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The angular momentum basis method is introduced to solve the inclusive breakup problem within
the model proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985)]. This method
is based on the geometric transformation between different Jacobi coordinates, in which the particle
spins can be included in a natural and efficient way. To test the validity of this partial wave
expansion method, a benchmark calculation is done comparing with the one given in [Phys. Rev. C
92, 044616 (2015)]. In addition, using the distorted-wave Born approximation (DWBA) version of
IAV model, applications to 7Li + 58Ni reactions at energies around Coulomb barrier are presented
and compared with available data.

I. INTRODUCTION

Investigation of reaction mechanisms responsible for
the large inclusive α particle production cross section ob-
served in breakup of light-weakly bound projectiles (e.g.
6,8He, 6,7Li and 7,9Be) is a topic of current interest, both
experimentally and theoretically [1–5]. This is a diffi-
cult problem, because different reaction mechanisms, like
elastic breakup, transfer, compound nuclear evaporation,
inelastic breakup and incomplete fusion contribute to the
α yield.
From the theoretical point of view, one can repre-

sent this kind of reactions as a + A → b + B∗, where
a = b + x and B∗ is any possible state of x + A system.
This reaction includes the breakup processes in which x
is elastically scatted by A leaving all the fragments in
the ground states, which is usually called elastic breakup
(EBU), but also breakup accompanied by target excita-
tion, particle(s) exchange between x and A, x transfer to
A, the fusion of x by A, which are globally referred to as
nonelastic breakup (NEB). The total breakup (TBU) is
therefore the sum of EBU and NEB components.
The IAV model [6], which was originally proposed in

the 1980s, is used to study this inclusive breakup. Due
to the computational limitations at that time, this model
was no longer used. Recently, the model has been re-
examined by several groups [7–12]. Moreover, a system-
atic study of the alpha productions in 6Li induced reac-
tions has been recently reported by Lei and Moro [13],
in which the numerical calculations using the IAV model
agree well with the experimental data.
For 7Li, several experimental groups have reported

large alpha yields and tried to understand the origins
of these alphas by using Q-value considerations and by
direct identification of the reaction products [2, 14–16].
However, a proper interpretation of these alphas is still
lacking. The IAV model, which successfully reproduces
the alphas produced by 6Li is a promising tool for this
purpose. From the theoretical point of view, a important
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difference between these two systems is that the α + d
cluster in 6Li is in a predominantly ℓ = 0 configuration,
whereas the α+ t cluster conforming the 7Li system is in
a ℓ = 1 configuration by assuming a two body structure
of the projectile. This makes the numerical calculation
more challenging since more angular momentum config-
urations are involved in the calculation.

For this reason, most applications of the IAV formalism
have been restricted to deuterons and 6Li. In order to
extend the model to other interesting systems, it is advis-
able to test its validity and accuracy for ℓ > 0 cases. For
that purpose, the problem of 7Li+58Ni at energies around
Coulomb barrier is studied within the IAV model. The
calculated results are also compared with experimental
data [17].

In the paper, a new numerical method to compute the
IAV inclusive breakup formula is implemented in a more
efficient way. The derived formula has been tested for the
ℓ = 0 case against the previously implemented method.
This former method becomes numerically difficult for
ℓ > 0 cases, due to the additional angular momentum
couplings (details see Appendix B of Ref. [7]). Moreover,
the inclusion of the intrinsic spins will make the calcula-
tion even harder. Consequently, an alternative method
which can deal with these more complicated situations
would be advisable.

The paper is organized as follows: In Sec. II the main
formulas of the IAV model and the expansion in angular
momentum basis are outlined. In Sec. III, the formalism
is applied to inclusive breakup reactions induced by 7Li.
Finally, in Sec. IV the main results are summarized.

II. THEORETICAL MODELS

In this section, I briefly summarize the model of IAV
and introduce a more efficient method for partial wave
expansion comparing with the one used in Ref. [7]. The
new method is more general and easy to incorporate par-
ticle spins.

