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We realize the treatment of bound and continuum nuclear systems in the proximity of a three-
body breakup threshold within the ab initio framework of the no-core shell model with continuum.
Many-body eigenstates obtained from the diagonalization of the Hamiltonian within the harmonic-
oscillator expansion of the no-core shell model are coupled with continuous microscopic three-cluster
states to correctly describe the nuclear wave function both in the interior and asymptotic regions.
We discuss the formalism in detail and give algebraic expressions for the case of core+n+n systems.
Using similarity-renormalization-group evolved nucleon-nucleon interactions, we analyze the role of
4He+n+n clustering and many-body correlations in the ground and low-lying continuum states of
the Borromean 6He nucleus, and study the dependence of the energy spectrum on the resolution
scale of the interaction. We show that 6He small binding energy and extended radii compatible with
experiment can be obtained simultaneously, without recurring to extrapolations. We also find that
a significant portion of the ground-state energy and the narrow width of the first 2+ resonance stem
from many-body correlations that can be interpreted as core-excitation effects.

PACS numbers: 21.60.De, 25.10.+s, 27.20.+n

I. INTRODUCTION

Since the first applications to the elastic scattering
of nucleons on 4He and 10Be [1, 2] roughly ten years
ago, large-scale computations combined with new and
sophisticated theoretical approaches [3–5] have enabled
significant progress in the description of dynamical pro-
cesses involving light and medium-mass nuclei within
the framework of ab initio theory, i.e. by solving the
many-body quantum-mechanical problem of protons and
neutrons interacting through high-quality nuclear force
models. This resulted in high-fidelity predictions for
nucleon-nucleus [5–9] and deuterium-nucleus [10] clus-
tering phenomena and scattering properties, as well as
predictive calculations of binary reactions, including the
3He(α, γ)7Be [11, 12] and 7Be(p, γ)8B [13] radiative cap-
ture rates (important for solar astrophysics), and the
3H(d, n)4He and 3He(d, p)4He fusion processes [14]. A
more recent breakthrough has enabled ab initio calcu-
lations of α-α scattering [4], paving the way for the de-
scription of α scattering and capture reactions during the
helium burning and later evolutionary phases of massive
stars.

One of the main drivers of this progress has been the
development of the no-core shell model with continuum,
or NCSMC [15, 16]. This is an ab initio framework for
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the description of the phenomena of clustering and low-
energy nuclear reactions in light nuclei, which realizes an
efficient description of both the interior and asymptotic
configurations of many-body wave functions. The ap-
proach starts from the wave functions of each of the col-
liding nuclei and of the aggregate system, obtained within
the ab initio no-core shell model (NCSM) [17] by working
in a many-body harmonic oscillator (HO) basis. It then
uses the NCSM static solutions for the aggregate system
and continuous ‘microscopic-cluster’ states, made of pairs
of nuclei in relative motion with respect to each other, as
an over-complete basis to describe the full dynamical so-
lution of the system. In this paper, we present the details
of the general NCSMC formalism for the description of
three-cluster dynamics, as well as extended results for its
recent application to study how many-body correlations
and α+n+n clustering shape the bound and continuum
states of the Borromean 6He nucleus in Ref. [18].

The 6He nucleus is a prominent example of Borromean
quantum ‘halo’, i.e. a weakly-bound state of three parti-
cles (α+n+n) otherwise unbound in pairs, characterized
by “large probability of configurations within classically
forbidden regions of space” [19]. In the last few years, its
binding energy [20] and charge radius [21] have been ex-
perimentally determined with high precision, providing
stringent tests for ab initio theories, including the NC-
SMC approach for three-cluster dynamics presented in
this paper. Further, the β-decay properties of the ground
state (g.s.) of 6He are of great interest for tests of funda-
mental interactions and symmetries. Precision measure-
ments of the half life have recently taken place [22] and
efforts are under way to determine the angular correla-
tion between the emitted electron and neutrino [23].

