

extracted from the supplemental data of Erler et al. [170] and
using FRLDM [66]. SeaLL1 predicts that there are 7716
stable nuclei with Z ≤ 120, as compared with 8450 in case of
UNEDF1, 7212 for SLy4. The position of the neutron drip line
may dramatically impact the astrophysical r-process, which
is predicted to follow lines of constant separation energy in
close proximity to the neutron dripline [179, 180]. Meyer
[179] considered neutron star ejecta as the site of r-process
nucleosynthesis, and determined that the reaction flow is very
close to the dripline. One should keep in mind also that the
precise position of the drip lines is difficult to pinpoint, since
the fluctuations, comparable to the theoretical errors, in the
separation energies have large fluctuations in their vicinity.
Even though his simulations were performed for relatively
cold matter (recent simulations seem to indicate that the star
material is somewhat heated [181, 182]), it will be interesting
to simulate the r-process using SeaLL1. The predicted position
of the neutron dripline will likely affect the structure of the
neutron star crust inferred from older studies [91–93, 183–188].
The corresponding increase in the neutron skin thickness will
also affect the profile and the pinning energy of quantized
vortices in the neutron star crust [189–195].

Fusion cross sections [196, 197] will also be significantly
altered, particularly in stellar environments where neutron rich
nuclei fuse via pycnonuclear reactions [198, 199], and where
the neutron gas surrounding nuclei leads to their swelling [200].
A thicker neutron skin with further enhance this effect.

G. Neutron star crust

The baryon matter in the Universe organizes itself based on the
short-range nuclear attraction and the long-range Couloumb
repulsion. At densities much lower than the nuclear saturation
density, n ≈ 0.16 fm−3, the nuclear and atomic length scales
are well separated, nuclei in matter are expected to form the
Coulomb lattice embedded in the neutron-electron seas that
minimizes the Coulomb interaction energy. At subsaturation
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Figure 16. (Color online) Fully self-consistent calculations of the proton and neutron driplines for the SeaLL1 NEDF (thick blue line)
compared with predictions of the functionals SLy4 and UNEDF1 extracted from Ref. [170], and FRLDM [66]. The vertical axis is shifted
by the approximate β-stability line Zβ(N) which minimizes Eq. (1) at constant A with parameters from Table I: ∂ZE(A − Z, Z)|Z=Zβ = 0,
Zβ = A/(2 + aC A2/3/2aI ). The inset shows the usual Z vs. N plot, with the Z = Zβ(N) curve as a solid (yellow) line. The 2375 nuclear
masses from [18, 19] are displayed as dots. We have plotted possible r-process trajectories predicted to be realized in the case of two neutron star
mergers [16, 17] (red circles), in a classical hot (n, γ) ↔ (γ, n) in equilibrium r-process [171] (green circles) with the FRDM model [66] and
neutron star merger with the UNEDF1 functional [74] (blue circles). With pink and green bands we display the r-process paths obtained by
Mendoza-Temis et al. [172] under various conditions using the FRDM model [66] and the Duflo-Zuker model [173].

baryon densities, 0.1n0 < n < 0.8n0, conditions expected in
the bottom layers of the inner crust of neutron star, there is
a strong competition between the Coulomb and strong inter-
actions, which leads to the emergence of various complex
structures with similar energies that are collectively referred to
as “nuclear pasta” [186, 201, 202]. Pasta nuclei are eventually
dissolved into uniformmatter at a certain nucleon density below
n0. Existence of pasta phases would modify some important
processes by changing the hydrodynamic properties and the
neutrino opacity in core-collapse supernovae [203, 204] and
proto-neutron stars [205, 206]. Also, the pasta phases may
influence neutron star quakes and pulsar glitches via the change
of mechanical properties of the crust matter [207–209].
Since its prediction, significant progress has been made in

simulating the pasta phases [210–212]. In this section, we
use the hydrodynamics model to simulate the pasta phases
at average baryon densities 0.045 ≤ n ≤ 0.07 fm−3. In the
nuclear-pasta system, the chemical potentials of baryons and

electrons satisfy the β-equilibrium condition

µn = µp + µe (31)

where µq is the chemical potential of species q = n, p, e
for neutrons, protons, and electrons, respectively, and ∆m =
mn−mp is the neutron-proton mass difference. The total energy
is the sum of the baryon energy Ebaryon, the electron density
Eelec, and the proton-neutron mass difference

Epasta = Ebaryon + Eelec − ∆mc2Z . (32)

For the baryon energy, we use the hydrodynamicsmodel defined
in appendix A 2 with the SeaLL1 parametrization. The electron
energy is the Thomas-Fermi energy for relativistic electrons

Eelec =

∫
d3r (3π2ne)4/3

~c
4π2 (33)
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Figure 17. (Color online) (a): energy per baryon in the pasta phase
(Epast), energy per neutron in pure neutron matter (Epnm), and energy
per baryon in uniform nuclear matter (Euni) as a function of average
baryon density. (b): Charge ratio of the nuclear pasta as a function
of average baryon density. (c): the energy per nucleon difference
between the uniform and the inhomogeneous matter configurations in
β-equilibrium as a function of the average baryon density.

where the electron density is determined from Eq. (32) as

ne(r) = Θ(µn − µp + Vc(r) + ∆mc2)

×
1

3π2

(
µn − µp + Vc(r) + ∆mc2

~c

)3

. (34)

where Vc(r) is the Coulomb potential experienced by electrons,
which includes both the direct and the relativistic exchange

parts [2] (notice the positive sign, opposite from the non-
relativistic Slater approximation)

Vc(r) = e2
∫

d3r ′
nc(r ′)
|r − r ′ |

+
1
2

e2
(

3
π

ne(r)
)1/3

(35)

where nc(r) = np(r) − ne(r) is the charge density. Through
solving the hydrodynamics equation similar to Eq. (A6a) for
baryons and Eq. (34) for electrons, the charge number Z =∫

d3r ne(r) is determined self-consistently for a given baryon
number A = Nn + Np where Np = Z is satisfied for charge
neutrality. Numerically, we perform this calculation in a 3D
cubic lattice with periodic boundary conditions at average
baryon densities n = 0.045, 0.05, 0.055, 0.06, 0.065 and
0.07 fm−3. To explore the role of finite size effect, the size of
cubic lattice is chosen as Lx = 32, 48, 64 and 96 fm respectively
for all ns. The lattice constant is fixed as dx = 1.00 fm.
In Fig. 17 we compare the energy of uniform pure neutron
matter, with uniform matter in β-equilibrium, and allowing for
the formation of inhomogeneities. Even though for various
size cubic boxes the spatial distribution of the matter at a
given average density is not identical, the gain in energy and
the proton/neutron ratios are practically the same and at an
average density slightly above 0.07 fm−3 the matter distribution
becomes homogeneous.

