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The neutron β-decay asymmetry parameter A0 defines the correlation between the spin of the
neutron and the momentum of the emitted electron, which determines λ = gA

gV
, the ratio of the

axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold
Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation
coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties
and increased statistics, we report the new result A0 = −0.12054(44)stat(68)syst which yields λ ≡
gA
gV

= −1.2783(22). Combination with the previous UCNA result and accounting for correlated

systematic uncertainties produces A0 = −0.12015(34)stat(63)syst and λ ≡ gA
gV

= −1.2772(20).

Precision measurements of A0, the correlation between
the electron momentum and the initial spin of the neu-
tron in neutron β-decay, remain vital as they determine
with highest sensitivity λ ≡ gA

gV
, the ratio of the weak

axial-vector to vector coupling constants present in the
hadronic current. Although a0, the correlation between
the electron momentum and the neutrino momentum,
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and A0 offer comparable sensitivity to λ, measurements
of a0 require the difficult task of reconstruction of the
neutrino momentum via detection of electron-proton co-
incidences [1] or measurement of the proton energy spec-
trum [2]. Under assumption of the Conserved Vector
Current (CVC) hypothesis, experimentally determined
values for λ directly determine gA. This serves as a
benchmark for lattice QCD calculations and determines
the relationship among parameters of the weak hadronic
current. Recent improvements in lattice QCD calcula-
tions [3–5] show promising agreement between theory and
experiment, and thus further motivate precision measure-
ments of neutron correlation parameters, as a comparison
of experimental values for gA with lattice values by itself
constitutes a new physics test of non-standard couplings
[6] and the lattice value for gA serves as an important
constraint in recent limits placed on right-handed cur-
rents [7]. Also, results for λ when combined with results
for the neutron lifetime permit a test of the standard
model [8, 9] via, for example, an extraction of the CKM
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FIG. 1. Schematic of the UCNA experimental apparatus. The external muon veto and “backing veto” are not pictured.

matrix element Vud.
The decay rate of polarized neutrons can be written in

a simplified manner as [10]

dW = Γ(Ee)
(

1 + 〈P 〉A(Ee)β cos θ
)
dEedΩe (1)

where Γ(Ee) is the unpolarized neutron differential de-
cay rate, 〈P 〉 is the average polarization, β = v

c , v is the
electron velocity, θ is the angle between the neutron spin
and the emitted electron momentum, and A(E) is the en-
ergy dependent asymmetry parameter [11, 12]. Neglect-
ing corrections from recoil order and radiative effects,
A(Ee) may be expressed as A0, where [10]

A0 =
−2(λ2 − |λ|)

1 + 3λ2
. (2)

The UCNA Experiment, located at the Los Alamos
Neutron Science Center, is the first to measure a neu-
tron angular correlation coeffecient using ultracold neu-
trons (UCN). The 800 MeV LANSCE linear accelerator
strikes a tungsten spallation target. The resulting spal-
lation neutrons are moderated by cold polyethylene, and
are subsequently down-scattered to UCN energies by a
solid ortho-deuterium crystal [13]. The UCN are guided
through a 7 T polarizing magnet and through an Adia-
batic Fast Passage (AFP) spin flipper [14] allowing for
selection of either + (spin flipper “on”) or − (spin flip-
per “off”) spin states. The UCN, held within a 3 m
long superconducting spectrometer (SCS) [15], have spins
aligned (+) or anti-aligned (−) with a 1 T field about
which the decay electrons spiral while heading towards
one of two detectors placed at each end of the SCS. The

electron detector packages consist of a multiwire propor-
tional chamber (MWPC) [16] for position reconstruction
and backscattering identification and a plastic scintilla-
tor for timing and energy reconstruction. We also de-
tect background muons using a combination of plastic
scintillator paddles and Ar/ethane drift tubes [17] and
15 cm diameter, 25 mm thick scintallators placed directly
behind the electron detectors (the “backing veto”). A
schematic of the experimental apparatus is presented in
Fig. 1.