Less clear is the experimental picture for the low-lying
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continuum of 6He. Aside from a narrow resonance char-
acterized by spin-parity Jπ = 2+, located at 1.8 MeV
above the g.s., the positions, spins and parities of the
excited states of this nucleus are still under discussion.
Resonant-like structures around 4 [24] and 5.6 [25] MeV
of widths Γ ∼ 4 and 10.9 MeV, respectively, as well as a
broad asymmetric bump at ∼ 5 MeV [26], were observed
in the production of excited 6He through charge-exchange
reactions between two fast colliding nuclei. However,
there was disagreement on the nature of the underly-
ing 6He excited state(s). On one hand, in Refs. [24]
and [26] these structures were attributed to dipole ex-
citations compatible with oscillations of the positively-
charged 4He core against the halo neutrons. On the other
hand, the resonant structure of Ref. [25] was identified as
a second 2+ state. More recently, a much narrower 2+

(Γ = 1.6 MeV) state at 2.6 MeV as well as a J = 1 res-
onance (Γ ∼ 2 MeV) of unassigned parity at 5.3 MeV
were populated with the two-neutron transfer reaction
8He(p,3H)6He∗ [27] at the SPIRAL facility in GANIL.
More in general, the low-lying α+n+n continuum plays
a central role in the 4He(2n, γ)6He radiative capture (one
of the mechanism by which stars can overcome the insta-
bility of the five- and eight-nucleon systems and create
heavier nuclei [28]) and of the 3H(3H, 2n)4He reaction,
which contributes to the neutron yield in fusion experi-
ments [29, 30]. It is also an important input in the eval-
uation of nuclear data, e.g., the 9Be(n, 2n) cross section
used in simulations of nuclear heating and material dam-
ages for reactor technologies.

On the theory side, 6He has been the subject of many
investigations (see, e.g., the overviews of Refs. [31–33]
and references therein). Limiting ourselves to ab initio
theory, for the most part the g.s. properties and low-lying
excited spectrum of 6He have been studied within bound-
state methods, based on expansions on six-nucleon basis
states [34–41]. These include: Monte Carlo [34, 35] and
NCSM [36] calculations of the g.s. energy, point-proton
radius, β-decay transition and excitation energies based
on NN + 3N interactions; a large-scale NCSM study
of the matter and point-proton radii with NN interac-
tions [37]; a hyperspherical harmonics study of the cor-
relation between two-neutron separation energy and the
matter and charge radii using low-momentum NN po-
tentials [38]; an investigation of the α+n+n channel form
factors of NCSM g.s. solutions obtained with soft NN in-
teractions and (in a more limited space) 3N forces [39];
and no-core configuration interaction calculations within
a Coulomb Sturmian [40] and natural orbital [41] basis,
starting from the JISP16 NN interaction. In general,
these ab initio calculations describe successfully the in-
terior of the 6He wave function, but are unable to fully
account for its three-cluster asymptotic behavior. As a
consequence, the simultaneous reproduction of the small
binding energy and extended radii of 6He has been a chal-
lenge. Further, the low-lying resonances of 6He have been

treated as bound states, an approximation that is well
justified only for the narrow 2+ first excited state, and
that does not provide information about their widths.
An initial description of α+n+n dynamics within an ab
initio framework was achieved using a soft NN poten-
tial in our earlier studies of Refs. [31] and [32], carried
out in a model space spanned only by continuous mi-
croscopic three-cluster states. This approach naturally
explained the asymptotic configurations of the 6He g.s.
and enabled the description of α+n+n continuum, but
was unable to fully account for short-range many-body
correlations, as clearly indicated by the underestimation
of the g.s. energy. This shortcoming was later addressed
in Ref. [18], where we achieved a simultaneous description
of six-body correlations and α+n+n dynamics working
within the framework of the three-cluster NCSMC, pre-
sented in this paper.

The paper is organized as follows. In Sec. II, we in-
troduce the NCSMC ansatz for systems characterized by
a three-cluster asymptotic behavior, discuss the dynam-
ical equations, and give the algebraic expressions of the
overlap and Hamiltonian couplings between the discrete
and continuous NCSMC basis states for the particular
case of core+n+n systems. We further discuss the proce-
dure used for the solution of the three-cluster dynamical
equations for bound and scattering states, and explain
how we compute the probability density and matter and
point-proton root-mean-square (rms) radii starting from
the obtained NCSMC solutions for core+n+n systems.
In Sec. III, we discuss the results of Ref. [18] more exten-
sively, and present additional results for the 6He system.
Conclusions are drawn in Sec. IV, and detailed expres-
sions for some of the most complex derivations are pre-
sented in Appendix.

