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Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynam-
ics that are crucial for interpretating neutrino- and electron-scattering data. In the large momentum-
transfer regime, the nucleon-density response function defines a universal scaling function, which
is independent of the nature of the probe. In this work, we analyze the nucleon-density response
function of 12C, neglecting collective excitations. We employ particle and hole spectral functions ob-
tained within two distinct many-body methods, both widely used to describe electroweak reactions
in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions
that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions
characterized by an asymmetric shape, although less pronounced than that of experimental scal-
ing functions. This asymmetry, only mildly affected by final state interactions, is mostly due to
nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

PACS numbers: 24.10.Cn,25.30.Pt,26.60.-c

I. INTRODUCTION

The analysis of scaling properties of nuclear response
functions has proven to be a useful tool to unveil in-
formation on the underlying nuclear structure and dy-
namics [1–3]. Indeed, singling-out individual-nucleon in-
teractions allows to disentangle the many-body aspects
of the calculation [4, 5]. These properties are relevant
for interpreting electron-scattering data and to predict
quantities of interest for neutrino-oscillation experiments.
It has been proposed that an empirical scaling func-
tion extracted from electron scattering data can be used
to predict neutrino-nucleus cross sections or to validate
neutrino-nucleus interaction models [6–9]. In particular,
the use of relativistic mean field in such calculations has
found support in its capability of properly reproducing
the asymmetric shape and the transverse enhancement
of the empirical scaling function [6].

Recently, the authors of Ref. [10] carried out an anal-
ysis of the scaling properties of the electromagnetic re-
sponse functions of 4He and 12C nuclei computed by the
Green’s Function Monte Carlo (GFMC) approach [11],
retaining only one-body current contributions. Their re-
sults are consistent with scaling of zeroth, first and sec-
ond kind and show that the characteristic asymmetric
shape of the experimental scaling function emerges in
the calculations in spite of the non relativistic nature of
the model. A novel interpretation of the longitudinal
and transverse scaling functions in terms of a universal
scaling function, defined in terms of the nucleon-density
response function was discussed. However, the reason
why the nucleon-density scaling function depends on the
energy and momentum transfers only through the scaling
variable is yet to be fully understood.

GFMC allows for a very accurate description of the

properties of A ≤ 12 nuclei, giving full account of the
dynamics of the constituent nucleons in the quasielastic
sector. However, within GFMC, it is not straightforward
to identify the mechanisms responsible for the asymmet-
ric shape of the scaling functions. In addition, only the
leading relativistic corrections are included in the GFMC
scaling functions, preventing a fully consistent compar-
ison with the experimental ones. In fact, by employing
both relativistic and non relativistic prefactors, it was
possible to highlight the shortcomings of GFMC in de-
scribing the electromagnetic responses at large momen-
tum transfers [10].

It has been argued [12] that scaling emerges as a con-
sequence on the onset of the impulse approximation (IA)
regime. In this work, we analyze the scaling properties of
the electromagnetic responses in the moderate and large
momentum-transfer regions, where collective modes are
unimportant and the spectral function (SF) formalism
is supposed to be reliable. This formalism, based on
the IA, combines a fully relativistic description of the
electromagnetic interaction with an accurate treatment
of nuclear dynamics in the initial state. However, final
state interactions (FSI) involving the struck particle are
treated as corrections, whose inclusion requires further
approximations [13, 14].

Accurate calculations of the hole SF have been carried
out in Refs. [15, 16] within the correlated basis function
(CBF) theory. Being the struck nucleon relativistic, the
particle SF cannot be consistently derived within CBF,
as the latter is an intrinsically non relativistic approach.
Hence, FSI are usually included by means of a convolu-
tion scheme. The validity of this approximation has been
recently tested by comparing SF and GFMC results for
the one-body electromagnetic responses of 12C [17]. The
CBF-SF model has proven to successfully reproduce a
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large body of electron scattering data for a variety of
nuclear targets, up to relatively low momentum trans-
fers, where the applicability of the IA is more controver-
sial [14, 18]. Recently, this model has been generalized
to include the contributions of meson-exchange currents
leading to final states with two nucleons in the contin-
uum [19, 20]. The CBF-SF has also been employed to
describe neutrino-nucleus interactions [21–25] in both the
quasiealstic and deep-inelastic scattering (DIS) regions.

In this work we also discuss a non relativistic semi-
phenomenological approach, based on the local Fermi gas
(LFG) model employed in Refs. [26, 27] to study charge
and neutral current quasielastic neutrino-nucleus scatter-
ing at intermediate and low energies. Within this model,
the hole and the particle SFs are consistently derived in
uniform and isospin-symmetric nuclear matter [28] and
the local density approximation (LDA) is exploited to
make predictions for finite nuclear systems [29–34]. We
include relativistic corrections as in [35, 36] to extend the
applicability of the model to moderately high momentum
and energy transfers. We show that the particle spectral
function obtained within the LFG approximation can be
employed to account for FSI with a comparable degree
of accuracy as the convolution scheme.

In Sec. II the scaling formalism is introduced; the LDA-
based model allowing to consistently derive the hole and
particle SFs is presented in Sec. III; Sec. IV is devoted
to the CBF-SF approach and the inclusion of FSI. In
Sec. V, the nucleon-density scaling functions obtained
within these two models are benchmarked and compared
with those extracted from experimental data. In Sec. VI,
we discuss the origin of first-kind scaling, and the asym-
metry of the scaling function, employing a simplified
model for the nuclear dynamics. Finally, in Sec. VII we
draw our conclusions.

II. SCALING FORMALISM

The electromagnetic longitudinal and transverse re-
sponse functions are given by

Rα(q, ω) =
∑
f

〈f |Jα(q, ω)|0〉〈0|J†α(q, ω)|f〉

× δ(ω − Ef + E0) , (1)

where |0〉 and |f〉 represent the nuclear initial ground-
state and final bound- or scattering-state of energies E0

and Ef , respectively, and Jα(q, ω) (α = L, T ) denotes
the longitudinal and transverse components of the elec-
tromagnetic current.

The scaling properties of the nuclear responses have
been widely analyzed in the framework of the Global Rel-
ativistic Fermi gas (GRFG) model. Within GRFG, the
target nucleus is described as a collection of relativistic
non-interacting nucleons, carrying a momentum smaller
than the Fermi momentum pF . In order to make contact
with previous studies, we introduce the following set of

dimensionless variables [37]

λ =ω/2m ,

κ =|q|/2m ,

τ =κ2 − λ2 ,
ηF =pF /m ,

ξF =

√
p2F +m2

m
− 1 . (2)

with m the nucleon mass, and qµ = (ω,q) the four mo-
mentum transfer. A dimensionless scaling variable can
be defined in terms of these quantities as [37]

ψ =
1√
ξF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

. (3)

The longitudinal and transverse scaling functions are
obtained by dividing the response functions by appro-
priate prefactors, encompassing single-nucleon dynamics
within the GRFG model [10]

fL,T (ψ) = pF ×
RL,T
GL,T

. (4)

It has to be noted that the GRFG longitudinal and
transverse scaling functions coincide. The analytical ex-
pression of the common function, symmetric and cen-
tered in ψ = 0, reads

fGRFG
L (ψ) = fGRFG

T (ψ) =
3ξF
2η2F

(
1− ψ2)θ(1− ψ2) . (5)

The aim of our work is to discuss how the inclusion of
nuclear interactions affects the shape of the scaling func-
tions, possibly leading to scaling violations.