In this work, we present a more precise determination
of the average polarization of the neutrons in the decay
volume, a new method for quantifying the uncertainty in
energy reconstruction, and a more robust determination
of the systematic uncertainties from Monte Carlo correc-
tions to the electron detector response. These improve-
ments coupled with better statistics reduce the overall
uncertainty relative to previous UCNA results [18–21].

UCNA utilizes a run-by-run monitor of the depolariza-
tion of the neutron populations in the decay volume, with
a statistics-limited uncertainty in the extracted polariza-
tion [14, 18–21]. For this work, we present an update of
our polarimetry method based on the implementation of
a shutter between the decay volume and polarizer/AFP
magnet (see Fig. 1), with further details in prepara-
tion as a forthcoming publication. Our methodology for
preparing the spin state is essentially identical to previ-
ous versions of the experiment, in that the UCN are first
polarized by traversing a 7 T magnetic field region. The
potential energy barrier to the low field-seeking spin state
ensures UCN are essentially 100% polarized immediately
after passing through this region. Beyond the high-field
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region, the adiabatic spin flipper is used to select the
spin state loaded into the decay volume, operating with
single-pass spin-flip efficiency in excess of 99.9%.

The run-cycle was composed of a 50 min interval in
which beta decay data was obtained with neutrons pre-
pared in a given spin state (the spin state for successive
runs alternates in such a way so as to cancel linear drifts
in subtracted backgrounds and detector efficiencies [19]),
followed by a procedure to measure the equilibrium pop-
ulation of depolarized UCN in the decay volume. This
“in situ” procedure utilized the shutter to store UCN in
the decay volume while guides were emptied of UCN,
and a UCN detector located below the switcher to mea-
sure the depolarized UCN. Because the polarization is
close to unity, it is sufficient for us to measure the de-
polarized fraction with modest precision. For the results
we present here, our measured polarization is indepen-
dent of detector efficiencies and UCN transport to first
order. The results of our polarimetry measurements for
the 2011-2012 and 2012-2013 run-cycles are presented in
Table I, with a more detailed overview of our polarimetry
analysis presented in Appendix I.

TABLE I. Results for average polarization fractions for each
dataset in spin-flipper off (−) and spin-flipper on (+) states.

2011-2012 2012-2013

P− P+ P− P+

0.9970(30) 0.9939(25) 0.9979(15) 0.9952(20)

The β-decay data were separated into 2011-2012 and
2012-2013 datasets. There were minor changes in spec-
trometer design between the two run periods, most no-
tably the use of 130 nm and 180 nm 6F6F thick [22] de-
cay trap foils on the East and West sides respectively in
2012-2013, which replaced 500 nm thick Mylar foils used
in 2011-2012, all of which were coated with 150 nm thick
layer of Beryllium. Such changes affect the backscatter-
ing of the electrons and angular acceptance of the de-
tectors, which allows for further exploration of the sys-
tematic effects from the decay trap foils, a leading un-
certainty in past analyses. This required separate simu-
lations of both calibration and β-decay data, calling for
development of separate Monte Carlo systematic correc-
tions and energy uncertainties for each dataset. The
resulting electron energy spectrum averaged over both
datasets can be seen in Fig. 2 along with the Monte
Carlo spectrum and the subtracted background distribu-
tion, with the residuals between the Monte Carlo spec-
trum and data plotted underneath.

The detector calibration for the current result begins
with pedestal subtraction and removal of time dependent
gain fluctuations as measured by a 207Bi gain monitor-
ing system [23]. We then determine the position depen-
dent light transport of each scintillator during several
periods of each run cycle by filling the decay volume
with neutron activated xenon gas and fitting the end-
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FIG. 2. Top: Electron energy spectrum from 2011-2013 with
background-subtracted data (open circles), Geant4 Monte
Carlo (solid line), and background (solid circles) included.
Residuals between Monte Carlo and data (units of mHz/keV)
are below. Bottom: Fully corrected asymmetry as a function
of energy for the two separate run periods. The fit is over
190-740 keV, as determined via minimization of the total un-
certainty. The errors on the indicated fitted values are purely
statistical.