H. Comparison with other NEDFs

The accuracy of the ground state nuclear properties obtained
using SeaLL1 NEDF compares extremely well with other ap-
proaches. The UNEDF1 nuclear energy functional introduced
by Kortelainen et al. [74] has a residual of χE = 1.91 MeV
per nucleus for 555 even-even nuclei from AME2013 [213]
and an rms of 0.75 MeV (for S2n) and 0.79 MeV (for S2p) com-
pared to χE = 1.74 MeV, and rms 0.69 MeV (for S2n), and
0.59 MeV (for S2p) in the case of SeaLL1. SeaLL1 delivers
better quality single-particle spectra as well, without introduc-
ing them into the fit, unlike UNEDF2. UNEDF2 reports an rms
χr = 0.018 fm for 49 nuclei only, and we cannot compare that
with that obtained by us, a χr = 0.034 fm for 345 measured
even-even nuclei. The UNEDF2 functional of Kortelainen et al.
[75] depends on 14 strongly-correlated parameters.
The BCPM energy density functional introduced by Baldo

et al. [214, 215] is based on information extracted from
Brueckner-Hartree-Fock calculations of neutron and symmet-
ric nuclear matter [216], and four additional parameters to
describe pairing correlations in the T = 1 channel [217], one
for the spin-orbit interaction and two for the surface properties,
in total 7 parameters, not counting the fine-tuning of nuclear
saturation properties. This approach is similar in spirit to
the one suggested by Fayans [143, 218], in the spirit of the
Kohh-Sham DFT [10]. These authors have also included the
beyond the mean-field rotational energy correction [219], and
the center-of-mass energy correction [220], and they find a
χE = 1.58 MeV for 579 even-even nuclei in AME2003 [213]
and a χr = 0.027 fm for 313 nuclei.
Goriely [7], Goriely et al. [8, 69, 71] have produced over

the years a series of high-accuracy mass models based on
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Figure 18. (Color online) The energy per nucleon for pure neutron
matter and symmetric neutron matter used in SeaLL1, compared to
the corresponding energies used by Fayans [143] and Baldo et al.
[214, 215, 216]. For comparison we have shown with a dashed line
the results of the QMC calculation of Wlazłowski et al. [131], with 2N
and 3N interactions as well the result with the 2N interactions alone.

Skyrme NEDFs. Their best model gives an average rms
around 0.5 MeV for the entire mass table, and a very close
value χE = 0.549 MeV for even-even nuclei. In the case of
BSk24 [71] the charge radius rms is χr = 0.005 fm. However,
in contrast with the UNEDF and SeaLL1 NEDFs, the mass
tables evaluated by Goriely et al. were obtained by adding
various phenomenological corrections in order to account effec-
tively for beyond mean-field effects. These include corrections
for the center-of-mass motion, the rotational energy correction,
and the Wigner energy. These beyond mean-field corrections
are hard still to incorporate in dynamical calculations, as in the
case of fission [117] or nucleus-nucleus collisions.

As an exercise, we performed a refit of SeaLL1 after including
the phenomenological center-of-mass correction due to Butler
et al. [220]. For spherical even-even nuclei, this term alone
reduces the energy rms from 1.54 MeV to 0.97 MeV. It is thus
expected that by adding further beyond mean-field corrections
to SeaLL the value of χE can be reduced significantly.

We also mention work with the relativistic mean-field theory
(RMFT) of nuclei. State-of-the-art parametrizations of the
relativistic NEDF yields a χE between from 2 MeV to 3 MeV
for even nuclei using the AME2012 data set [221, 222].

Finally, we note that phenomenological Skyrme-like NEDFs
“predict an inert point” of the neutron matter EoS at n ≈
0.12 fm−3, with an energy per particle [71, 223, 224] noticeably
lower than the QMC calculations and unrealistic low-density
behavior, see Eq. (15a) and Fig. 18. The BCPM NEDF as-
sumes that no quartic terms in isospin β4 are present in the
NEDF, as their EoS for neutron matter is softer than the EoS
determined in QMC calculations of [131], see discussion in
appendix A 4. Adding the quartic β4 ( j = 2) terms does not
significantly impact the quality of the fits, see section III C.
However, the best fit functional with only quadratic β2 ( j = 1)
terms, does not reproduce the neutron matter EoS, especially
near n ≈ 0.12 fm−3 and the low density behavior. These re-

sults demonstrate two important points: 1) quartic terms ∝ β4

( j = 2) appear to be needed to reproduce the accurate neutron
matter EoS only, 2) known nuclear masses do not constrain
these quartic terms.

V. PERSPECTIVES

A. Static Properties and Correlation Energies

Additional control may be obtained by introducing generaliza-
tions of the terms included in SeaLL1. These may be used
to refine other nuclear properties, including the static electric
dipole polarizability, nucleon effective masses, single-particle
spectra, proton and neutron pairing gaps, fission barriers and
the second fission isomer energies. For example,

E∇n = η0
~2

2m
|∇nn + ∇np |

2 + η1
~2

2m
|∇nn − ∇np |

2 (36)

with η0 , η1 would allow one to adjust the neutron skin thick-
ness somewhat independently from the symmetry properties
of the functional and one can also control the static electric
polarizability in the same manner.

The single-particle spectra for 48Ca and 208Pb obtained with
SealLL1 have a larger neutron gaps and smaller proton gaps
than measured experimentally (see Fig. 13). This could be
remedied by tuning independently the parameters W0 , W1 in
a more general form of the spin-orbit coupling,

ESO = W0J · ∇n +W1(Jn − Jp) · (∇nn − ∇np). (37)

which could be used to independently fine-tune proton and
neutron single particle spectra near the Fermi level. One can
add as well a density dependence of the spin-orbit coupling,
which can lead to fine changes of the single-particle spectra,
see also Ref. [8] for a related study.

One could further tune the single-particle spectra, and adjust
the nucleon effective masses, by introducing more generalized
density-dependent terms of the type arising in Eqs. (17a),

Eτ ∝ τnσ − j2nσ−1 −
3
5
(3π2)2/3n5/3+σ ∝

|∇n|2

n1−σ . (38)

(The obvious isospin structure has been suppressed.) The
presence of the current density here is required in order to restore
Galilean covariance [120]. Since the density gradients are
peaked at the nuclear surface, the dependence of these coupling
constants on density are not expected to lead to a significant
changes in the quality of nuclear mass fits. The corresponding
coupling constants would thus play a subdominant role as
discussed in section III G. This shows that terms like τnσ in
Skyrme-like functionals can be used in the combination (38)
where they would play a subdominant role in mass fits.