First, one can write the process under study in the
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FIG. 1. (Color online) Coordinates used in the breakup reac-
tion.

form

a(= b + x) +A→ b+B∗, (1)

where the projectile a, constituted by b and x, interacts
with the target A, leaving particle b and other fragments.
Thus B∗ is any possible state between x+A system.
The effective three body Hamiltonian of this system is

H(ξ) = H0 + Vbx + VxA(ξ) + UbA +HA(ξ), (2)

where H0 is the total kinetic energy operator, Vbx is the
interaction between the cluster b and x, HA(ξ) is the
Hamiltonian of the target nucleus (with ξ denoting its
internal coordinates), and VxA and UbA are fragment-
target interactions.
In writing the Hamiltonian of the system in the form

(2) I make a clear distinction between the two cluster
constituents; the interaction with the target of the frag-
ment b, the one which is assumed to be observed in the
experiment, is described with a (complex) optical poten-
tial. Nonelastic processes arising from this interaction
(e.g., target excitation, transfer, sequential breakup, and
incomplete fusion) are included only effectively through
the imaginary part of UbA. Then particle b is said to act
as a spectator. On the other hand, the interaction of the
particle x with the target retains the target degrees of
freedom (ξ).
By using the closure relation and optical reduction,

IAV separated the inclusive breakup cross section in
terms of elastic breakup and nonelastic breakup, with
the latter is given by

d2σ

dEbdΩb

∣

∣

∣

NEB
= − 2

~νa
ρb(Eb)〈ψ0

x(
~kb)|Wx|ψ0

x(
~kb)〉, (3)

where νa is the projectile-target relative velocity,
ρb(Eb) = kbµb/[(2π)

3
~
2] is the density of the states for

the projectile b, Wx is the imaginary part of the op-
tical potential describing x + A elastic scattering, and

ψ0
x(
~kb) is the relative state between x and A, which gov-

erns the evolution of x after the collision, when particle b

is emitted with momentum ~kb and the target remains in
its ground state. This state satisfies the following equa-
tion when representing on x−A relative coordinates ~rx,
where the relevant coordinates are depicted in Fig. 1

〈~rx|ψ0
x(
~kb)〉 =

∫

∞

0

d~r′xGx(~rx, ~r′x)〈~r′xχb(~kb)|Vpost|Ψ3b〉,
(4)

where Gx = 1/(Ex −Hx) with the internal Hamiltonian
Hx = Tx+Ux of x−A subsystem and the relative energy
Ex between particles x and A, χb is the distorted-wave
describing the scattering of b in the final channel with
respect to the x − A subsystem, , Vpost = Vbx + UbA −
Ub (with Ub the optical potential describing the relative
motion between the b and B∗ in the outgoing channel)
and Ψ3b is the three-body wave function, with boundary
conditions corresponding to the incident a particle.
Austern et al. [18] suggested using the CDCC wave

function to approximate the three-body wave function,
Ψ3b, appearing in Eq.(4). Since the CDCC wave func-
tion is also a complicated object which contains differ-
ent partial wave components for the b − x subsystem,
one needs to treat each partial wave equally. In previ-
ous works [7, 13], we have tested the validity of ℓ = 0
case (deuterons and 6Li) by employing the distorted-

wave Born approximation (DWBA), i.e., Ψ3b = χ
(+)
a φa,

where χ
(+)
a is the distorted wave describing the a+A elas-

tic scattering and φa is the projectile ground state wave
function, and compared the calculation results with ex-
perimental data. However, the IAV model has never been
applied and tested for ℓ ≥ 1 cases. For that purpose, I
will focus on ℓ = 1 case with 7Li.
Instead of using a three dimensional Jacobi basis, one

can expand the wave function into partial wave eigen-
states which depend on the magnitude of the radius and
angular momentum eigenstates. The orbital angular mo-
menta of three particles are coupled to total angular mo-
mentum J and its third component, for the incoming
channels

|rbxraαin〉 = |rbxra((la(jbjx)sbx)Ja(λajA)JA)JMJ〉in,
(5)

and for the outgoing channels

|rxrbαout〉 = |rxrb((lx(jxjA)sxA)Jx(λbjb)Jb)JMJ〉out,
(6)

where jb, jx and jA are the internal spins of particles b, x,
and A respectively, sbx and sxA are the total spins of sub-
system in incoming and outgoing channels respectively,
la, λa, lx, and λb are the relative angular momentum
of b − x, a − A, x − A, and b − B∗ respectively, and
Ja (JA) and Jx (Jb) are the total angular momentum of
subsystem (spectator) in incoming and outgoing channels
respectively.
The angular momentum basis can be normalized as,