point of the 135Xe 3
2

+
beta-decay spectrum in position

bins determined using the MWPC. Then the position
dependent response factors are calculated by normaliz-
ing the response in each position bin to the response at
the center of the scintillator. Upon correction of the posi-
tion dependence, we utilize the conversion electron lines
from (with dominant K-shell energies listed) 137Ce (130.3
keV), 113Sn (363.8 keV), and 207Bi (481.7 keV and 975.7
keV) sources. At intermittent periods during the run cy-
cle, these sources were translated in a calibration fixture
inserted through a side port in the SCS across the de-
tector face, providing a linearity mapping from detector
response to expected light output as provided by simula-
tion of each run. Combination of the linearity mapping
and the position dependent light transport values con-
verts detector ADC response to reconstructed electron
energy, Erecon [19].

Upon completion of the calibration procedure, we then
analyze each of the conversion electron source runs using
these calibrations to determine a reconstructed peak en-
ergy. Concurrently we apply the detector response model
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to simulations of these conversion electron runs, and from
this extract a simulated reconstructed energy. A compar-
ison of the reconstructed energies from data and simula-
tion in the form of a residual (Residual = Edata − EMC)
then provides a measure of the efficacy of our calibration
procedure at the discrete conversion electron energies,
which are the points plotted in Fig. 3. The error bands
in Fig. 3 represent our assessment of the accuracy to
which we reconstruct the initial energy of an event as a
continuous function of the true initial energy, where the
error band is determined by allowing for all quadratic
calibration curves which could produce the 1σ residu-
als extracted from calibration of the source runs [24].
This method inherently yields an asymmetric error band
due to the residuals being nonzero, so the worst case un-
certainty as shown in the figure is one where at every
energy the largest deviation from zero residual is taken
and plotted symmetrically about the zero residual line.
When weighted by the observed β-decay electron energy
spectrum, following the edge of the energy uncertainty
curve produces fractional uncertainties on A0 of 0.17%
and 0.25% for 2011-2012 and 2012-2013 respectively, with
the difference attributed mainly to the offset of the 113Sn
peak reconstruction which causes the energy uncertainty
band to broaden in the region of our final energy analysis
window.
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FIG. 3. Plot of energy uncertainty vs. reconstructed energy.
The points plotted are the mean and σ of the residual distri-
butions from reconstructed calibration peaks of Ce, Sn, and
the lower and upper Bi peaks in that order. The bands rep-
resent the energy uncertainty at any given electron energy for
the two data sets.

Backscattering identification plays an important role
in our Monte Carlo corrections and asymmetry extrac-
tion. Based on which detector components trigger, we
classify events into those that do not backscatter (Type
0) and those that do backscatter (Types 1, 2, and 3) [19].
Type 0 events trigger one scintillator and one MWPC on
the same side, while Type 1 events trigger both scintil-
lators and both MWPCs. For such events, we assign
the initial direction to the triggering detector for Type 0

and to the earlier triggering detector for Type 1. Type
2/3 events comprise a class of events that backscatter
and trigger both MWPCs, but only trigger a single scin-
tillator. An important distinction, however, does exist
between Type 2 and Type 3 events: Type 2 events only
pass through the MWPC on the triggering scintillator
side once, whereas Type 3 events scatter from the scin-
tillator, and therefore pass through the MWPC twice on
the triggering side. We can consequently apply a cut
on the energy deposited in the MWPC on the triggering
side to statistically assign Type 2/3 events to the correct
side. This drastically reduces Monte Carlo corrections
for such backscattering events as simulation indicates we
properly identify > 80% of all Type 2/3 events across
all energies using this technique, a marked improvement
over the roughly 50% misidentification rate without sep-
aration.
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FIG. 4. Total Monte Carlo corrections vs. energy, where
∆backscatter and ∆cosθ have been combined. The correction
has been averaged over 50 keV increments for plotting pur-
poses, while the correction is actually applied on a 10 keV
bin basis. The uncertainty band reflects the effective statis-
tical fluctuations on a bin-by-bin basis, as well as the true
Monte Carlo statistical uncertainty and the uncertainty on
the correction as determined by spectral agreement between
data and simulation for each event type.