In connection with gradient corrections, a remark is in
order. Since the density gradients peak at the surface, allowing
the corresponding coupling constants to acquire a density
dependence could be useful, but such a density dependence of
these coupling constants likely is not going to be very sensitive
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to different powers of the density or even a linear combination of
different powers of the densities, though it might be capable to
discriminate between various isospin structures. This behavior
was observed for example by Goriely [7], when they introduced
various density dependence of the spin-orbit terms and observed
that the energy rms changed only by 20 keV.

Similarly, a long standing feature of standard nuclear energy
density functionals (NEDFs) requires breaking the isospin
symmetry of the pairing contribution, even needing stronger
proton pairing than neutron pairing [74, 75, 147] despite the
Coulomb repulsion. This can easily be remedied by using
instead a modified form of pairing which conserves the charge
symmetry:

E∆ =

∫
d3r geff(r)

(
|νn(r)|

2 + |νp(r)|
2
)

+

∫
d3r heff(r)

(
|νn(r)|

2 − |νp(r)|
2
)
β, (39a)

where β = (nn − np)/(nn + np). The dependence on neutron
and proton densities of the bare coupling constants should
satisfy isospin symmetry:

g
(
nn(r

)
, np(r)) = g

(
np(r), nn(r)

)
, (39b)

h
(
nn(r

)
, np(r)) = h

(
np(r), nn(r)

)
. (39c)

Since in measured nuclei one has predominantly N ≥ Z , see
Fig. 16, a phenomenological analysis that leads to a larger
apparent coupling for protons than for neutrons can be recon-
ciled with renormalized coupling constants geff(r) < 0 and
heff(r) > 0.
An additional subdominant term of the type

Ẽspin = α1

(
s2
n + s2

p

)
+ α2 sn · sp, (40)

should be considered as well for odd nuclei. The contribution of
spin densities is typically much smaller than the contributions
of the densities in nuclei,

∫
d3r nn,p(r) �

��∫ d3r sn,p(r)
��, as

in even-even nuclei sn,p(r) ≡ 0, and thus these terms will play a
noticeable role in odd A and odd N-odd Z nuclei mainly [225].
The term proportional to α2 will be important mostly in odd-
odd nuclei. These type of contributions will affect in particular
β-decay matrix elements.
The structure of the double-humped fission barriers also

depends critically on the character of shell-corrections (see
Fig. 15), and is thus sensitive to the single-particle spectrum
structure. Hence, fission properties may be tuned by adjusting
all of the subdominant terms discussed abovewithout degrading
the ability of the functional to fit masses and charge radii.
We now have a clear path to refine the structure of the

SeaLL1 NEDF, by systematically adding physically motivated
parameters in order to better describe nuclear physics observ-
ables. While the properties of the simple SeaLL1 functional
as presented here are quite reasonable without any fine tuning,
there is room for substantial improvement. For example, one
can consider spin-orbit terms (37) with W0 , W1, gradient
terms (36) with η0 , η1, gradient terms modifying the nucleon
effective masses (38), and density dependent pairing terms

(39a) with both couplings geff and heff non-vanishing. Sub-
dominant corrections can be made to the symmetry energy (30)
with a1 − b1n1/3

0 , 0 and c1 , 0. Even the incompressibility
K0 =

6
5εF − 12ε0 + 2a0n2/3

0 (if ε0 and n0 are fixed) can be
changed by ≈ ±20 MeV with the parameter a0, see Eq (27c)
and Fig. 7.
The next step is to account for correlation energies; the

center-of-mass corrections, which, in the case of self-bound
systems, present some challenges [226–233]. Accounting for
the center of mass correction [220, 234], the correction due
to particle number projection [235], the vibration correlation
energy correction [6, 236], the angularmomentumprojection [6,
70, 174, 219, 223, 237, 238], and Wigner energy [7, 8] should
reduce the rms energy from about 1.7 MeV to about 0.5 MeV.
Further improvement may require a proper accounting for
quantum chaos-like effects [78–86].

B. Nuclear Dynamics and Time-Dependent DFT

One of the main advantages of DFT is the ability to also
describe nuclear dynamics with the same NEDF as for static
properties. In time-dependent phenomena, additional terms of
the NEDF become active. We could especially consider two
types of entrainment terms. Such terms are never discussed
in any standard theory of large amplitude collective motion
in nuclear physics [64, 239, 240], despite being allowed by
symmetry. They are as natural to consider in the presence of
mixed proton and neutron superfluids in neutron stars as they
are in mixtures of 3He and 4He superfluids [241–243].

Entrainment (the Andreev-Bashkin effect) was predicted by
Andreev and Bashkin [241] to occur in superfluid mixtures
of 3He and 4He, and is rather surprising at first sight, since
superfluids are expected to flowwithout resistance. In particular,
one might have expected that if somehow one would bring
into motion only one superfluid component, superfluidity will
have the consequence that the other component remains at
rest. The entrainment term (41) is indeed dissipationless, and
thus it does not violate superfluidity, but allows the motion of
one superfluid to influence (entrain) the other. It is natural to
expect a similar phenomenon to arise in nuclei, where proton
and neutron (super)fluids can coexist. The entrainment term is
Galilean invariant and in nuclear systems has the form

Eentrain = gent

(nnnp

n2

) n
2m

���� jnnn
−

jp

np

����2 , (41)

where jn,p are the density currents (10f). This term is dissipa-
tionless, and thus it does not violate superfluidity, but allows
the motion of one superfluid to influence (entrain) the other.
Since this type of coupling between neutron and proton fluids is
absent when either density vanishes we require that gent(0) = 0.
The requirement that the total kinetic energy is always positive
leads to the condition x + gent(x) > 0. Entrainment should also
plays a role in neutron stars and has been studied intermittently
since 1975 [242–250]. The significant effect of this term is
seen in the dynamics only, when the motion of one fluid will
drag along the other, and therefore the presence of such an
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additional term will affect strongly the excitation energies of
isovector modes such as the giant dipole resonances (GDRs)
and the Thomas-Reiche-Kuhn sum rule. The simplest choice
for this coupling is gent(x) = αx with 1 + α > 0, which allows
for negative values of g(x). Borumand et al. [245] recommend
gent(x) ∝ x2/3, which would restrict g(x) ≥ 0 for small values
of x.