In Ref. [10] it has been suggested that, for large mo-
mentum transfers, the longitudinal and transverse scaling
functions can be interpreted in terms of the proton and
neutron-density responses

Rp(n)(q, ω) =
∑
f

〈0|%†p(n)(q)|f〉〈f |%p(n)(q)|0〉

× δ(ω − Ef + E0) , (6)

where the proton (neutron)-density operator is given by

%p(n)(q) ≡
∑
j

eiq·rj
(1± τj,z)

2
. (7)

In isospin-symmetric nuclear matter, the proton- and
neutron-density responses coincide. It is convenient to
refer to them as nucleon-density response, proportional
to the imaginary-part of the polarization propagator

S(q, ω) =
1

π
Im Π(q, ω) , (8)

with

Π(q, ω) = 〈0|%†q
1

H − E0 − ω − iε
%q|0〉 , (9)
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where H is the Hamiltonian, %q =
∑

p a
†
p+qap is the

proton- or neutron-density fluctuation operator and a†p
and ap are either the proton or the neutron creation and
annihilation operators, respectively. In the limit of large
momentum transfer and for isospin symmetric nuclei, the
nucleon-density scaling function f is given by [10]

f(ψ) = pF × 2κ S(q, ω)/N (10)

where N is either the number of protons or neutrons of
the system.

The one-body Green function in nuclear matter is de-
fined as [38],

G(p, E) =〈0|a†p
1

E + (H − E0)− iε
ap|0〉

+ 〈0|ap
1

E − (H − E0) + iε
a†p|0〉

= Gh(p, E) +Gp(p, E) . (11)

The particle Green functionGp describes the propagation
of a particle state and therefore is defined for E > µ, µ
being the chemical potential1, whereas Gh is defined for
E ≤ µ [38].

In the limit of large momentum transfer, where the
effect of collective excitation modes is expected to be
negligible, the polarization propagator in nuclear matter
reduces to

Π(q, ω) = 2iV

∫
d3p

(2π)3
dE

2π
G(p, E)G(p + q, ω + E)

(12)

where the discrete sum
∑

p has been replaced by

V
∫
d3p/(2π)3, with V being the volume of the system,

and the factor 2 stems from the spin sums. The nucleon-
density response for positive excitation energies (ω > 0)
is then given by

S(q, ω) = −2V

π2

∫
d3p

(2π)3
dE ImGh(p, E)

× ImGp(p + q, ω + E). (13)

The hole and particle SFs are related to the imaginary-
part of the corresponding Green’s functions through

Ph(p, E) = +
1

π
ImGh(p, E), E ≤ µ

Pp(p, E) =− 1

π
ImGp(p, E), E > µ , (14)

Introducing P̄h(p, E) = 2V Ph(p, E)/N , normalized as∫
d3p

(2π)3
dEP̄h(p, E) = 1 , (15)

1 Note that the definition of the thermodynamic limit (N → ∞,
V →∞ but N/V constant) implies µ(N+1) = µ(N )+O(N−1).

and using Eq.(14), the nucleon-density response reads

S(q, ω) = N
∫

d3p

(2π)3
dEP̄h(p, E)

× Pp(p + q, E + ω) (16)

When a relativistic fermion propagator is employed, its
imaginary part is a matrix in the Dirac space and con-
tains the factor (/p+m)/2e(p), with e(p) =

√
m2 + |p|2,

which can be rewritten as [(/p+m)/2m]× [m/e(p)]. The
first term enters in the matrix elements of the external
current, while the second one is included in the definition
of the nucleon-density response

S(q, ω) = N
∫

d3p

(2π)3
dE

m

e(p)

m

e(p + q)

× P̄h(p, E)Pp(p + q, E + ω) . (17)

The factors m/e(p), which reduces to one in the non-
relativistic limit, become relevant when the struck parti-
cle is relativistic.

The GRFG SFs

P̄GRFG
h (p, E) =

6π2

p3F
θ(pF − |p|)δ(E − e(p)) (18)

PGRFG
p (p, E) =θ(|p| − pF )δ(E − e(p)) , (19)

yield the scaling function of Eq. (5).

III. NUCLEON DENSITY RESPONSE AND SFS
IN THE LFG APPROACH

The LFG approach relies on the LDA, in which finite
nuclei are locally treated as uniform nuclear matter of
density ρ(r) [26, 33]. Within this scheme, the density
response of the nucleus is obtained integrating over its
density profile

SLDA(q, ω) =
θ(ω)

4π3

∫
d3r

∫
d3p

∫ µ

µ−ω
dEPh(p, E)

× Pp(p + q, E + ω) , (20)

where it is understood that both the hole and the particle
SFs depend on ρ. Note that SLDA(q, ω) is intimately
related to the imaginary part of the Lindhard function,
since −Π(q, ω)/V turns out to be precisely the Lindhard
function (particle-hole propagator) [38] (see Eq. (12)).

In the lepton-nucleus scattering analyses of Refs.[26,
31, 33], performed using particle and hole SFs from the
semi-phenomenological model of Ref. [28], the effects of
collective nuclear modes were accounted for through the
random phase approximation (RPA). The latter only re-
sults in modifications of the electroweak in-medium cou-
plings, with respect to their free values, due to the pres-
ence of strongly interacting nucleons. RPA long-range
correlations take into account the absorption of the gauge
boson by the nucleus as a whole, instead of by an indi-
vidual nucleon. Their importance decreases as the gauge
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FIG. 1. Ladder sum of diagrams contributing to the nucleon
self-energy in nuclear matter. Dashed lines represent the in-
medium NN interaction.

boson wave-length becomes much shorter than the nu-
clear size. Hence, it is natural to expect that RPA effects
break scaling at low momentum transfers. However these
effects should become negligible in the regime of large
|q| studied in this work, and will not be included in the
present calculations

The SFs of interacting nucleons in the nuclear medium
are determined by the nucleon self-energy Σ(p, E) [26, 33]

Pp,h(p, E) =

∓ 1

π

ImΣ(p, E)(
E − p 2/2m− ReΣ(p, E )

)2
+ ImΣ(p, E )2

. (21)

The chemical potential is obtained by solving the self-
consistent equation

µ =
p2F
2m

+ ReΣ(pF , µ) , (22)

where the Fermi momentum of isospin-symmetric nuclear
matter is given by pF = (3πρ/2)1/3. The real part of the
self-energy modifies the nucleon dispersion relation in the
nuclear medium, while the imaginary part accounts for
many-body decay channels. Since ImΣ(p, E) ≥ 0 for
E ≤ µ, and ImΣ(p, E) ≤ 0 for E > µ, the chemical
potential can be defined as the point in which ImΣ(p, E)
changes sign.

So far we have assumed non relativistic kinematics, ac-
cording to the semi-phenomenological model for the nu-
cleon self-energy developed in [28], whose main features
will be discussed in Subsec. III A. Relativistic effects can
be accounted for by including the m/e(p) factors in the
phase space and using the relativistic expression for the
nucleon energies, e(p). In this case the hole and particle
SFs read [35, 36],

Pp,h(p, E) =

∓ 1

π

m
e(p) ImΣ(p, E)(

E − e(p)− m
e(p)ReΣ(p, E)

)2
+
(
m
e(p) ImΣ(p, E)

)2 ,
(23)

where we used the fact that in spin- and isospin-
symmetric nuclear matter the self-energy operator is di-
agonal in the spin space. In the above equation Σ stands
for any matrix element ūΣu, which is independent on
the spin (ū and u are dimensionless spinors normalized
to unity). Following the discussion below Eq.(17), the

factors m/e(p) and m/e(p + q) also have to be included
in the nucleon-density response that now reads

SLDA(q, ω) =
θ(ω)

4π3

∫
d3r

∫
d3p

∫ µ

µ−ω
dE

m

e(p)

× m

e(p + q)
Ph(p, E)Pp(p + q, E + ω) .