With much improved energy reconstruction and de-
polarization uncertainties, we revisited the conservative
25% uncertainty on the Monte Carlo corrections from
the previous analysis [18–21] in search of a more quan-
titative method. Our systematic corrections take the
form Acorr = (1 + ∆)A, where a measured asymme-
try A is corrected for some systematic effect ∆. The
energy-dependent Monte Carlo correction consists of a
missed backscattering correction, ∆backscatter, and what
we call the cosθ correction, ∆cosθ. The missed backscat-
tering correction accounts for events that are assigned
the wrong initial direction based on the detector trigger
logic, a result of either the efficiency of the detector or
backscattering from components not part of the detec-
tors. Application of this correction increases the magni-
tude of the asymmetry, as the misidentified backscatter-
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ing events act as a dilution to the measured asymmetry.
The cos θ correction addresses experimental bias towards
high energy, low pitch angle events, which are more apt
to trigger the detectors. The correction is named for the
deviation of 〈cos θ〉 over one hemisphere of the spectrom-
eter from its nominal value of 1/2. Because low pitch
angle, high energy events carry more asymmetry infor-
mation as seen in Eq. 1, preferentially selecting them
will increase the measured asymmetry, thus the ∆cos θ

correction acts to reduce the magnitude of the measured
asymmetry. The improvement in quantifying the uncer-
tainty in Monte Carlo corrections results from work done
to separate both ∆backscatter and ∆cosθ into their relative
contributions from each individual event type, such that
(1 + ∆backscatter) =

∏3
i=0(1 + ∆backscatter,i) and similarly

for the cosθ correction, where the subscript i runs over all
event types. Then, for each event type, we conservatively
apply the maximal spectral deviations between Monte
Carlo and data within the final analysis energy window
in conjunction with an effective statistical fluctuation in
the corrections as the contribution to the total uncer-
tainty. The effective statistical uncertainty comes from
a functional fit to the binned correction, where the RMS
between the correction and the fit defines the uncertainty.
One should note that the actual Monte Carlo statistical
uncertainties are also included, but they are small rela-
tive to the correction and did not account for bin-by-bin
variations in the correction. These individual contribu-
tions can be further propagated into a single uncertainty
on ∆backscatter and ∆cosθ. Fig. 4 shows the combined
corrections for ∆backscatter and ∆cosθ for each data set.
While the final uncertainty on the combined Monte Carlo
corrections is consistent with the uncertainty from the
previous UCNA result [18], this method allows for im-
proved understanding of individual contributions to the
overall uncertainty.

The asymmetry was extracted using a super-ratio tech-
nique utilizing counts in each detector for spin flipped
configurations, defined as

ASR =
1−
√
R

1 +
√
R

= 〈P 〉A(Ee)β〈cos θ〉 (3)

where R = (r+1 r
−
2 )/(r+2 r

−
1 ) and r±1,2 refers to the rate

in one of the two detectors (subscript 1, 2) with spin-
flipper on/off (superscript +/−). Separating the data
into 10 keV energy bins, we divide out β, 〈P 〉, and 〈cos θ〉
and subsequently apply Monte Carlo corrections from
Fig. 4 and radiative and recoil order theory corrections
[11, 12, 26–29], which produces A0 as a function of energy
as seen in Fig. 2. The analysis was blinded using altered
time stamps which are spin-state and detector dependent
and do not cancel in the super-ratio. This requires using
two blinding factors, f1,2, such that t±1,2 = (1 ± f1,2) · t
where t is the global time and t±1,2 are the blinded times
for each detector in each spin state. We completed de-
tector calibrations, all systematic corrections, and the
polarimetry analysis prior to unblinding, at which point
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FIG. 5. Corrected and uncorrected asymmetries for various
combinations of event types. Only ∆backscattering and ∆cos θ

are applied and error bars are statistical only. The first three
combinations include Type 0 events which are identified as
having not backscattered and make up roughly 95% of the
data. The remaining four asymmetries include only the var-
ious backscattering events. The inset shows a closer view of
the first three points whose error bars are smaller than the
markers in the larger plot. Top: 2011-2012. Bottom: 2012-
2013.

all rates were recalculated using the proper global time
t, generating the asymmetries reported in Fig. 2.