A second type of entrainment contribution can be introduced
aswell, withwhich one can control theGamow-Teller transitions
and β-transition matrix elements.

Ẽspin entrain = g̃ent

(nnnp

n2

) n
2m

���� Jnnn
−

Jp

np

����2 , (42)

where Jn,p are the spin-density currents (10d).

VI. CONCLUSIONS

The nuclear energy density functional (NEDF) presented here
is physically intuitive, and provides a clear strategy for further
improving the quality of mass fits by separating contributions
of various energy scales in the χE of nuclear masses. In this
respect, the approach outlined here and similar ideas used
before by Bertsch et al. [153], is similar in spirit to an effective
field theory. Our starting point was a generalization of the liquid
drop model as suggested by Weizsäcker [11], which aligns with
the Hohenberg and Kohn [1] formulation of DFT in terms of
neutron and proton densities only. This formulation allows us to
evaluate proton and neutron densities, and thus the charge radii
aswell, and the binding energies of 2375 nucleiwith an accuracy
superior to the Bethe-Weizsäcker mass formula, but with the
same number of parameters. Using this as a starting point, 3
additional parameters were identified to produce a minimal
NEDF, in the spirit of the Kohn-Sham LDA formulation [10]
of the DFT, which is extended to account for the presence of
pairing correlations, shell effects, and the density dependence
of the symmetry energy. The NEDF developed in this work,
which we call SeaLL1, contains thus 7 significant parameters,
each clearly related to specific properties of nuclei.

The SeaLL1NEDF describes the nuclear masses of 606 even-
nuclei from the AME2012 evaluation [18, 19] with a mean
energy error of 0.93 MeV and a standard deviation 1.46 MeV,
two-neutron and two-proton separation energies with rms errors
of 0.69 MeV and 0.59 MeV respectively, and the charge radii
of 345 even-even nuclei [118] with a mean of 0.022 fm and a
standard deviation of 0.025 fm.
Since in SeaLL1 the effective nucleon mass is equal to

the bare mass one can naturally expect that nuclear level
densities [251] will be described rather accurately, along with
the single-particle spectra around the Fermi level, unlike many
phenomenological NEDFs. The quality of the single-particle
spectra are typically better than in the case of previous NEDFs,
even though we did not include them in the fit.
Nuclear and neutron matter properties are also well repro-

duced in SeaLL1. One needs only two parameters to reproduce
the symmetric nuclear binding energy and saturation density.
We find a reasonable value for the isoscalar nuclear incom-
pressibility, K0 = 230 MeV, although the saturation density is

a bit lower than the canonical value 0.16 fm−3. The saturation
density is not well constrained by the mass fits alone, but can be
constrained by also considering the charge radii as discussed in
Fig. 5. Two additional parameters control the symmetry prop-
erties of nuclear matter. The symmetry energy S = 31.7 MeV,
its density dependence, the neutron skin thickness 0.131 fm of
208Pb, the compressibility of nuclear matter all have reasonable
values. SeaLL1 also incorporates information about the EoS
of pure neutron matter from quantum Monte Carlo calculations
with chiral effective field theory NN interactions at N3LO level
and NNN interactions at the N2LO level. The addition of
quartic isovector terms ∝ β4 permit the NEDF to match the
neutron matter EoS without significantly affecting the global
mass fit. We thus find that nuclear masses and the neutron
matter EoS are largely uncorrelated, a conclusion somewhat at
odds with previous analyses.

A gradient term with a single parameter controls the diffuse-
ness of the nuclear surface and the nuclear surface tension. Two
additional parameters are required to describe the spin-orbit
interaction and the pairing correlations.
We have identified the respective role of the parameters of

the SeaLL1 NEDF by using a principal component analysis.
We have established that a number of parameters play an
insignificant role in the mass fit. Their values can be varied
significantly without affecting the quality of the χE . We
refer to these as insignificant or subdominant parameters, and
identify how they can be used to fine-tune the values of other
observables.

Looking ahead, we note that a number of important nuclear
observables such as the position of the GDR, the Gamow-Teller
resonances, the Thomas-Kuhn-Reiche sum-rule, the nuclear
compressibility and correspondingly the position of the giant
monopole resonances, the dipole electric polarizability, the
neutron skin thickness and the density dependence of the
symmetry energy, depend on parameters which can be either
freely adjusted (spin-orbit splittings and/or effective masses)
without affecting the accuracy of the ground state binding
energies, or which affect very little the ground state properties.
In this respect SeaLL1 stands apart from previous NEDFs, in
which many of these properties where often included in the fits.
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Appendix A: Appendix

1. Orbital-Free Functional

Herewe discuss some details of the orbital-free theory described
in section III H.
As mentioned there, the main challenge in formulating an

orbital-free theory is to express terms with the auxiliary densi-
ties τn,p, ν, Jn,p, and jn,p by an appropriate functional of the
number densities nn,p. One approach is to start with a semi-
classical expansion. Neglecting the spin-orbit interaction (20),
the kinetic density τ admits the following semiclassical expan-
sion [2, 31, 151]:

τ ≈

τTF [n]︷           ︸︸           ︷
3
5 (3π

2)2/3n5/3 +

τ2[n]︷     ︸︸     ︷
1
9

��∇√n
��2 +τ4[n] + · · · (A1)

The factor of 1/9 can be derived rigorously for smoothly
varying densities, along with higher order terms discussed in
Eq. (A4) below. This should be compared with the factor of
unity originally suggested by Weizsäcker [11], later shown
to be valid only if the density has small amplitude rapid
oscillations [2, 31, 151]. For nuclei, the semiclassical result is
relevant for the bulk, but gives incorrect asymptotic behavior,
while Weizsäcker’s result reproduces the correct asymptotic
behavior, but is a poor approximation in the bulk, see [57] for a
discussion. Resolving this tension is an active area of research
in DFT, and many suggestions have been compared [252].
The simplest option is to treat the coefficient 1/9 = η as a

phenomenological parameter, since gradient terms can also be
generated by interactions [253–255]. Fitting the nuclear masses
yields values of η close to 0.5, roughly half-way between the
semiclassical and Weizsäcker values. Stocker et al. [256] used
a similar approach in order to discuss the anomaly in the nuclear
curvature energy – the term in the nuclear mass formula ∝ A1/3.