(24)

The corresponding scaling function is obtained accord-
ing to Eq. (10)

fLDA(ψ) = pF × 2κ SLDA(q, ω)/N (25)

A. Semi-phenomenological approach to nucleon
properties in nuclear matter

In the following, we sketch the most important fea-
tures, assumptions and approximations of the semi-
phenomenological model for the self-energy developed
in Ref. [28], and successfully used to describe a num-
ber of inclusive nuclear reactions [26, 31, 33, 35, 36, 39–
43]. Within this model, the non relativistic nucleon

FIG. 2. Feynman diagrams contributing to the polarization
of the NN interaction in the medium.

self-energy in isospin-symmetric nuclear matter is com-
puted starting from the low-density theorems. Short-
range effects are accounted for by an in-medium effec-
tive nucleon-nucleon (NN) potential, derived from the
experimental elastic NN cross section, that in addition
incorporates some medium-polarization corrections. The
self-energy consists of a ladder sum of nuclear correc-
tions generated by the series of diagrams depicted in
Fig. 1, where the dashed lines represent the effective in-
medium NN potential (see Ref. [28] for details). Long
range correlations are taken into account in the effective
potential by summing up the series of diagrams shown
in Fig.2, assuming a dominance of the transverse piece
[τiτj σiσj(|q|2δij − qiqj)] of the ph − ph, ph − ∆h and
∆h−∆h interactions [28].

The on-shell contribution of the imaginary-part of
the self-energy, accounting for collisional broadening ef-
fects, is compatible with the results obtained by the
more elaborate many-body calculations of Refs. [44, 45].
The real part of the self-energy is calculated using a
dispersion relation, summing an additional Fock dia-
gram which provides a purely real contribution. Only
momentum-independent Hartree-type terms are missing
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in the model. Hence, the self-energy is determined up to
an unknown momentum independent term, and it can be
used to compute in-medium nucleon properties, such as
the nucleon momentum distribution and effective masses.
The latter are found to be in good agreement with sophis-
ticated many–body calculations [46, 47], despite some
uncertainties arising from different prescriptions for the
off-shell extrapolation of the self-energy.

The absolute scale for the real part of the hole self-
energy can be estimated from the binding energy per
nucleon, |εA|. Following Ref. [35], a phenomenological
term, Cρ, is added to ReΣ and fixed against the experi-
mental value of |εA|. With the addition of the constant
term Cρ, the chemical potential becomes

µ =
p2F
2m

+ Ĉ, Ĉ = ReΣ(pF , p
2
F /2m) + Cρ (26)

and the SFs read

Pp,h(p, E) =

∓ 1

π

ImΣ(p, Ê)(
E − p2/2m− ReΣ(p, Ê)− Cρ

)2
+ ImΣ(p, Ê )2

(27)

where Ê ≡ E − Ĉ. The average kinetic and removal
energies can be expressed in terms of the hole SF as [35]

〈T 〉 =
4

A

∫
d3r

∫
d3p

(2π)3
p2

2m

∫ µ

−∞
Ph(p, E)dE , (28)

〈E〉 =
4

A

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
Ph(p, E)EdE . (29)

where A is the number of nucleons in the system. The
binding energy per nucleon is then given by the sum
rule [48]

|εA| = −
1

2

(
〈E〉+

A− 1

A− 2
〈T 〉
)

(30)

Thus for example, in carbon the parameter C ∼ 0.8 fm2,
which provides around 25-30 MeV repulsion at ρ = 0.17
fm3 and leads to |εA| = 7.8 MeV (see Table I of Ref. [35]).

Energy-dependent Dirac optical potentials for several
nuclei were determined in Ref. [49] by fitting proton-
nucleus elastic scattering data in the energy range 20-
1040 MeV. In this analysis, scalar and vector complex po-
tentials were employed in the Dirac equation, and the de-
pendences of these potentials on the kinetic energy, tkin,
and radial coordinate, r, are found by fitting the scatter-
ing solutions to the measured elastic cross section, ana-
lyzing power, and spin rotation functions. Schrödinger
equivalent potentials, constructed out of the scalar and
vector potentials, are also given in [49]. In Ref. [33], the
Schrödinger equivalent potential 208Pb central potentials
obtained in Ref. [49] for tkin = 20 MeV and 100 MeV
have been compared to ReΣ(q, E = q2/2m) from [28]
as a function of r. The real part of the nucleon self-
energy, supplemented by the kinetic-energy independent

term Cρ, reproduced quite well the Wood-Saxon form
of the optical potentials for both values of the kinetic
energy.

It has to be noted that the results of Ref. [28] are
not affected by the momentum-independent term added
to the self-energy, as they only depend upon energy
differences. Analogously, the nucleon-density response
given in Eq. (20) does not depend on Cρ, as this term
can be removed by the change of integration variable

E → Ê. Indeed, this change of variable leads to
an expression like that of Eq. (20), with particle and
hole spectral functions and chemical potential given in
Eqs. (21) and (22), but with ReΣ(p, E) replaced by
ReΣ(p, E) − ReΣ(pF, p

2
F /2m). Note also that the new

integration limits become p2F /2m and p2F /2m − ω. This
is precisely the result that one would obtain within the
semi-phenomenological of Ref. [28], where the calcula-
tions of the self-energy were performed assuming only ki-
netic energies for the nucleon and the self-energies were
always referred to the value at the Fermi surface. If Cρ is
neglected in Eqs. (26) and (27), one obtains exactly the
same expression for the response function.

Here, we have introduced the term Cρ for the sake of
comparing the LDA results with those obtained within
the IA model discussed in the next Section, where, in
a first approximation, a free plane wave is used for the
outgoing (ejected) nucleon.

IV. THE IMPULSE APPROXIMATION AND
THE SPECTRAL FUNCTION FORMALISM

At relatively large momentum transfer, |q| >∼ 500 MeV,
the IA can be safely applied under the assumption that
the struck nucleon is decoupled from the spectator (A−1)
particles. Within this scheme [18, 50], the electromag-
netic currents of Eq.(1) are written as a sum of one-body
contributions Jα =

∑
i j
i
α and the final nuclear state fac-

torizes as

|f〉 −→ |p〉 ⊗ |f〉A−1 . (31)

In the above equation |p〉 is the single-nucleon state pro-
duced at the electromagnetic vertex with momentum p,
energy e(p), and spin-isospin state ηp. The state |f〉A−1
describes the residual (A− 1) system, its energy and re-
coiling momentum are fixed by energy and momentum
conservation

EA−1f = ω − e(p) + E0 , PA−1f = q− p . (32)

Exploiting the single-nucleon completeness relation∑
k

|k〉〈k| =
∑
ηk

∫
d3k

(2π)3
|k, ηk〉〈k, ηk| = 1 , (33)

and the factorization of the final state of Eq. (31), the
matrix element of the current can be written as

〈0|Jα|f〉 →
∑
k

〈0|[|k〉 ⊗ |f〉A−1]〈k|
∑
i

jiα|p〉 . (34)
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Substituting the last equation in Eq. (1), the incoher-
ent contribution to the response functions is given by

Rα(q, ω) = A
∑
p,k,k′

∑
f

〈k|
(
j1α
)† |p〉〈p|j1α|k′〉

× 〈0|[|f〉A−1 ⊗ |k〉][A−1〈f | ⊗ 〈k′|]|0〉
× δ(ω − e(p)− EA−1f + E0) θ(|p| − kF ) . (35)

Momentum conservation in the single-nucleon vertex
implies k = k′ = p − q. Charge conservation and the
assumption that the nuclear ground state is a zero-spin
state imply ηk = ηk′ . Therefore, using the identity

δ(ω − e(p)− EA−1f + E0) =

∫
dEδ(ω + E − e(p))

× δ(E + EA−1f − E0) , (36)

the response functions can be expressed as

Rα(q, ω) = A
∑
ηkηp

∫
d3k

(2π)3
dEP̄h(k, ηk, E)

× |〈k, ηk|j1α|k + q, ηp〉|2δ(ω + E − e(k + q)) . (37)

The hole SF

P̄h(k, ηk, E) =
∑
f

|〈0|[|k, ηk〉 ⊗ |f〉A−1]|2

× δ(E + EA−1f − E0) (38)

gives the probability distribution of removing a nucleon
with momentum k and spin-isospin ηk from the target
nucleus, leaving the residual (A− 1) system with an en-
ergy E0 − E.