For the asymmetry as reported here, we utilized all
event types (0, 1, 2, and 3 with 2 and 3 separated us-
ing the aforementioned MWPC energy deposition) sub-
ject to a fiducial cut selecting events within 50 mm of
the center of the decay trap. The fiducial cut removes
events that could have potentially interacted with the
decay trap wall, as the maximum radius of the electron’s
spiral around the magnetic field is 7.76 mm and the wall
of the decay trap is 62.2 mm from the center. Inclusion
of any combination of the aforementioned event types
yields separate asymmetries, as can be seen in Fig. 5.
The agreement between the asymmetries extracted using
non-backscattering events (Type 0) and backscattering
events only (Types 1, 2, or 3) highlights the credence of
the Monte Carlo corrections for backscattering.

The systematic errors for the two data sets are listed
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TABLE II. Uncertainty Table reported as % correction on
|A0|. The uncertainties reported are the combined uncertain-
ties from the two data sets as determined based on the re-
spective weights of each data set and treating the systematic
uncertainties from the two years as correlated.

% Corr. % Unc.

2011-2012 2012-2013

∆cosθ -1.53 -1.51 0.33
∆backscattering 1.08 0.88 0.30
Energy Recon. 0.20
Depolarization 0.45 0.34 0.17
Gain 0.16
Field Nonunif. 0.12
Muon Veto 0.03
UCN Background 0.01 0.01 0.02
MWPC Efficiency 0.13 0.11 0.01

Statistics 0.36

Theory Corrections [11, 12, 26–29]

Recoil Order -1.68 -1.67 0.03
Radiative -0.12 -0.12 0.05

in Table II. The asymmetries from 2011-2012 and 2012-
2013 are combined to produce a single result utilizing a
weighting method [25] that considers the statistics of each
result and treats the systematics as completely corre-
lated, producing weights for the 2011-2012 and 2012-2013
asymmetries of 0.67 and 0.33 respectively. Fitting over
an analysis window of 190-740 keV, which minimizes the
total uncertainty, yields A0 = −0.12054(44)stat(68)syst
corresponding to a value for the ratio of the axial-vector
to vector coupling constants of λ ≡ gA

gV
= −1.2783(22),

where the statistical and systematic uncertainties have
been added in quadrature.

We also report a combined result using our previ-
ous measurement [18] and a similar weighting method
as above, where all systematic uncertainties were set
to the smallest reported value between the two mea-
surements and treated as completely correlated so as to
avoid artificially small combined systematic uncertain-
ties. We obtain the values A0 = −0.12015(34)stat(63)syst
and λ ≡ gA

gV
= −1.2772(20), with weights of 0.39 for

the previous result [18] and 0.61 for the result from this
analysis.

As shown in Fig. 6, one can constrain Vud using
λ [18, 40–46] and neutron lifetime measurements [31–
38] and compare to direct measurements of Vud from
0+ → 0+ superallowed decays [39]. When considering
the discrepancy between neutron lifetime measurements
using neutron beams [31, 32] versus UCN storage experi-
ments (performed with material bottles [34–38] and mag-
netic bottles [33]) and the shift in λ measurements after
2002, one observes a striking landscape. The older pre-
2002 results contribute significantly to the χ2 of the en-
tire data set, leading the Particle Data Group (PDG) to