Another appealing approach suggested byDePristo andKress
[152] and advocated in [2] is to use a Padé approximant F(X)
to interpolate between the semiclassical and asymptotic results:

τ ≈ τTF [n]F(X), X =
τ2[n]
τTF [n]

. (A2)

DePristo and Kress [152] motivate a rather complicated form
F(X), but for nuclei, we find little improvement over the
following single-parameter form:

F(X) =
1 + (1 + κ) + 9κX2

1 + κX
=

{
1 + X X � 1
9X X � 1.

(A3)

Note: the approximation η ≈ 1/9 mentioned above is imple-
mented with F(X) = 1 + 9ηX .

The next order in the semiclassical expansion of non-
interacting fermions [2, 31] is:

τ4[n] =
1

810(3π2)2/3
f (n), (A4)

f (n) = n1/3

[(
∇n
n

)4
−

27
8

(
∇n
n

)2 ∇2n
n
+ 3

(
∇2n

n

)2]
.

This type of correction has been studied in nuclear physics and
shown to lead to quite accurate estimates of the kinetic energy
density within the extended Thomas-Fermi approximation [31,
57, 257]. Within a DFT, such terms can also arise due to
the finite range of the interactions in a matter similar to some
Skyrme interactions [253–255]. However, these terms – even
with adjustable parameters – do not significantly change the
quality of the mass fits, so we do not consider them in our main
analysis. Including them perturbatively in the fit, however,
does improve the fit of the charge radii. For example, fitting
the overall coefficient reduce the charge radii residual χr
(see details in appendix A 2) from χr ≈ 0.14 fm to χr ≈
0.09 fm. Fitting each of the three terms independently further
reduces the residuals to χr ≈ 0.06 fm. Fourth-order terms
are neglected as they can lead to a complex behavior of the
emerging equation for the densities, which can be difficult to
rationalize. (See, for example, the analysis of fourth order
differential equations arising in case of non-local potentials by
Bulgac [258].) Higher order gradient corrections than Eq. (A4)
lead to an unphysical behavior of the densities in the classically
forbidden regions. Furthermore, the semiclassical expansion
has an asymptotic character [151], and corrections beyond
second order do not always improve the functional. Finally,
when using a properly fit Padé approximant Eq. (23b), we
find that

∫
τTF [n]F(X) − τTF [n] − τ2[n]d3x ≈

∫
τ4[n]d3x for

many nuclei. Thus, the Padé approximant Eq. (23b) seems to
incorporate the qualitative effects of the τ4[n] term. For these
reasons, we do not include fourth-order corrections τ4[n] in
our orbital-free theory.
When spin-orbit interactions are included, they modify the

semiclassical expansion. Thus, to properly express the orbital-
free theory, we must consider both terms together. The correct
semiclassical expansion of this combined energy density to
second order is [57, 257]:

Ekin + ESO =
~2

2m
(τn + τp) +W0J · ∇n

≈
~2

2m
(
τTF [nn] + τTF [np] + τ2[nn] + τ2[np]

)
−

W2
0

2
2m
~2 n(∇n)2. (A5)

Note that the sign of the last term differs from the expression (7)
in [257] which contains only the kinetic component. The result
here combines both the kinetic and spin-orbit contributions,
altering the sign. (The remaining terms in the functional only
alter the mean-field potential, and so they do not affect this
result.)
This expansion suffers the same problems as the pure semi-

classical expansion of the kinetic energy Eq. (A1). Thus, for
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the reasons discussed above, we replace τTF + τ2 with the
Padé approximant Eq. (23b). In principle, a similar correction
could be used with the spin-orbit term, however, this term
has the form n(∇n)2 instead of τ2 ∝ (∇n)2/n. It is therefore
suppressed in the tails and does not effect the asymptotic be-
havior of the nuclear density profile. Note that the scaling is
similar to the gradient correction. For this reason we keep the
semiclassical form, but refit the coefficient ηs to compensate
for any inaccuracies.
The equations that determine the equilibrium densities of a

nucleus in the orbital-free theory are obtained by minimizing
the energy of a given nucleus E(N, Z) =

∫
d3r E[nn, np] with

respect to the densities, while constraining the total numbers of
neutrons N and protons Z with two chemical potentials µn,p:

−
~2

2m
∇ ·

(
F ′(Xq)

9
∇n1/2

q

)
+Uqn1/2

q = µqn1/2
q , (A6a)

Uq =
∂E[nn, np]

∂nq
, for q ∈ {n, p}. (A6b)

We present these here as the inclusion of F(X) acts as a density-
dependent effective mass. No such complication appears in the
HFB formulation, which proceeds as described in [119].

2. Orbital-Free NEDF parameters

We start by considering the functional with the simplified
kinetic energy

Ekin[nn, np] =
~2

2m

∑
q=n,p

τTF [nq]F(Xq), (A7)

where τTF , Xq , and F(X) are given in Eqs. (A2) and (A3).
As discussed above, when using the simplified form F(X) =

1 + 9ηX , the best fit value of η ≈ 0.5. One might naïvely
think that this corresponds to a dynamical theory of superfluid
neutron and proton pairs with an effective nucleon pair mass
meff ≈ 2m (see i.e. [259] and references therein). Such a theory
with η = 0.5, however, leaves the potentials Uq wrong by
a factor of 2. To correctly describe a dynamical theory of
superfluid neutron and proton pairs, one would need a value
of η = 1/4. Thus, in this approximation, the parameter η
must simply be interpreted as an approximate way to control
the falloff of the densities in the surface region where the
interaction effects are still strong.

We now consider our NEDF as an hydrodynamic model for
nuclei and fit the parameters to the same NE = 2375 measured
nuclear masses with A ≥ 16 from [18, 19] used to fit the
liquid drop models in Table I. However, unlike the liquid drop
model, our hydrodynamic model allows us also to consider
properties of the density distribution. Thus, we also fit the
Nr = 883 nuclear charge radii from [118]with χ2

r =
∑
|δr |2/Nr .

When we include the charge radii in the fit, we minimize
the following quantity χ2

E/(3 MeV)2 + χ2
r /(0.05 fm)2 which

roughly equalizes the weight of the mass and radii contributions
in the fit.