II. NCSMC WITH THREE-CLUSTER
CHANNELS

A. Ansatz

The intrinsic motion in a partial-wave of total angu-
lar momentum J , parity π and isospin T of a system of
A nucleons characterized by a three-cluster asymptotic
behavior

|ΨJπT 〉 =
∑
λ

cJ
πT
λ |AλJπT 〉 (1)

+
∑
ν

∫∫
dx dy x2 y2GJ

πT
ν (x, y)Aν |ΦJ

πT
νxy 〉 ,

where cJ
πT
λ and GJ

πT
ν (x, y) are discrete and continuous

variational amplitudes, respectively, |AλJπT 〉 is the λ-th
(antisymmetric) A-nucleon eigenstate of the composite
system in the JπT channel obtained working within the
square-integrable many-body HO basis of the ab initio
NCSM [17], and
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|ΦJ
πT
νxy 〉 =

[(
|A− a23 α1I

π1
1 T1〉 (|a2 α2I

π2
2 T2〉|a3 α3I

π3
3 T3〉)(s23T23)

)(ST ) (
Y`x(η̂23)Y`y (η̂1,23)

)(L)
](JπT )

× δ(x− η23)

xη23

δ(y − η1,23)

yη1,23
(2)

are continuous channel states (first introduced in
Ref. [31]) describing the organization of the nucleons
into three clusters of mass numbers A − a23, a2, and a3

(a23 = a2 + a3 < A), respectively. Finally, the operator
Aν is an appropriate intercluster antisymmetrizer intro-
duced to guarantee the exact preservation of the Pauli
exclusion principle.

In Eq. (2), |A − a23 α1I
π1
1 T1〉, |a2 α2I

π2
2 T2〉 and

|a3 α3I
π3
3 T3〉 represent the microscopic (antisymmetric)

wave functions of the three nuclear fragments, which are
also obtained within the NCSM. They are labeled by the
angular momentum, parity, isospin and energy quantum
numbers Iπii , Ti, and αi, respectively, with i = 1, 2, 3.
Additional quantum numbers characterizing the basis

states (2) are the spins ~s23 = ~I2 + ~I3 and ~S = ~I1 + ~s23,

the orbital angular momenta `x, `y and ~L = ~̀
x + ~̀

y,

and the isospin ~T23 = ~T2 + ~T3. In our notation, all
these quantum numbers are grouped under the cumula-
tive index ν = {A−a23 α1I

π1
1 T1; a2 α2I

π2
2 T2; a3 α3I

π3
3 T3;

s23 T23 S `x `y L}. Further, the inter-cluster relative mo-
tion is described with the help of the Jacobi coordinates
~η1,23 and ~η23 where

~η1,23 = η1,23η̂1,23 (3)

=
√

a23

A(A−a23)

A−a23∑
i=1

~ri −
√

A−a23

Aa23

A∑
j=A−a23+1

~rj

is the relative vector proportional to the separation be-
tween the center of mass (c.m.) of the first cluster and
that of the residual two fragments, and

~η23 = η23η̂23 (4)

=
√

a3

a23 a2

A−a3∑
i=A−a23+1

~ri −
√

a2

a23 a3

A∑
j=A−a3+1

~rj

is the relative coordinate proportional to the distance
between the centers of mass of cluster 2 and 3 (see Fig. 1),
where ~ri denotes the position vector of the i-th nucleon.

The NCSM eigenstates appearing in Eqs. (1) and (2)
are obtained by diagonalizing the A-, (A − a23)-, a2-,
and a3-nucleon intrinsic Hamiltonians within complete
sets of many-body HO basis states, the size of which is
defined by the maximum number Nmax of HO quanta
above the lowest configuration shared by the nucleons.
The same HO frequency ~Ω is used for the composite
nucleus and all three clusters, and the model-space size
Nmax is identical (differs by one) for states of the same
(opposite) parity.

FIG. 1. (Color online) We show the Jacobi coordinates ~η1,23
(proportional to the vector between the c.m. of the first cluster
and that of the residual two fragments) and ~η23 (proportional
to the vector between the c.m. of clusters 2 and 3). In the
figure, a case with three clusters of four, two and one nucleons
are shown, however the formalism is completely general and
can be used to describe any three cluster configuration.