apply a
√
χ2/(N − 1) = 2.2 scale factor to the current λ
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FIG. 6. Status of Vud, the neutron lifetime, and λ measure-
ments. The λ result bands (vertical) are divided into pre-2002
[40–42] and post-2002 [18, 44–46] results, where the distinc-
tion is made using the date of the most recent result from each
experiment. The right axis shows publication year for the in-
dividual lambda measurements included in the calculation of
the λ bands (closed markers for post-2002, open markers for
pre-2002). Note that the result of this work (Brown et al.) is
the combined UCNA result from [18] and the current analysis,
and the Mund et al. result is the combined PERKEOII result
from [43, 44]. The diagonal bands are derived from neutron
lifetime measurements and are separated into neutron beam
[31, 32] and UCN bottle experiments, which consist of mate-
rial bottle storage [34–38] and magnetic bottle storage [33].
The Vud band (horizontal) comes from superallowed 0+ → 0+

nuclear β-decay measurements [39]. The error bands include
scale factors as prescribed by the Particle Data Group [39].

error [39]. A common theme between the majority of the
pre- and post-2002 results for λ concerns the size of the
systematic corrections, where the pre-2002 measurements
([40–42]) have individual systematic corrections > 10%
compared to those from post-2002 ([18, 43, 44] and this
work) with all systematic corrections < 2%. For the fu-
ture, we note that if the precision level of measurements
of the beta asymmetry achieve the roughly 0.1% level
required for direct comparison with Vud extracted from
0+ → 0+ superallowed decays [47], the pre-2002 measure-
ments will not contribute to the Particle Data Group’s
scatter calculations for the beta asymmetry, setting the
precision level for evaluating scatter and the global aver-
ages at the scale of the recent measurements and those
to come 1.
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ratory. We thank M. González-Alonso for comments on
this work.

I. APPENDIX

During β-decay running, an equilibrium population of
spins develops. We characterize this equilibrium spin
population by a depolarized fraction at time t, with
t = 0 s at the beginning of a polarimetry measurement:
ξ(t) = [Ndepol(t)/Nload(t)], where “load” indicates the
equilibrium population of neutron spin states that devel-
oped in the decay trap (mainly the spin state chosen by
the spin flipper with a small depolarized contribution),
and “depol” indicates neutrons which have the opposite
spin state (nominally depolarized). The polarization at
time t is then P (t) = 1−2ξ(t). We determine the fraction
of depolarized neutrons in a given β-decay run by per-
forming depolarization or “D” runs at the end of each 50
min. β-decay run. In these runs, the loaded spin popula-
tions are determined by direct measurement of the UCN
population in the spectrometer decay volume just before
the beginning of a depolarization measurement. Because
depolarized populations are small (smaller than 1 %), the
β-decay rate or the rate in a UCN monitor attached to
the SCS is sufficient to provide a reliable measure pro-
portional to the loaded spin population, NSCS

load (t = 0 s),
where the superscript “SCS” indicates measurement with
either the UCN monitor or electron detectors in the β-
decay spectrometer.

The depolarized spin population is isolated and mea-
sured in a procedure with five steps. In step (1), we
utilize a new component for the UCNA experiment: a
shutter at the exit of the decay trap (see Fig. 1). The
shutter dramatically improves the signal-to-background
ratio in our measurement of the depolarized fraction, and
permits a very clean assessment of the systematic errors
in our polarimetry analysis. At time t = 0 s, the shutter
is closed, preventing UCN in the decay volume from ex-
iting the system. When the shutter closes, the state of
the switcher also changes, routing UCN that exit from
the decay trap through the polarizer/AFP magnet to a
UCN detector located below the switcher. The signal
in the switcher detector during a polarimetry run is de-
picted in Fig. 7. After the shutter is closed, the loaded
spin population in the guides between the shutter and the
switcher detector are permitted to drain to the switcher
detector, producing a large pulse in the switcher detec-
tor. In step (2), at t = 25 s, the state of the spin flipper
is changed, permitting depolarized UCN in the guides

beyond the spin-flipper to also exit to the switcher de-
tector. Note that, prior to this time, the depolarized
population is in a state which can not pass the high field
region of the polarizer/AFP magnet. In step (3), at time
t = 30 s, the shutter is opened, permitting only depolar-
ized UCN from the decay trap to traverse the high field
region in the polarizer/AFP magnet and be counted in
the switcher detector. After background subtraction, the
number of UCN counted in this phase by the switcher
detector, NSWT