At this point, we have 7 parameters in our NEDF: η, a0,1, b0,1,
and c0,1 (the j = 2 parameters are fixed by the neutron matter
EoS). In addition, we include by hand the conventional even-
odd staggering Eq. (2b) with a coefficient δ to describe pairing
correlations, even though this has very little significance in the
fits. The results of various fits scenarios we have considered
are summarized below in Table IV where we present sets of
parameters for various fit strategies, and in Table V where we
present the saturation, symmetry, and neutron skin properties.
We have considered the following type of fits:

NEDF-0: A six parameter least-squares fit of the NE = 2375
nuclear masses [18, 19] including η, b0, c0, a1, b1, and
δ but setting the nucleon charge form factors Eq. (12c)
Gp

E ≡ 1 and Gn
E ≡ 0.

NEDF-1: The same as NEDF-0, but including the measured
charge form factors. Comparing with NEDF-0 we see
that the electric form factors are not significant for the
overall mass fits, but slightly impact the charge radii at
the 0.01 fm level (for the reduced χr ).

NEDF-2: The same as NEDF-1, but without the pairing pa-
rameter δ = 0. Comparing with NEDF-1 we see that
odd-event staggering is also relatively unconstrained at
the level of 0.1 MeV per nucleus. This is consistent with
the results from the mass formulas in Table I.

NEDF-1r: The same as NEDF-1, but including the Nr = 883
charge radii into the fit. We see that there is significant
room to improve the description of the charge radii
without significantly degrading the mass fits.

NEDF-3: The same as NEDF-1, but with all 8 parameters,
including a0 and c1 that we omitted from the previous fits.
In conjunction with the principal component analysis
shown in Fig. 20, this fit demonstrates that the terms
with parameters a0 and c1 are unconstrained.

NEDF-3n: The same as NEDF-1, but with all 8 parameters,
including a0 and c1 that we omitted from the previous fits,
and the β4 parameters for the terms quartic in isospin,
constrained by the QMC neutron matter EoS [131] using
Eqs. (15b). That the quality of the fit, isoscalar, and
isovector parameters change very little, demonstrates
that the neutron matter EoS is essentially independent of
the nuclear masses.

NEDF-3nr: The same as NEDF-3n but including the charge
radii as in fit NEDF-1r. That the a0 and c1 terms are un-
constrained for both masses and radii is also emphasized
by this fit.

NEDF-E: Following the principal component analysis of
NEDF-3n (discussed below) we find the combination
a1 − b1n1/3

0 to be only weakly constrained by the mass fit.
To test this, we set a1 = b1n1/3

0 where n0 = 0.154 fm−3

is a constant. The combination a1 − b1n1/3
0 , to which the

masses are insensitive, allows independent control the
slope L2 of the symmetry energy (see Eq. (27e)). From
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NEDF η ηs W0 a0 a1 a2 b0 b1 b2 c0 c1 c2 δ χE χr
[fm3] [MeV fm5] [MeV fm2] [MeV fm2] [MeV fm2] [MeV fm3] [MeV fm3] [MeV fm3] [MeV fm4] [MeV fm4] [MeV fm4] [MeV] [MeV] [fm]

0 0.4719 0 0 0 131.1 0 −741.570 −143 0 940.50 0 0 11.46 2.59 0.14
1 0.4742 0 0 0 122.6 0 −738.302 −128 0 934.38 0 0 11.47 2.58 0.13
2 0.4743 0 0 0 120.1 0 −740.226 −123 0 938.26 0 0 0 2.71 0.14
1r 0.4807 0 0 0 135.9 0 −702.003 −157 0 861.33 0 0 11.75 2.71 0.05
3 0.4800 0 0 −10 125.0 0 −695.08 −130 0 892.1 −0.0 0 11.41 2.58 0.14
3n 0.4739 0 0 −7.59 195.7 −220.7 −707.006 −322 913.194 902.50 100 −873.8 11.57 2.57 0.13
3nr 0.4815 0 0 −7.63 195.4 −220.4 −674.608 −317 876.220 837.29 75 −803.21 12.45 2.67 0.05
E 0.4885 0 0 0 34.60 0 −740.950 65.1 0 938.63 0 0 11.21 2.64 0.13
Er 0.4957 0 0 0 32.98 0 −707.394 62.1 0 870.91 0 0 12.71 2.74 0.05
En 0.4866 0 0 0 34.01 −66.60 −741.546 64.0 562.093 940.02 0 −830.90 11.26 2.62 0.13
Enr 0.4970 0 0 0 32.54 −65.13 −707.031 61.2 530.344 870.15 0 −761.03 12.51 2.74 0.05

En-rho 1/9 4.9731 0 0 29.71 −62.29 −672.625 55.9 501.277 934.85 0 −825.73 11.78 2.64 0.05
Enr-rho 1/9 5.0397 0 0 29.52 −62.11 −672.986 55.6 501.986 934.85 0 −825.73 13.72 2.68 0.05
En-so 1/9 5.4751 76.20 0 136.8 −169.4 −669.776 51.5 502.814 934.85 0 −825.73 11.73 3.18 0.05

κ
En-pade-1 0.07 5.0941 0 0 30.14 −62.73 −672.785 56.7 500.620 802.20 0 −693.08 10.40 2.82 0.07
En-pade-2 0.15 4.6365 0 0 30.37 −62.96 −672.213 57.2 499.610 801.41 0 −692.29 11.49 2.89 0.07
En-pade-3 0.20 4.4318 0 0 30.33 −62.91 −671.889 57.1 499.374 800.97 0 −691.85 11.94 2.93 0.07
En-pade-4 0.30 4.2098 0 0 31.50 −64.09 −672.625 59.3 497.894 801.98 0 −692.86 12.07 3.11 0.07
Hydro 0.20 3.3696 0 0 50.88 −83.47 −685.597 94.9 475.237 828.76 −160 −559.64 0 2.86 0.04

g0 [MeV fm3]
SeaLL1 N/A 3.93 73.50 0 64.30 −96.80 −684.50 119.90 449.20 827.26 −256 −461.70 −200 1.74 0.03

Table IV. Fit parameters and residuals for the various NEDFs. The top set of functionals down use the simplified form F(X) = 1 + 9ηX while
the second set use the form in Eq. (A3) with the parameter κ instead. The SeaLL1 parameters are shown in the last row for comparison.