For closed-shell nuclei and isospin-symmetric nuclear
nuclear matter, the SFs of spin-up and spin-down nucle-
ons coincide. In addition, neglecting the Coulomb inter-
actions and the other (small) isospin-breaking terms, the
proton and neutron SFs turn out to be identical, yielding

P̄h(k, ηk, E) ' 1

4
P̄h(k, E) =

∑
f

|〈0|[|k〉 ⊗ |f〉A−1]|2

× δ(E + EA−1f − E0) (39)

In order to make contact with the definition of the
hole SF given in Sec. II, we use the Sokhotski-Plemelj
theorem [51]

P̄h(k, E) =
1

π

∑
f

Im〈0| 1

E + EA−1f − E0 − iε
[|k〉

⊗ |f〉A−1][A−1〈f | ⊗ 〈k|]|0〉 (40)

Exploiting the fact that H|f〉A−1 = EA−1f |f〉A−1 and the
completeness of the A− 1 states, we get

P̄h(k, E) =
1

π
Im〈0|a†k

1

E + (H − E0)− iε
ak|0〉 (41)

that is consistent with Eqs. (11) and (14).
In the relativistic regimes, the factors m/e(k) and

m/e(k + q) have to be included to account for the im-
plicit covariant normalization of the four-spinors of the
initial and final nucleons in the matrix elements of the
relativistic current jα (see also discussion of Eq. (17)),
hence

Rα(q, ω) =
A

4

∑
ηkηp

∫
d3k

(2π)3
dEP̄h(k, E)

m

e(k)

m

e(k + q)

× |〈k + q, ηp|j1α|k, ηk〉|2δ(ω + E − e(k + q))

× θ(|k + q| − kF ) . (42)

The nucleon-density response case is recovered by j1α →
%q. Carrying out the spin-isospin trace gives a factor 2,
hence

SIA(q, ω) = N
∫

d3k

(2π)3
dEP̄h(k, E)

m

e(k)

m

e(k + q)

× δ(ω + E − e(k + q)) θ(|k + q| − kF ) . (43)

Note that, within the IA the ejected nucleon is treated as
a plane wave and the particle SF coincides with the one
of the GRFG model given in Eq. (19). In analogy with
Eq. (10) we can define the following scaling function

f IA(ψ) = pF × 2κ SIA(q, ω)/N . (44)

The longitudinal and transverse IA scaling functions
fL,T (ψ) can be obtained as in Eq. (4). From Eq. (42), it
can be readily seen that in the IA, zeroth kind scaling,
i.e. f IAL (ψ) = f IAT (ψ), only occurs if the matrix elements
〈k + q, ηp|j1α|k, ηk〉 do not depend on k, but only on q
and ω. Otherwise, the cancellation with the Fermi-gas
prefactors is no longer exact.

A. Calculation of the hole SF using a correlated
basis function

The hole SF does not depend on the momentum trans-
fer, hence it can be safely computed within non rela-
tivistic many-body theory, where nuclear dynamics is de-
scribed by the Hamiltonian

H =
∑
i

p2
i

2m
+
∑
j>i

vij +
∑
k>j>i

Vijk . (45)

In the above equation pi is the momentum of the i-th nu-
cleon, while the potentials vij and Vijk describe two- and
three-nucleon interactions, respectively. Realistic two-
body potentials are obtained from accurate fits to the
available data on the deuteron and NN scattering, and
reduce to the Yukawa one-pion-exchange interaction at
large distances. The state-of-the-art phenomenological
parametrization of vij , referred to as Argonne v18 poten-
tial [52], is written in the form

vij =

18∑
n=1

vn(rij)O
n
ij , (46)
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with rij = |ri − rj | and

On≤6ij = [1, (σi · σj), Sij ]⊗ [1, (τi · τj)] , (47)

where σi and τi are Pauli matrices acting in the spin and
isospin space, respectively, and Sij is the tensor operator
given by

Sij =
3

r2ij
(σi · rij)(σj · rij)− (σi · σj) . (48)

The operators corresponding to n = 7−14 are associated
to non-static components of the NN interaction, while
those corresponding to n = 15 − 18 account for small
violations of charge symmetry. The inclusion of Vijk
is needed to explain the binding energies of the three-
nucleon systems and nuclear matter saturation proper-
ties [53, 54].

In Refs. [15, 16], the nuclear overlaps, 〈0|[|k〉⊗|f〉A−1],
involving the ground-state and a non relativistic 1h and
2h1p states were evaluated using the CBF theory. Within
this formalism, a set of correlated states (CB) is intro-
duced

|n〉CB =
F|n〉

〈n|F†F|n〉1/2
, (49)

where |n〉 is an n independent particle state, generic
eigenstate of the free Fermi gas (FG) Hamiltonian, and
the many-body correlation operator F is given by

F = S
[ A∏
j>i=1

Fij

]
. (50)

The form of the two-body correlation operator Fij , re-
flects the complexity of the NN potential

Fij =

6∑
n=1

fn(rij)O
n
ij , (51)

with On≤6ij given in Eq. (47). The CB states are first

orthogonalized (OCB) [55] preserving, in the thermody-
namical limit, the diagonal matrix elements between CB
states. Then, standard perturbation theory is used to
express the eigenstates of the many-body Hamiltonian of
Eq. (45) in terms of the OCB. Any eigenstate has a large
overlap with the n−hole-m−particle OCB and hence per-
turbation theory in this basis is rapidly converging.

The nuclear-matter SF can be conveniently split into
two components, displaying distinctly different energy
dependences [16, 18, 50, 56]. The single-particle one, as-
sociated to one-hole (1h) states in |f〉A−1 of Eq. (38),
exhibits a collection of peaks corresponding to the ener-
gies of the single-particle states belonging to the Fermi
sea. The continuum, or correlation, component corre-
sponds to states involving at least two-hole–one-particle
(2h−1p) contributions in |f〉A−1. Its behavior as a func-
tion of E is smooth and it extends to large values of

removal energy and momentum [15]. It has to be noted
that the correlated part would be strictly zero if nuclear
correlations were not accounted for.

The carbon SF employed in this work has been com-
puted following Ref. [16] and it is comprised of two con-
tributions

P̄h(k, E) = P̄ 1h
h (k, E) + P̄ corr

h (k, E) . (52)

The 1h contribution is obtained from a modified mean-
field scheme

P̄ 1h
h (k, E) =

∑
α∈{F}

Zα|φα(k)|2Fα(E − eα) , (53)

where the sum includes all occupied single-particle states,
labeled by the index α, and φα(k) is the Fourier trans-
form of the shell-model orbital with energy eα. Note that
|φα(k)|2 yields the probability of finding a nucleon with
momentum k in the state α. The spectroscopic factor
Zα < 1 and the function Fα(E − eα), describing the en-
ergy width of the state α, account for the effects of resid-
ual interactions that are not included in the mean-field
picture. In the absence of residual interactions, Zα → 1
and Fα(E − eα) → δα(E − eα). The spectroscopic fac-
tors and the widths of the s and p states of 12C have
been taken from the analysis of (e, e′p) data carried out
in Refs. [57, 58].