〈r′bxr′aα′in|rbxraαin〉 =
δ(r′bx − rbx)

r′bxrbx

δ(r′a − ra)

r′ara
δα′

in
,αin

,

(7)
and likewise for the outgoing basis.
In addition to that, a two body angular momentum

basis for the x−A subsystem is used,

|rxβ〉 = |rx(lxsxA)JxMx〉, (8)

therefore, the three body outgoing state can be decoupled
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by

|rxrbαout〉 =
∑

MxMb

〈JxMxJbMb|JMJ〉|rxβ〉|rbJbMb〉,

(9)
as well as the incoming state

|rbxraαin〉 =
∑

MaMA

〈JaMaJAMA|JMJ〉|rbxJaMa〉|raJAMA〉,

(10)
where Mx, Mb, Ma, and MA are the third component of
Jx, Jb, Ja, and JA respectively.
By using the angular momentum basis defined above,

one can rewrite Eq.(4) as

〈rxβ|ψ0
x(
~kb)〉 =

∫

∞

0

dr′xr
′2
x Gx(rx, r

′

x, β)ρ(r
′

x, β,
~kb),

(11)

with

ρ(r′x, β,
~kb) = 〈r′xβχ

(−)
b (~kb)|Vpost|χ(+)

a φa〉. (12)

Since the incoming and outgoing channels are repre-
sented in their natural set of Jacobi coordinate(see Fig.1).
A transformation from the sets |rbxraαin〉 to |rxrbαout〉
is required. A partial wave representation of this trans-
formation is outlined in Ref. [19] and can be written as
an integration over the cosine of the relative angle be-
tween ~rx and ~rb. All geometrical information is included
in the coefficients Gout←in

αin,αout
(rxrbx). More details on these

transformation are given in Appendix A. Additionally, I
only consider a central potential for UbA. Then insert-
ing complete set of states in Eq. (12) and making use of
the geometrical coefficients Gout←in

αin,αout
(rxrbx), one should

arrive at the following result:

ρ(r′x, β,
~kb) =

∑

αout

∫

∞

0

dr′br
′2
b

〈

r′xβχ
(−)
b (~kb)

∣

∣

∣r′xr
′

bαout

〉

∑

αin

∫ 1

−1

dxVpost(r
′

xr
′

bxαin)Gout←in
αin,αout

(r′xr
′

bx)
〈

rbxraαin

∣

∣

∣χ(+)
a φa

〉

,

(13)

with

〈

r′xβχ
(−)
b (~kb)

∣

∣

∣r′xr
′

bαout

〉

=
∑

MxMb

〈JxMxJbMb|JMJ〉〈χ(−)
b (~kb)|rbJbMb〉δβ,JxMx

, (14)

and

〈

rbxraαin

∣

∣

∣χ(+)
a φa

〉

=
∑

M ′

a
MA

〈JaM ′aJAMA|JMJ〉〈rbxJaM ′a|φa〉〈raJAMA|χ(+)
a 〉. (15)

It should be noted that, in the above representation, rbx
and ra are functions of r′x, r

′

b and x (details are given in
Appendix A).

The double differential cross section of NEB, which
given by Eq. (3) can be represented with the angular
momentum basis as

d2σ

dEbdΩb

∣

∣

∣

NEB
= − 2

~νa
ρb(Eb)

∑

β

∫

∞

0

drxr
2
x

∣

∣ψ0
x(rx, β,

~kb)
∣

∣

2
Wx(rx, β). (16)

I consider the case of unpolarized beam, and unaligned
target. Moreover, I assume that the spin orientation of
b is not measured. In this situation, the cross section

is obtained as an average of the initial angular momen-
tum projections of Ja and JA, and a sum over the final
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projection of Jb. Thus

d2σ

dEbdΩb

∣

∣

∣

NEB
= − 2

~νa
ρb(Eb)