Neutron skin
NEDF n0 −ε0 K S L L2

208Pb 48Ca
[fm−3] [fm] [fm]

0 0.136 15.24 222.5 26.8 34.1 32.8 0.082 0.118
1 0.136 15.22 222.4 26.7 35.9 34.7 0.087 0.123
2 0.136 15.21 222.2 26.7 36.8 35.6 0.089 0.125
1r 0.148 15.48 227.7 27.1 30.9 29.6 0.078 0.116
3 0.136 15.21 216.5 26.7 34.7 33.4 0.088 0.124
3n 0.137 15.20 218.2 30.0 29.3 16.7 0.068 0.107
3nr 0.147 15.44 222.9 31.0 31.2 15.5 0.068 0.107
E 0.136 15.28 223.1 29.7 68.2 66.9 0.159 0.174
Er 0.147 15.53 228.1 30.6 70.2 68.9 0.161 0.176
En 0.136 15.27 222.9 30.1 29.1 66.1 0.152 0.172
Enr 0.147 15.53 228.2 31.1 31.1 68.3 0.156 0.174

En-rho 0.160 15.85 234.4 32.3 33.5 68.9 0.138 0.149
Enr-rho 0.160 15.87 234.6 32.4 33.5 68.6 0.138 0.149
En-so 0.160 15.74 233.1 32.2 33.5 65.4 0.120 0.139

En-pade-1 0.160 15.86 234.5 32.4 33.5 69.6 0.157 0.176
En-pade-2 0.160 15.83 234.2 32.3 33.5 69.9 0.166 0.189
En-pade-3 0.160 15.82 234.1 32.3 33.5 69.8 0.170 0.194
En-pade-4 0.160 15.85 234.4 32.3 33.5 71.6 0.181 0.206

Table V. Saturation, symmetry, and neutron skin properties for the
various NEDFs. All values in MeV unless otherwise specified.

the fits we see that this same combination also controls
the neutron skin thicknesses.

NEDF-Er: The same as NEDF-E but including the charge
radii as in fit NEDF-1r.

NEDF-En: This is our main fit. It is the same as NEDF-E
but includes the β4 parameters adjusted to reproduce the
neutron matter EoS as in fit NEDF-3n.

NEDF-Enr: The same as NEDF-En but including the charge
radii as in fit NEDF-1r.

In all fits above, the parameter η is around 1/2, which
deviates from the Weiszäcker value 1/9. In our latest fits, we
fix η = 1/9 and introduce a new gradient term ηs .

From the equilibrium condition of symmetric nuclear matter
we get a relationship between ã0, b̃0, and c̃0

0 =
3
5
+ ã0 +

3
2

b̃0 + 2c̃0 (A8)

or using the original parameters:

a0 = −
3εF
5k2

0
−

3
2

b0k0 − 2c0k2
0 (A9)

here k0 = n1/3
0 , n0 = 0.16. If a0 is set to be 0, there is a

relationship between b0 and c0:

c0 = −
3εF
10k4

0
−

3b0

4k0
(A10)

Using this relationship, the saturation density derived from
the NEDF will be fixed to be n0 = 0.16.

NEDF-En-rho: We fix η = 1/9 and add E∇n into the NEDF.
The saturation density n0 is fixed to be 0.16 by adding
a constraint between b0 and c0. Then the number of
significant parameters in this NEDF is reduced to 3.

NEDF-Enr-rho: The same as NEDF-En-rho but including the
charge radii as in fit NEDF-1r.

In our earlier fits, we do not include the contribution of spin-
orbit interaction, which is crucial for the proper description of
nuclear static properties.

NEDF-En-so: Following NEDF-En-rho, we add ESO into the
NEDF. The spin-orbit strengthW0 is fixed to be the value
suggested in [143]. The significant fitting parameters are
the same with NEDF-En-rho.
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When we fix η = 1/9 and neglect higher order extended
Thomas-Fermi (ETF) expansion in the kinetic energy, the
asymptotic form of density can be proved to be

n(r) −→
r→∞

1
r2 e−r/a, a =

√
−

1
36
~2

2m
1
µ
. (A11)

where µ is the chemical potential (which is negative). Un-
fortunately, the diffuseness a is too small by a factor of 3
compared with the realistic nuclear surfaces, which corre-
sponds to η = 1 in the asymptotic region. In order to obtain a
nucleus density with correct asymptotic behavior, we suggest
using the following Padé approximation in the representation of
extended Thomas-Fermi approximation for the kinetic density,
see Eqs. (A2) and (A3):

τq = τTF,qF(X) (A12)

where the function F(x) has the asymptotic behavior:

F(X) =

{
1 + X, X � 1
9X, X � 1

(A13)

In this approximation, we can get both correct behavior for the
nucleus density in the near and asymptotic region. Through
varying the parameter κ we obtain the following fits.

NEDF-En-pade-1: Following NEDF-En-so, we use the Padé
approximation for the kinetic energy, and the parameter
b = 0.065

NEDF-En-pade-2: Same with NEDF-En-pade-1, but κ =
0.15

NEDF-En-pade-3: Same with NEDF-En-pade-1, but κ = 0.2

NEDF-En-pade-4: Same with NEDF-En-pade-1, but κ = 0.3

These fits are summarized in Table IV, with the saturation
and symmetry properties in Table V. The residuals for fit
NEDF-1 are shown in Fig. 19 and compared with a fit to the
nuclear with mass formula Eq. (2).

The reduced χE for these fits is comparable to that obtained
using the nuclear mass formulas Eq. (1) with 4 parameters (plus
δ) and Eq. (2) with 5 parameters (plus δ). This is consistent
with our hypothesis that a NEDF for masses should contain no
more than 5 significant parameters. Note, however, that unlike
the mass formulas, the NEDF also gives a good description of
charge radii – for which the mass formula says nothing – and
provides access to nuclear dynamics.

3. Principal Component Analysis

The principal components for fits NEDF-1 and NEDF-3 are
shown in Fig. 20.
In the case of NEDF-3, we see that two parameters are

completely unconstrained. These include ã0 ≈ −0.088 and c̃1 =
−0.017. These values are an order of magnitude smaller than
the other coefficients: hence, the unconstrained components
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Figure 19. (Color online) The blue pluses show the results obtained
using the orbital-free approximation with χE = 2.86 MeV, while
the red crosses are the results of the fits using nuclear mass formula
Eq. (2), with χE = 2.64 MeV. When compared against each other,
the rms energy deviation between the two fits is ∆χE = 1.10 MeV.
Thus, the orbital-free theory essentially reproduces the nuclear mass
formula Eq. (2). The main plot is the same as in Fig. 1 in which one
can see clearly the magic numbers separately for neutrons and protons.

can be easily removed by setting a0 = c1 = 0 which we do in
most of our fits.
Finally, both plots indicate that a combination of the j = 1

parameters is highly unconstrained. Thus, in NEDF-1, the
combination b̃1 − ã1 can be given almost any value of order
unity without changing χE more than 0.1 MeV. This is directly
tested in the changes from NEDF1 to NEDF-E, NEDF-Er,
NEDF-En, and NEDF-Enr, where we change the sign of b1
and set a1 = b1n2/3

0 . Indeed, we see that χE changed by about
0.1 MeV. Notice from Table V that the slope of the symmetry
energy L2 changes from about 30 MeV to 70 MeV while the
other parameters remain about the same. This also significantly
changes the neutron skin thickness, demonstrating a correlation
between L2 and the skin thickness, similar to that seen in other
mean-field models [260]. This is consistent with Eq. (27e)
where we see that b̃1 gives us a direct handle on L2. Finally,
we have some unconstrained parameters, including δ̃.