As for the correlated part, at first CBF calculations in
isospin-symmetric nuclear matter of the hole SF are car-
ried out for several values of the density, identifying the
mean-field and correlated contributions. The correlated
part for finite nuclei is then obtained through an LDA
procedure

P̄ corr
h (k, E) =

∫
d3R ρA(R)P̄ corr

h,NM (k, E; ρA(R)) , (54)

where ρA(R) is the nuclear density distribution of 12C
and P̄ corr

h ,NM (k, E; ρ) is the correlation component of the
SF of isospin-symmetric nuclear matter at density ρ. The
use of the LDA to account for P̄ corr

h (k, E) is based on the
premise that short-range nuclear dynamics are unaffected
by surface and shell effects. The energy-dependence ex-
hibited by P̄ corr

h (k, E), showing a widespread background
extending up to large values of both k and E, is com-
pletely different from that of P̄ 1h

h (k, E). For k > pF ,
P̄ corr
h (k, E) coincides with P̄h(k, E) and its integral over

the energy gives the so-called continuous part of the mo-
mentum distribution.

B. Inclusion of Final State Interactions

In the kinematical region in which the interactions be-
tween the struck particle and the spectator system can
not be neglected, the IA results have to be modified to
include the effect of FSI. Following Ref. [14], we con-
sider the real part of the optical potential U derived from
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the Dirac phenomenological fit of Ref. [49] to describe
the propagation of the knocked-out particle in the mean-
field generated by the spectator system. This potential,
given as a function of the kinetic energy of the nucleon

tkin(p) =
√

p2 +m2 −m, modifies the energy spectrum
of the struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) . (55)

The multiple scatterings that the struck particle under-
goes during its propagation through the nuclear medium
are taken into account through a convolution scheme.
The IA responses are folded with the function fk+q, nor-
malized as ∫ +∞

−∞
dωfk+q(ω) = 1 . (56)

The nucleon-density response is then given by

SFSI(q, ω) = N
∫

d3k

(2π)3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)

m

e(k + q)
P̄h(k, E)

× δ(ω′ + E − ẽ(k + q))θ(|k + q| − pF ) . (57)

The scaling functions that include FSI effects are defined
according to Eq. (10)

fFSI(ψ) = pF × 2κ SFSI(q, ω)/N , (58)

Within the convolution scheme, correlations in both
the hole and particle SFs are accounted for. As for the
latter, comparing the above result with Eq. (17) yields

Pp(p + q, ω + E) = θ(|p + q| − pF )

×
∫
dω′ fp+q(ω − ω′)δ(ω′ + E − ẽ(p + q)) . (59)

At moderate momentum transfers, the hole and particle
SFs can be consistently obtained using non relativistic
many-body theory. However, in the kinematical region
of large momentum transfer the dynamics of the struck
nucleon in the final state can no longer be described using
the non relativistic formalism. The FSI folding function
is estimated employing a generalization of the Glauber
theory, devised to describe high energy proton-nucleus
scattering [59]

fp(ω) = δ(ω)
√
Tp +

∫
dt

2π
eiωt

[
ŪFSIp (t)−

√
Tp

]
= δ(ω)

√
Tp + (1−

√
Tp)Fp(ω) , (60)

where the strength of the FSI is given by the nuclear
transparency Tp and the finite width function Fp(ω).
The Glauber factor ŪFSIp (t), a detailed discussion of
which can be found in Ref. [18], is given in terms of the
NN scattering amplitudes. The relation between

√
Tp

and ŪFSIp (t) can be best understood noting that [18]

Tp = lim
t→∞

Pp(t) = lim
t→∞

|ŪFSIp (t)|2 , (61)

where Pp(t) is the probability that the struck nucleon
does not undergo re-scattering processes during a time t
after the electromagnetic interaction. In absence of FSI
ŪFSIp (t) = 1, implying in turn Tp = 1 and fp(ω)→ δ(ω).

In Ref. [14] the convolution scheme was further ap-
proximated, assuming that for large momentum trans-
fer tkin(|k + q|) ' tkin(|q|). As a consequence, the real
part of the optical potential only produces a shift of the
response to lower energy transfer. In this work, we re-
tain the full dependence on |p| = |k + q|, which brings
about a Jacobian when solving the angular integral of
the initial momentum of the nucleon. This Jacobian, not
negligible in the kinematical regime where FSI are im-
portant, quenches the quasi-elastic peak of the response,
enhancing its tails.

In order to make contact with the LFG formalism of
Sec. III, we rewrite the particle SF as

Pp(p, E) = θ(|p| − pF )[
√
Tpδ(E − ẽ(p))

+ (1−
√
Tp)Fp(E − ẽ(p))] . (62)

In the simple case of a zero-range NN interaction and
neglecting correlation effects in the eikonal factor [13]

Fp(E − ẽ(p)) =− 1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2
, (63)

where

ImV (p) = −1

2
ρvpσp . (64)

In the above equation, vp = |p|/m is the velocity of the
struck particle, which in the eikonal approximation is as-
sumed to be constant, ρ is the average nuclear density,
and σp is the total NN cross section.

Under these assumptions, Eq. (62) can be rewritten as

Pp(p, E) ' θ(|p| − pF )
[
− 1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2

+ δPFSIp

]
, (65)

where

δPFSIp =
√
Tq

[
δ(E − ẽ(p))

+
1

π

ImV (p)

(E − ẽ(p))2 + ImV (p)2

]
. (66)

The term δPFSIp is expected to be small in large nuclei
since Tp = 0 in infinite nuclear matter. In addition, it
vanishes for ImV → 0, as in this limit the Lorentzian
distribution cancels the δ-function. Neglecting δPFSIp ,
the expression reported in Eq. (65) is reminiscent of the
definition of the SF in terms of the nucleon self-energy
given in Eq. (23). Therefore, the approaches discussed in
Secs. III and IV can be approximately connected through
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FIG. 3. Transverse (red dotted), longitudinal (blue dashed)
and nucleon-density (black-solid) scaling functions of 12C at
|q| = 1.0 GeV obtained from the CBF SF approach including
FSI corrections.

the following identifications

θ(|p| − pF )ImV (p)→ m

e(p)
ImΣ(p, Ê)

∣∣∣
avg
, E > µ

(67)

U (tkin(p))→ m

e(p)
ReΣ(p, Ê) + Cρ

∣∣∣
avg
, E > µ (68)

for some average density. The step function in Eq. (67),
which accounts for Pauli-blocking effects as in the FG
model, implies that the particle SF vanishes when
|p + q| < pF . We should stress that the LDA approach
employs a dynamical particle self-energy that separately
depends on the energy and momentum.