depol(t = 30 s), is proportional to the depo-

larized population at time t = 30 s (“SWT” stand for
switcher detector). In step (4), at t = 130 s, the spin-
flipper is changed again, permitting the initially loaded
spin population to drain from the decay trap. Finally, in
step (5) at t = 310 s, when all UCN have drained from
the trap, we take background data in the switcher UCN
detector for 50 s.
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FIG. 7. Switcher signal as a function of time, during “D”-type
runs: (1) the shutter closes and the switcher state changes,
permitting UCN in the guide outside the decay volume to
drain to the switcher UCN detector, (2) the AFP spin-flipper
changes state, allowing depolarized neutrons in the guides
outside the decay volume to drain to the switcher, (3) the
shutter opens, permitting depolarized neutrons within the de-
cay volume to drain to the switcher detector, (4) the AFP
spin-flipper returns to its initial state, allowing the initially
loaded spin state to drain from the decay volume, (5) back-
grounds are measured after the UCN population in the decay
volume has drained away. The presented data were taken in
2011 and UCN loaded into the decay volume with the spin-
flipper off.

A set of dedicated, “ex situ” measurements called “P”
runs are performed for both flipper on-loaded and off-
loaded UCN to determine the ratio of UCN measured at
t = 0 s in the SCS to those measured after storing them
for 30 s behind the shutter and then unloading them
to the switcher detector. This ratio is used (for the spin
state coresponding to depolarized UCN in a given D run)
to correct the switcher signal measured in the D runs for
storage behind the shutter and transport to the switcher.
The resultant “raw” depolarized fraction ξraw(t = 0 s) is
nominally independent of spin-transport and detection
efficiencies.
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TABLE III. Results from measured raw depolarization frac-
tions and the range of Monte Carlo correction values for each
dataset in spin-flipper off (−) and spin-flipper on (+) states.

2011-2012 2012-2013

P− P+ P− P+

ξraw(t = 0 s) 0.0062(4) 0.0099(3) 0.0045(5) 0.0070(3)
MC Corr. 0.15-0.275 0.275-0.375 0.15-0.30 0.25-0.375

A systematic multiplicative correction to the measured
value of ξraw(t = 0 s) is determined via Monte Carlo
simulation of the signals in our switcher UCN detector.
This correction arises from two effects, the first being
that while the depolarized spin population is stored be-
hind the shutter during a D-type run (t = 0 − 30 s),
it can be continuously fed by depolarization of the ini-
tally loaded spin population. We refer to this as the
“DE” or depolarization evolution correction, which can
affect both flipper-on and flipper-off loaded β-decay runs.
The second is due to the finite spin flipper efficiency,
and is referred to as the “SFE” correction. This causes
a systematic error only for flipper-off loaded runs, be-
cause it produces a continuous leakage of UCN from the
initially loaded spin population through the spin flipper

when the flipper is on (trapping the initally loaded spin
population and nominally preventing them from being
counted in the switcher detector). Our simulations per-
mit us to systematically explore the guide transport pa-
rameters (guide specularity, Fermi potentials, and loss
per bounce) as well as the magnitude and correlations
between the DE and SFE corrections. The measured
values of ξraw(t = 0 s) and the Monte Carlo correction
factors are shown in Table III, and the polarization for
the 2011 and 2012 LANL run cycles are tabulated in Ta-
ble I. The uncertainties for the polarization determined
for this work were dominated by the statistical uncer-
tainties in the fitting procedures used to determine the
DE and SFE corrections, with these determined by the
counting statistics for UCNs in the switcher detector.

The uncertainties for the polarization determined for
this work were dominated by the statistical uncertainties
in the fitting procedures used to determine the Monte
Carlo corrections. In addition to the resultant statisti-
cal uncertainty in the Monte Carlo correction factors, we
also assigned a 15 % overall systematic uncertainty to the
Monte Carlo correction factor due to the worst case dis-
agreement between the switcher signal simulations and
Monte Carlo predictions.
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