4. Saturation, Symmetry Properties, and Neutron Matter

When only β2 isospin contributions are included in the func-
tional, our fits to the nuclear binding energies display a feature
reported in other NEDFs discussed in literature: the energy
per neutron in pure neutron matter appears to be well con-
strained at a density of nn ≈ 0.1 fm−3 where all functionals
cross, see Fig. 22. The symmetry energy S is indicated for the
functionals NEDF-En and Enr. The slope L ≈ 30 MeV is fixed
by the neutron matter EoS alone (if used as a constraint, see
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Figure 20. Principal component analysis for the NEDF-1 fit (a) and
the NEDF-3 fit (b). Plotted are the components of the eigenvectors
vn defining the principal component Eq. (25b) as linear combinations
of the various dimensionless parameters. From this we see that
for NEDF1 the most-significant component p0 ≈ b̃0 + c̃0 which
fixes the saturation energy to high precision. At the same time the
component p4 ≈ (̃b0 − c̃0 in NEDF-1 (and similarly in NEDF-3n) is
not well constrained. We also see that the least-significant component
p5 ≈ ã1 − b̃1 is essentially unconstrained. For NEDF-3, we find three
insensitive components, two of which can be used to set the smallest
parameters a0 = c1 = 0. After removing these, one obtains a similar
analysis as for NEDF-1 above.

Eq. (26b)). In this case the slope L2/3n0 may be tuned without
significantly affecting the mass fit by adjusting the insensitive
combination a1 − b1n1/3

0 or c1, see section III I. Functionals
with only quadratic isospin contributions (β2) appear to cross
near n ≈ 0.1 fm−3, see also Ref. [261] and references therein.
However, the value for the energy per neutron ≈ 9 MeV at
this point in our fits is significantly smaller than the value
≈ 12.19 MeV obtained in QMC calculations of Wlazłowski
et al. [131] or the equations of state for neutron matter used
by Fayans [143] and Baldo et al. [214, 215, 216], see Fig. 18.
This feature is not present when the β4 terms are included
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Figure 21. (Color online) The various ellipses show the region in
the (ε0, n0) plane, in which the NEDF parameters can be changed
and to lead to changes in the residual δχE < 0.2 MeV. While the
equilibrium energy ε0 and density n0 are controlled mainly by the
combination b̃0 + c̃0, which is constrained with very high precision,
the combination b̃0 − c̃0 remains significantly less constraint, see
section III I. This aspect allows us to manipulate to a certain degree
the saturation properties, while affecting the overall fit only slightly.

(NEDF-3n, NEDF-3nr, NEDF-En and NEDF-Enr) and the
QMC results are thus automatically reproduced.
The inclusion of the j = 2 terms quartic in β4 have very

little significance on mass fits. This demonstrates an important
point: the EoS of pure neutron matter has very little impact
on the form of the NEDF, if only nuclei are considered. In
measured nuclei, the ratio β = (nn − np)/n ≈ (N − Z)/A is
|β | < 1/4 (with a very small number of exceptions), hence
nuclear masses are essentially insensitive to the presence of the
β4 terms, as |β |4 < 1/256. To assess the magnitude of these
effects, we have evaluated the β4 contributions to the nuclear
binding energies perturbatively, see Fig. 23. This contribution
is quite small and can be easily overlooked when discussing
known nuclei, but is crucial in order to correctly reproduce the
energy of neutron matter. Evaluating Eq. (28) at n = 0.1 fm−3

one obtains

E

n

����
n=0.1

= [−4.399 + 13.961β2 + 2.635β4] MeV. (A14)

When one averages β2 and β4 over all nuclei one obtains the
values 0.028 and 0.001 respectively, which are noticeably lower
than the “maximum” values of 1/16 ≈ 0.062 and 1/256 ≈
0.004 and thus the contribution of the terms in β4 to χE and
nuclear masses is further reduced. The contributions of these
terms to the averaged energy density per nucleon over β at
n = 0.1 fm−3 are

E

n

����
n=0.1

= [−4.399 + 0.391 + 0.0026] MeV, (A15)

and the contribution of the quartic term in β to the total energy
is practically invisible in nuclei.
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Figure 22. (Color online) The energy density per nucleon for: (a),
pure neutron matter for NEDF-0, 1, 1r, 2, 3, E, and Er, which do
not constrain the neutron EoS and have only β2 contributions; (b),
symmetric nuclear matter for all orbital-free functionals, and neutron
matter for NEDF-3n, 3nr, En, Enr which collapse to the single curve
fitting the QMC results [131] (dots).
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Figure 23. (Color online) The contribution to the ground state
energies of the terms quartic in isospin density δEI4 =

∫
d3r E2(n)β4,

evaluated perturbatively with NEDF-1, see Table IV.

Thus, using properties of the neutron matter to constrain
the form of the NEDF and/or arguing against the inclusion of
higher powers of (nn − np) [71, 143, 161, 214, 215, 262–265]
is an ill-advised procedure, and the applications of functionals
constructed in this manner, in particular to star environments,
should be regarded with suspicion. The statement often made
in the literature (see e.g. Horowitz et al. [261] and references
therein) that the value of the symmetry energy at n ≈ 0.1 fm−3

is well constrained by nuclear masses must only be applied to

the local expansion S2 at this density, but not to the symmetry
energy difference S between symmetric and pure neutronmatter.

5. Charge Form Factors

The charge form factors are determined experimentally, and
we approximate the Fourier transforms of the form fac-
tors with the dipole term for the proton, Gp

E (Q) ≈ (1 +
Q2/0.71 GeV2)−2 [266], andGn

E (Q) ≈ a(1+Q2r2
+/12)−2−a(1+

Q2r2
−/12)−2 with r2

± = r2
avg± 〈r

2
n〉/2a, 〈r2

n〉 = −0.1147(35) fm2,
ravg = 0.856(32) fm, and a = 0.115(20) [267].
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