1

(2Ja + 1)(2jA + 1)

∑

β

∑

MamAmb

∫

∞

0

drxr
2
x

∣

∣ψ0
x(rx, β,

~kb)
∣

∣

2
Wx(rx, β). (17)
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FIG. 2. (Color online) Elastic scattering of 7Li + 58Ni at
different incident energies. The solid and dashed lines are the
CDCC calculations and the optical model calculation with
the OMP of Cook [20], respectively. Experimental data are
taken from Ref. [17].

where mA and mb are the third components of jA and
jb, respectively. The main difference of the present
method, compared to previous implementations of the
IAV model [7, 8, 13], lies in the coordinate transforma-
tion. This new method is numerically more efficient for
high relative angular momenta between the fragments.
This, in turn, should facilitate its extensions beyond the
DWBA formula, for example, using CDCC three-body
wave functions for the initial state, as proposed in the
original work of Austern et al. [18].

III. CALCULATIONS

A. 58Ni(7Li,αX)

To assess the validity of this partial wave expansion,
I have done the benchmark calculation comparing our
earlier expansion given in Ref. [7]. The numerical dif-
ference between these two method is less than 1% when
using the same input parameters. On the other hand, due
to the well-known convergence problems of the DWBA
post-form formula (arising from the long-range behavior

of ρ(r′x, β,
~kb) in Eq. (12)), I adopt here the equivalent

prior-form representation [8, 21], which is free of these
problems.
Now I present calculations for reactions induced by a

7Li projectile and compare the calculated inclusive cross
sections with experimental data to assess the validity of
the theory. In this case, I compute the separate contribu-
tions for the elastic (EBU) and nonelastic (NEB) breakup
cross sections. For the former, I use the CDCC for-
malism, using the coupled-channels code FRESCO[22].
This makes it possible to treat the EBU to all orders and
should be equivalent to the post-form three-body model
of Austern et al. For the NEB part, I use the DWBA
version.

I consider the reaction 58Ni (7Li,αX) at energies
around Coulomb barrier, which allows us to compare
with data from Ref. [17]. The 7Li nucleus is treated in a
two-cluster model (α+ t). Compared to the (α+ d) two-
cluster structure of 6Li, the main difference between the
two nuclei is the internal angular momentum ℓ, for 6Li
ℓ = 0, whereas for 7Li ℓ = 1. Furthermore, the difference
in the breakup threshold energy of the two Li isotopes,
1.474 MeV for α + d breakup of 6Li compares to 2.468
MeV for the α+ t breakup of 7Li is also important.

In order to test the validity of the α + t two cluster
model for 7Li, first the elastic scattering of the same re-
action was studied using the CDCC framework. The α+t
interaction, which is required to generate the 7Li ground
state wave function as well as the bound excited state
and continuum wave functions, was taken from Ref. [23].
This potential consists of a central and a spin-orbit com-
ponent, of Gaussian shape, with a fixed geometry and a
parity-dependent depth. The potential well depths were
adjusted to give the correct binding energy and resonance
energy for bound and resonant states, respectively. In
order to achieve convergence of the calculated cross sec-
tions, one needed to include α + t partial waves up to
ℓ = 3. For the f wave, a finer division of bins is used in
order to reproduce the ℓ = 3 resonant states at 4.63 MeV
(7/2−) and 6.68 MeV (5/2−) correctly. The 4He-target
interaction was obtained from a Woods-Saxon potential
fitted to the 12 MeV 4He + 58Ni elastic scattering data of
Ref. [24] with the following parameters : V = 49.5 MeV,
R0 = 5.88 fm, a0 = 0.5 fm, W = 11.0 MeV, Rw = 5.69
fm and aw = 0.5 fm. The 3He-target interaction was
taken from the 8.95 MeV t+58Ni parameters of Ref. [25].
For comparison, the optical model calculation using the
potential of Cook[20] was also performed. Fig. 2 shows
the elastic scattering of 7Li + 58Ni at different incident
energies. The data are taken from Ref. [17]. The solid
and dashed lines are, respectively, the CDCC and optical
model calculations. It can be seen that both the optical
model and CDCC calculations reproduce well the experi-
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FIG. 3. (Color online) Angular distribution of α particles pro-
duced in the reaction 7Li + 58Ni at the incident energies indi-
cated by the labels. The dotted, dashed and dot-dashed are,
respectively, the EBU, NEB with Ex < 0, and NEB without
Ex < 0 components. The experimental data are taken from
Ref. [17].

mental data. This agreement confirms the validity of the
adopted α+target and t+target optical potentials.