V. RESULTS

In this section we present the 12C electromagnetic scal-
ing functions obtained using the SF approaches outlined
in Secs. III and IV. When defining the scaling variable
ψ, we used pF = 225 MeV, accordingly to the analysis of
electron-scattering data of Ref. [61]. As discussed above,
the model described in Sec. III makes an extensive use
of the LDA. In this case, the response of the nucleus is
obtained by averaging the nuclear-matter responses ob-
tained for a given value of ρ over the density profile ρ(r).
As for the CBF spectral function, the LDA is employed to
estimate the correlated part of the hole spectral function
deduced from the CBF calculations carried out in isospin-
symmetric nuclear matter (see Eq. (54)). In this work
we employ for 12C a harmonic-oscillator density profile,
ρ(r) = ρ0(1 + a(r/R)2) exp(−r2/R2), with R ∼ 1.692
fm and a = 1.082 for both charge and neutron-matter
distributions [62, 63]. To obtain the point-proton den-
sity from the charge density we unfold the charge form
factor of the proton. This procedure relies on the tenet
that the contribution of longitudinal two-body currents
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FIG. 4. Longitudinal scaling functions in 12C computed
using the hole SF (Eq. (52)) of Ref. [16] for |q| =
0.57, 0.8, 0.9, 1.0, and 1.2 GeV. Results obtained within the
IA scheme are shown in the upper panel, while those includ-
ing FSI effects are displayed in the bottom one. The standard
definition of the longitudinal prefactor given in Eq. (30) of
Ref. [10] has been used to get both the theoretical curves and
the experimental points obtained from the |q| = 0.57 GeV
data of Ref. [60]

.

to the charge form factor is small, as proven, for instance,
in Ref. [64].

In the following we denote with “FSI” the results
of the CBF hole SF supplemented by the convolu-
tion scheme and with “IA” those in which FSI are ne-
glected, as in Eq. (43). With “LDA” we indicate the
semi-phenomenological approach of Sec. III consistently
adopted for both the hole and particle SFs. When a rel-
ativistic free nucleon in the final state (delta distribution
for the particle SF) and a fully dressed hole are consid-
ered, the curves are labeled as “IA LDA”.

In Fig. 3, the transverse, longitudinal and nucleon-
density scaling functions obtained using the CBF SF are
compared. In all cases FSI effects are included. Despite
only one-body current contributions are considered, an
enhancement in the transverse channel (red dotted curve)
with respect to the longitudinal one (blue dashed curve)
is apparent. The nucleon-density scaling function (solid
black curve) lies between the transverse and the longitu-
dinal ones, corroborating this choice of the scaling func-
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tion. Our analysis suggests that the differences between
the three curves have to be ascribed to the use of the
GRFG model prefactors in the scaling functions.

FSI effects in the IA scheme can be appreciated from
Fig. 4. The IA and FSI longitudinal scaling functions at
|q| = 0.57, 0.8, 0.9, 1.0, and 1.2 GeV, obtained within
the CBF SF approach using the hole SF of Ref. [16], are
displayed in the upper and bottom panels, respectively.
FSI do not play a major role, leading to very small modifi-
cations of the IA results except for |q| = 0.57 GeV, where
they improve the agreement with experimental data. Our
findings are at variance with those of Ref. [65], where the
violation of zeroth-kind scaling are ascribed to relativistic
effects in the FSI. The asymmetric shape of the theoret-
ical scaling functions, mildly affected by the inclusion of
FSI, is clearly visible, although less pronounced than in
the data. It has to be noted that the scaling functions
of Fig. 4 peak at slightly larger values of ψ compared to
those obtained within the GFMC approach in Ref. [10].
The origin of this difference is probably twofold. On the
one hand, whilst the GFMC predictions give full account
of nuclear dynamics in the final state, SF approaches are
based on the factorization ansatz; the dynamics of the
knocked-out nucleon is taken care in a somewhat sim-
plified fashion, by means of either the particle spectral
function or a convolution scheme. On the other hand, as
stated in Refs. [66, 67], the GFMC Euclidean response
functions are obtained from variational estimates of the
ground-state wave function rather then from the evolved
GFMC wave function. Hence, the ground-state energy
E0 in the energy-conserving delta-function entering the
definitions of the response functions of Eq.(1) is approxi-
mated by the variational energy ET . Since the best vari-
ational wave-function for 12C underdbinds the nucleus by
ET −E0 ' 20 MeV, the GFMC response functions could
be shifted to lower values of ω compared to the experi-
mental ones. This can be best appreciated by looking at
Fig. 4 of Ref. [10]. The variational energy for 4He is much
closer to the experimental ones, ET −E0 ' 1 MeV. This
might well explain why the longitudinal scaling functions
of 4He are shifter to larger values of ψ compared to those
of 12C (see Fig. 14 of Ref. [10].)

In Fig. 5 we compare the nucleon-density scaling
functions obtained using the relativized LDA approach
against those of the CBF SF, for the same momen-
tum transfer values of Fig. 4, including FSI in the two
schemes. Both approaches provide asymmetric scaling
functions that satisfy scaling of the first kind. The com-
parison between LDA and CBF predictions can be better
appreciated in Fig. 6, where results for |q| = 0.57 and 0.9
GeV are highlighted. In the upper panel, FSI and LDA
results nicely agree for both momentum transfers. In
the lower panel, we show that the consistency between
the two approaches is preserved also in the IA frame,
provided the Cρ term is included in the real part of the
LDA self-energy. Comparing the upper and lower panels,
we find appreciable FSI effects only for |q| = 0.57 GeV.
The mean value of ψ, defined by

∫
ψf(ψ)dψ/

∫
f(ψ)dψ

becomes smaller when FSI are included. Indeed, a re-
distribution of the strength is produced, which slightly
enhances the asymmetry of the nucleon-density scaling
functions. The differences in the position of the quasi-
elastic peak – the CBF curves are shifted towards larger
excitation energies compared to those of the LDA SF
– have to be ascribed to the more accurate description
of the structure of 12C provided by the CBF SF. This
is encoded in the mean-field contribution P̄ 1h

h (p, E), ex-
tracted from (e, e′p) experiments, and cannot be encom-
passed by the LDA approach of Sec. III. It is also re-
markable that the LDA model of Sec. III leads to tails of
the scaling functions comparable to those arising in the
CBF formalism. In the latter case, these tails are mostly
provided by the correlation contribution P̄ corr

h (p, E) of
the hole SF, and hence they are quite sensitive to short-
range correlations. In the LDA approach these correla-
tions are incorporated in the in-medium NN potential ob-
tained from the experimental elastic NN scattering cross
section, modified to include some medium polarization
corrections.
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shown
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FIG. 6. Scaling functions for 12C computed for |q| =
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obtained within the FSI(IA) and LDA (IA LDA) approaches.

VI. ANALYSIS

The origin of the scaling exhibited by the nuclear re-
sponses has a simple and exact formulation within the
GRFG model, which, however, largely fails to reproduce
experimental data. Understanding the scaling features of
nuclear responses becomes challenging when the nucleus
is treated as a fully-interacting many-body system.

In order to avoid the complications arising when
GRFG model prefactors are used to remove single-
nucleon dynamics, we will focus on the nucleon-density
scaling function, defined in Eq.(10). To address the dy-
namical origin of first-kind scaling, we will consider a
simplified description of the nucleus, yet retaining the key
aspects of the many-body problem. For simplicity, our
analysis is limited to non relativistic kinematics. Hence,
in the following we will use the non relativistic scaling
variable [10]

ψnr =
1

pF

(
mω

|q|
− |q|

2

)
. (69)

A generalization to the relativistic case does not involve
conceptual difficulties.

A. PWIA model

Within the IA, the non relativistic nucleon-density
scaling function is defined as

f IA(q, ω) =2κpF

∫
d3p

(2π)3
dEP̄h(p, E)θ(|p + q| − pF )

× δ (ω + E − e(p + q)) , (70)

where e(p) is the non relativistic energy spectrum of the
initial nucleon with momentum p.