Now the inclusive breakup cross section (7Li,αX) is
discussed. The EBU part was obtained from the CDCC
calculation discussed above. The NEB part was cal-
culated with the IAV model using the DWBA formal-
ism without taking account the spin of particles. There
are two distinct contributions to the NEB cross sections,
namely, that for Ex > 0 case and that for Ex < 0 case,
where Ex is the final relative energy between t and 58Ni.
For Ex < 0, this region would correspond to bound states
of the residual 61Cu system, that is, transfer. The appli-
cation of NEB formalism to transfer reactions is outlined
in Ref. [26] and has been recently applied to deuterons
and 6Li induced reactions[13, 27]. In Fig. 3 the dot-
ted, dashed and dot-dashed lines are, respectively, the
EBU (CDCC), NEB (DWBA) with Ex < 0, and NEB
(DWBA) without Ex < 0 components. First, it is no-
ticeable that the EBU part is negligible compared to the
NEB component, which is in contrast to 6Li as reported
in Ref. [13]. For the 6Li case, the contribution of EBU is
small but non-negligible comparing to NEB. The differ-
ence of these two nuclei will be discussed in the following
section. Concerning the comparison of the calculations
with experimental data, one can observe a good agree-
ment with the data when including the Ex < 0 part
for higher two energies and excluding the Ex < 0 for
lower two energies. The reason of that is not completely
clear but it might be due to the fact that an energy-
independent t+58Ni potential has been employed, which
will not describe correctly the low energy region (includ-
ing the bound state part) of this system. A more realis-
tic description should be provided by a energy-dependent
potential, extending also to negative energies. Such po-
tentials were investigated in the past by Mahaux and
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(=EBU+NEB) for 6,7Li + 58Ni systems. (b) NEB cross sec-
tions for 6,7Li + 58Ni systems. See text for details.
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Sartor [28] and are currently being revisited by several
groups (see Ref. [29] for a recent review).

B. Comparison with the 6Li case

In this section, the difference between 6Li and 7Li on
the 58Ni target is discussed. The calculations of 6Li have
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been presented in Ref. [13]. In both cases, one should
find that the NEB1 component dominate the inclusive
alphas. However it is interesting to compare the rela-
tive importance of EBU versus NEB on these two nuclei.
In order to make a more meaningful comparison with
these two nuclei, a toy model of 6Li is introduced by
modifying the binding energy from Eb = −1.474 MeV
to Eb = −2.468 MeV (that is, the 7Li binding energy).
Fig. 4 (a) plots the ration of the calculated EBU and TBU
(=EBU+NEB) cross section as a function of the reduced
energyEc.m./VB, with VB the energy of the Coulomb bar-

rier, estimated as VB = ZpZt/[rB(A
1/3
t + A

1/3
p )], where

Zp(Zt) and Ap(At) are the atomic number and atomic
mass of projectile (target), respectively, and rB = 1.44
fm. The circles, squares and diamonds are respectively
6Li + 58Ni, 6Litoy + 58Ni and 7Li + 58Ni reaction sys-
tems. Several interesting features emerge from this plot:
(i) First, for the lower binding energy, i.e., 6Li +58Ni,
the elastic breakup component becomes more important
as the energy decreases, whereas for the energies above
the Coulomb barrier, the ratio shows an almost constant
behavior; (ii) second, when increasing the binding of pro-
jectile, i.e., 6Litoy + 58Ni, the elastic breakup component
becomes comparatively smaller; (iii) third, when chang-
ing the relative angular momentum in the projectile from
ℓ = 0 to ℓ = 1, i.e., 7Li +58Ni, the importance of elastic
breakup component is the smallest in these three systems
and increases with the incident energy. These results can
be attributed to the fact that the EBU is a peripheral
process and thereby highly sensitive to the tail of projec-
tile wave function. In Fig. 5 , it can be clearly seen that
6Li has the longest tail among these three systems and
this explains the larger EBU contribution. By contrast,
due to the larger binding energy and centrifugal barrier,
the wave function of 7Li is comparatively more confined
at small distances. This short tail behavior makes the
7Li projectile difficult to break at these low energies.

Fig. 4 (b) shows the NEB cross sections as a function
of the reduced energy Ec.m./VB. It can be seen that the
NEB cross section for these three systems are of similar
magnitude. This indicates the NEB depends on the in-
ternal region of the projectile wave function where these

three projectile have the similar structure as pointed out
in Fig. 5. This agrees with the results of Ref. [12], where
we have compared the relative importance of EBU and
NEB with 6Li projectile when artificially changing the
binding energy.

IV. SUMMARY AND CONCLUSIONS

In summary, I have addressed the calculation of in-
clusive breakup cross sections for arbitrary ℓ values
(with ℓ the orbital angular momentum between the clus-
ters in the projectile ground state) within the closed-
form DWBA model proposed in the 1980s by Ichimura,
Austern, and Vincent[6]. A novel numerical implemen-
tation of the model, more suitable for ℓ > 0 values, has
been presented here.
I have performed calculations for the 58Ni(7Li,αX) re-

action at energies around the Coulomb barrier. In this
case, one can find a good agreement between the experi-
mental data and the IAV model.
I have also investigated the effect of the internal struc-

ture of the projectile by comparing the 7Li inclusive
breakup with 6Li. Although in both caes the α inclu-
sive cross section is dominated by the NEB component,
the EBU part is comparatively larger for the 6Li case.
one can interpret this as a consequence of the larger ex-
tension of the 6Li ground state wave function, due to its
ℓ = 0 configuration.
The results presented in this work, along with those

presented in previous works[7, 8, 13], indicate that the
IAV model provides a reliable framework to calculate
NEB cross sections. Possible applications to knockout
reactions at intermediate energies are currently under
study.

Appendix A: Geometrical coefficient for coordinate
transformation

In this section, I present the explicit expressions of the
geometrical coefficients Gout←in

αin,αout
(r′xr

′

bx). These are given
by

Gout←in
αin,αout

(r′xr
′

bx) =
∑

LS

(2S + 1)
√

(2Ja + 1)(2JA + 1)(2Jx + 1)(2Jb + 1)







lx sxA Jx
λb jb Jb
L S J













la sbx Ja
λa jA JA
L S J







×8π2
L
∑

M=−L

{

Y
mlx
∗

lx
(r̂x)Y

mλb
∗

λb
(r̂b)

}LM {

Y
mla

la
(a~rx − ~rb
∧

)Y
mλa

λa
(b~rx + c~rb
∧

)
}LM

×(−)sbx+2jA+jx+jb
√

(2sxA + 1)(2sbx + 1)

{

jA jx sxA
jb S sbx

}

. (A1)

1 Note that these NEB includes both Ex > 0 and Ex < 0 contri-

butions
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The spherical harmonics Y m
l (r̂) depend on the angles r̂

of the vector ~r. For the evaluation, one can choose ~rb as
z−direction and ~rx is in the x− y plane:

~rb =





0
0
rb



 ~rx =





rx
√
1− x2

0
rxx



 , (A2)

where x is the cosine of the angle between ~rb and ~rx.
In Eq. (A1) the curly brackets grouping the spherical
harmonics indicate that they are coupled to a state of
total orbital angular momentum L and third component
M . The mass ratios are given by

a =
mA

mA +mx
(A3)

b =
(mb +mx +mA)mx

(mA +mx)(mb +mx)

c =
mb

mb +mx
.

For this case, the coordinates of the incoming channel are
given by

rbx(rxrbx) =
√

a2r2x + r2b − 2arxrbx (A4)

ra(rxrbx) =
√

b2r2x + c2r2b + 2bcrxrbx .
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