The above expression can be further simplified within
the plane wave impulse approximation (PWIA), which
amounts to neglect information on the target removal
energy distribution. The hole SF is written in the ap-
proximate form

P̄h(p, E) ' n̄(p)δ (E − e(p)) , (71)

where the momentum distribution is defined as

n̄(p) =

∫
dEP̄h(p, E) ,

∫
d3p

(2π)3
n̄(p) = 1 . (72)

We will use a state-of-the-art momentum distribution
computed within variational Monte Carlo in Ref. [68].

Within the PWIA, the nucleon-density scaling function
reads

fPWIA(q, ω) = 2κpF

∫
d3p

(2π)3
n(p)θ(|p + q| − pF )

× δ (ω + e(p)− e(p + q)) . (73)

To better elucidate the emergence of first-kind scaling
and the asymmetry of the scaling function, we consider
three different scenarios with increasing sophistication for
the description of the energy spectrum.

Let us first assume a free energy spectrum for both
the hole and particle states in the energy-conserving δ
function

δ(ω + e(p)− e(|p + q|)) = δ
(
ω − |q|

2

2m
− |p||q| cos θ

m

)
,

(74)

where θ is the angle between p and q. The integration
over cos θ can be performed using the δ-function, which
gives rise to a Jacobian

J =
m

|p||q|
=

1

2|p|κ
. (75)

The fact that | cos θ| ≤ 1 provides a lower bound to the
momentum of the hole

|p| ≥ pF |ψnr| . (76)

An additional constraint comes from the step function
θ(|p + q| − pF ) = θ(e(p) + ω − p2F /2m), yielding

|p|2 ≥ p2F − 2mω . (77)
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The latter constraint is always satisfied for sufficiently
large values of ω, in which case the integration range
of |p| is limited by Eq. (76) only. For low momentum
and energy transfers, the lower limit is instead the one of
Eq. (77) leading to violations of first-kind scaling, unless
a piecewise definition of |ψnr| is adopted [37].

Since the factor κ that appears in Eq. (73) simplifies
with the Jacobian, the result of the integration only de-
pends upon the lower integration limit, pF |ψnr|, and thus
it is easily found that fPWIA is a symmetric function of
ψnr, as it only depends on the modulus of this variable.

Figure 7 shows the PWIA nucleon-density scaling func-
tions of 12C, using the energy-conserving δ function of
Eq. (74), for different momentum transfers. Scaling is
perfectly satisfied: the curves are peaked around ψnr = 0
and do not show any asymmetry, as expected from the
above discussion. The only difference with the GRFG
case is that the scaling function extends to values of |ψnr|
larger than 1. This is due to the fact that n̄(p) does not
vanish above pF .
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FIG. 7. Non-relativistic PWIA scaling responses, using the
momentum distribution of 12C derived in Ref. [68] for |q| =
0.5, 0.7, 1 and 1.2 GeV. The Fermi momentum has been fixed
to pF = 225 MeV.

As a second step, we treat the hole as a bound state
using the energy spectrum of nuclear matter at saturation
density of Ref. [69] (see also the recent work of Ref. [70]).
In this case the energy conserving δ-function is given by

δ

(
ω + U(p)− |q|

2

2m
− |p||q| cos θ

m

)
. (78)

where the single-particle potential U(p) < 0 has been
added to e(p). Modifying the hole energy spectrum does
not change the Jacobian of Eq. (75). However, the lower
bound of Eq. (76) now reads

|p| ≥
∣∣∣∣pF ψnr +m

U(p)

|q|

∣∣∣∣ . (79)

The term U(p)/|q| introduces further dependences on |q|
and leads to violations of first-kind scaling. These vio-
lations are apparent in the results displayed in Fig. 8,

where the |p|-dependent term in the energy-conserving
δ-function leads to a shift of the different curves. The
peaks move to higher excitation energies, as expected for
an attractive average hole potential. For |q|=1.0, 1.2
GeV, the curves peak approximately at ψnr = 0 and the
result found in the free energy case is recovered to a very
large extent. This can be easily understood, since the
average U(p)avg/|q| correction becomes small for large
values of the momentum transfer. The shape of the scal-
ing functions, which is still symmetric around ψnr = 0,
is almost unaffected by the single-particle potential.
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FIG. 8. Non relativistic scaling responses obtained within
PWIA (Eq. (73)) as a function of ψnr for |q| = 0.5, 0.7,
and 1 GeV. The momentum distribution of 12C derived in
Ref. [68] has been used, and the energy of the hole state has
been extracted from the calculations of the nuclear matter
energy spectrum of Ref. [69] and implemented in the energy
conservation (see Eq. (78)). The Fermi momentum, pF , has
been fixed to 225 MeV.
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FIG. 9. Same as in Fig.8, but nuclear potentials have been
used to determine both the hole and particle state energies
(see Eq. (80)).

Finally, we consistently include a single-particle poten-
tial in the hole and particle energy spectra. The energy
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conserving δ-function reads

δ
(
ω − |q|

2

2m
− |p||q| cos θ

m
+ U(|p|)− U(|p + q|)

)
. (80)

The non trivial dependence on cos θ hidden in U(|p + q|)
prevents, in general, from analytically solving the inte-
gral. To circumvent this problem, we performed a nu-
merical integration, treating the δ-function as the limit
of a Gaussian. This allows us to properly evaluate the
Jacobian, which differs from the one reported in Eq. (75).
This introduces a first source of scaling violations, as the
κ factor of Eq. (73) does not exactly cancel with the Jaco-
bian. Nevertheless, the cancellation is still partially pro-
duced and becomes exact in the |q| � |p| limit. Fig. 9
displays the scaling functions computed using Eq. (80)
for the energy-conserving δ function for the same kine-
matical setups as in Figs. 7 and 8. The curves are still
shifted2 compared to the free case, although the posi-
tion of the peaks is closer to ψnr = 0 than in Fig. 8.
This indicates a partial cancellation of single-particle po-
tentials in the hole and particle spectra, as discussed in
Ref. [33]. At q = 0.5 GeV including the single-particle
potential in the particle energy spectrum shifts the peak
to lower ψ, at q = 0.7 GeV the peak position does not
change, while at q = 1.0 GeV and q = 1.2 GeV the peak
is shifted to higher ψ. This is due to the sign of the sin-
gle particle potential: U(p + q) is negative (positive) for
small (large) values of the momentum transfer. As al-
luded to earlier, the new Jacobian introduces a residual
dependence on |q|, specifically in the magnitude of the
scaling functions. First kind scaling is almost recovered
for |q| ≥ 1 GeV, although scaling violations are already
small for |q| = 0.7 GeV. As in the other cases, scaling
functions exhibit only a small asymmetry.

Up to now, we have neglected the imaginary part of
the in-medium potentials. As discussed in Refs. [28, 33],
effects on the ejected-nucleon are expected to be larger
than in the hole state. The corrections induced by the
imaginary part of the optical potential on the particle
states can be estimated, following the approach detailed
in Subsec. IV B, by convoluting the PWIA scaling func-
tion as in Eq. (57). Since Eq. (80) consistently includes
the single-particle potential, both in the hole and par-
ticle energy spectra, the real part of the potential does
not have to be included in the argument of the folding
function. Analogously to the discussion in Fig. 4, the cor-
rections are very small and have little effects on the dis-
cussion about the origin of the scaling. Moreover, these
FSI corrections do not induce any appreciable asymmetry
in the scaling functions.

2 The resulting breaking scaling pattern can be understood taking
into account that

U(|p|)− U(|p + q|) < 0 (81)

and that in the large momentum transfer, this difference becomes
independent of cos θ, and has little influence in the lower limit of
the |p|−integration.
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FIG. 10. Scaling functions for 12C obtained in the IA from
Eq. (70) using the CBF hole SF for |q| = 0.5, 0.7, 1.0, and
1.2 GeV.

B. Beyond PWIA

The hole SF P̄h(p, E) is a function of two independent
variables, which are related in a non trivial way. It is long
known that the PWIA of Eq. (72), which disregards the
dependence on the removal energy of the nucleus, is in-
accurate. Realistic Ph(p, E) exhibits a strong correlation
between momentum and removal energy, implying that
large momenta always correspond to large removal ener-
gies. For instance, for nuclear matter hole SF calculated
within the CBF approach, around 50% of the strength
at |p| = 3 fm−1 resides at E > 200 MeV [15]. Fur-
thermore, the shell structure of the nucleus is completely
disregarded in the PWIA of Eq. (72).

In the following, we argue that the use of a realistic
hole SF produces noticeably different scaling features of
the nucleon-density response from those obtained within
the PWIA model. In the IA, the energy conserving δ
function of Eq. (43) reads

δ

(
ω + E − |p|

2

2m
− |q|

2

2m
− |p||q| cos θ

m

)
. (82)

Imposing | cos θ| ≤ 1 gives a boundary condition on both
E and |p|, which are related through P̄h(p, E). The Jaco-
bian still yields a factor κ that cancels the one of Eq. (73).
The binding energies associated to the continuum part of
the hole SF are generally larger than |p|2/2m + U(|p|).
This feature is particularly relevant for ψnr > 1, as larger
values of ω are needed to compensate for the large re-
moval energy. Hence, for sufficiently large momentum
transfers we expect violations of first-kind scaling, and
the appearance of a more significant tail at the right of
the quasielastic peak that will enhance the asymmetry of
the scaling function compared to the PWIA case.

Scaling violations are apparent in Fig. 10, as the posi-
tions of the peaks of the scaling functions depend upon
the momentum transfer. These shifts are likely to be as-
cribed to the energy of the bound hole state described
by the hole SF, analogously to Fig. 8. However, the scal-
ing functions obtained using the hole SF show a more
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FIG. 11. Top: Breakdown of the scaling response of 12C
at |q|=1.2 GeV showed in Fig. 10 into the total, hole, and
background contributions. Bottom: Dashed (black) and solid
(green) lines correspond to the scaling function calculated
with and without the inclusion of FSI effect at |q| = 1 GeV in
12C. The IA curve corresponds to that displayed in Fig. 10,
and it is used in the convolution detailed in Eq. (57) to incor-
porate the FSI effects.

pronounced asymmetric shape than those displayed in
Fig. 8.

In the upper panel of Fig.11 we show the breakdown of
the scaling response at |q|=1 GeV into the one-hole and
correlation contributions, coming from the pole and the
continuum part of the hole Green’s function. The asym-
metric shape is mostly determined by the background
contribution, with a large tail in the region of large ψ.
Interestingly, the scaling response obtained by retaining
only the one-hole contribution in the SF is not completely
symmetric. This has to be ascribed to the presence of two
independent integration variables, i.e. |p| and E. This
more sophisticated description of nuclear dynamics likely
contributes to the asymmetry observed in the experimen-
tal data. In the lower panel of the figure, we show how
FSI affect the scaling function for |q| = 1 GeV, com-
paring the IA (dashed black) and the total (solid green)
results. Although FSI are significant for moderate mo-
mentum transfer, they are practically negligible in the
kinematical region displayed in the figure. Overall FSI
provide a shift and a redistribution of the strength of the
scaling function, bringing about an enhancement of the

asymmetry.

VII. CONCLUSIONS

We have studied the scaling properties of the nucleon-
density response, a key quantity to understand the scal-
ing of the electromagnetic longitudinal and transverse
response functions [10]. The nucleon-density response
of 12C has been calculated in the kinematical region in
which collective excitations can be safely neglected. To
this aim, we employed particle and hole SFs obtained
within two many-body methods, both widely used to de-
scribe electroweak reactions in nuclei.

We first consider the semi-phenomenological model de-
veloped in Ref. [28] and successfully applied to study a
number of inclusive electro-weak reactions [26, 31, 33,
35, 40–43]. This model relies on realistic particle and
hole self-energies computed in isospin-symmetric nuclear
matter and predictions for finite nuclei are made em-
ploying the LDA. Short-range effects are accounted for
by an in-medium effective NN interaction. The lat-
ter, derived from the experimental elastic NN cross sec-
tion, also incorporates some medium-polarization correc-
tions through the RPA. The other approach, success-
fully tested in electroweak-nuclear reactions [14, 21–25],
is based on a microscopic calculation of the hole SF, car-
ried out within the CBF theory. The interaction of the
relativistic struck nucleon with the spectator system is
included via a convolution scheme, devised from a gen-
eralization of the Glauber theory describing high energy
proton-nucleus scattering.

We have shown that both approaches lead to compat-
ible 12C nucleon-density scaling functions, characterized
by an asymmetric shape, although less pronounced than
the one of the experimental data. Whilst the CBF SF
provides a more accurate description of the ground-state
of 12C, presently it can only be applied to closed-shell
nuclei. On the other hand, the LDA model can be read-
ily extended to the 40Ar nucleus, which will be employed
in future neutrino-oscillation experiments [71].

Employing a simplified model of nuclear dynamics,
which retains the main aspects of the many-body prob-
lem, we discussed the dynamical origin of the scaling of
the first kind exhibited by the nucleon-density response
function. We have argued that its asymmetric shape is
mostly due to the 2h1p dynamics incorporated in the
continuum component of the hole SF of Ref. [16], that
in turn accounts for NN correlations. Within the semi-
phenomenological model developed in Ref. [28], this ef-
fect is taken into account through the imaginary part of
the nucleon hole self-energy, ImΣ. In this latter refer-
ence, an appreciable quenching of ImΣ, due to polariza-
tion effects, was found at low nucleon energies and mo-
menta. However, we expect RPA (collective) corrections
to produce small modifications in the high momentum
components, which are responsible of the tail. On the
other hand, the asymmetry is only slightly enhanced by
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FSI effects. The latter, relevant in the low momentum-
transfer region only, lead to a shift of the peak position
towards smaller values of ψnr and to a redistribution of
the strength towards larger values of ψnr. According to
the relativistic mean field study carried out in Ref. [65],
the asymmetry of scaling function has to be ascribed to
the dynamical enhancement of the lower component of
the Dirac spinors, which are not present the non rela-
tivistic nucleon-density response function. Analogously
to the GFMC results of Ref. [10], the asymmetry is also
observed within the non relativistic scheme of nuclear dy-
namics based on the particle and hole SFs. Our results
do not necessarily invalidate the relativistic mean field
picture of scaling. The intriguing hypothesis that some
of the non relativistic correlations might arise from a non
relativistic reduction performed already at the mean filed
level deserves further investigations.

Within the SF formalism, we found that, once the pre-
factors describing the single-nucleon interaction-vertices
are divided out, the longitudinal and transverse electro-
magnetic response functions share a common kernel, in-
timately connected to the one of the nucleon-density re-
sponse function. Consequently, the electromagnetic lon-
gitudinal and transverse scaling functions are very similar
to the nucleon-density scaling function–the small differ-
ences being ascribable to discrepancies between GRFG

and SF pre-factors. Therefore, besides two-body current
and collective corrections effects, the breaking of zeroth
and first kind scalings has be attributed to deficiencies
in the nuclear model used to estimate the single-nucleon
electroweak matrix elements in nuclei.
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