The NCSMC ansatz of Eq. (1) can be seen as an ex-
ample of generalized cluster expansion containing single
and three-body cluster terms. In general such expan-
sion could also contain binary-cluster and/or even higher-
body cluster terms, chosen according to the particle-
decay channels characterizing the system under consid-
eration. It allows to capture, within a unified consis-
tent framework, both the single-particle dynamics and
microscopic-cluster picture of nuclei. For systems in the
proximity of a three-body particle-decay channel, but
away from two- or higher-body thresholds, Eq. (1) rep-
resents a good ansatz, which converges to the exact solu-
tion as Nmax → ∞. In particular, the square-integrable
NCSM eigenstates |AλJπT 〉 of the composite nucleus
provide an efficient description of the short- to medium-
range A-body structure of the wave function, while the
microscopic three-cluster channels |ΦJπTνxy 〉 make the the-
ory able to handle the long-range and scattering physics
of the system.

B. Dynamical equations

Adopting the ansatz (1) for the many-body wave func-
tion and working in the model space spanned by the set of
discrete |AλJπT 〉 and continuous Aν |ΦJ

πT
νxy 〉 basis states,

the Schrödinger equation in each partial wave channel
can be mapped onto a generalized eigenvalue problem,
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schematically given by

(H− EN)C = 0 , (5)

where E is the total energy of the system in the c.m.
reference frame. To simplify the formalism, the speci-
fication of the partial wave under consideration (JπT )
is now (and in the remainder of the paper) implied. In
Eq. (5)

Hλλ′

νxy,ν′x′y′ =

(
Eλδλλ′ h̄λν′(x

′, y′)

h̄λ′ν(x, y) Hνν′(x, y, x′, y′)

)
, (6)

and

Nλλ′

νxy,ν′x′y′ =

(
δλλ′ ḡλν′(x

′, y′)

ḡλ′ν(x, y) ∆νν′(x, y, x
′, y′)

)
, (7)

are two-by-two block-matrices representing, respectively,
the NCSMC Hamiltonian and norm (or overlap) kernels,
i.e. the matrix elements of the Hamiltonian and identity
operators over the set of discrete and continuous basis
states spanning the model space. Specifically, the upper
diagonal blocks are NCSM eigenstates of the A-nucleon
Hamiltonian and are trivially given by the diagonal ma-
trix of the corresponding eigenenergies Eλ and the iden-
tity matrix, respectively. Analogously the lower diagonal
blocks

Hνν′(x, y, x′, y′) =
[
N− 1

2HN− 1
2

]
νν′

(x, y, x′, y′) , (8)

∆νν′(x, y, x
′, y′) = δνν′

δ(x− x′)
xx′

δ(y − y′)
yy′

, (9)

are orthonormalized integration kernels obtained from
the Hamiltonian and overlap matrix elements evalu-
ated on the continuous basis states Aν |ΦJ

πT
νxy 〉, i.e.

Hνν′(x, y, x′, y′) and Nνν′(x, y, x′, y′). Detailed expres-
sions for these kernels can be found in Ref. [31], where
we introduced the formalism for the description of three-
cluster dynamics based solely on expansions over three-
cluster channels states of the type of Eq. (2).

The off-diagonal blocks of Eqs. (6) and (7) are given by
the couplings between the discrete and continuous sectors
of the basis, with the cluster form factor, ḡλν(x, y) =

[gN− 1
2 ]λν(x, y), and coupling form factor, h̄λν(x, y) =

[hN− 1
2 ]λν(x, y), defined in terms of the matrix elements

gλν(x, y) = 〈AλJπT |Aν |ΦJ
πT
νxy 〉 , (10)

hλν(x, y) = 〈AλJπT |HAν |ΦJ
πT
νxy 〉 , (11)

where H is the microscopic A-nucleon Hamiltonian. The
general derivation of these three-cluster form factors is
outlined in Sec. II C, together with their algebraic ex-
pressions for the specialized case in which the two lighter
fragments are single nucleons.

Finally,

Cλ
νxy =

(
cλ

χν(x, y)

)
(12)

is the vector of the expansion ‘coefficients’, where the
relative wave functions χν(x, y) are related to the initial
unknown continuous amplitudes through

Gν(x, y) = [N− 1
2χ]ν(x, y). (13)

These are obtained by solving the NCSMC dynamical
equations as discussed in Sec. II D.

C. Form factors

In this section we discuss in more detail the derivation
of the form factors in configuration space introduced in
Sec. II B, starting with the coupling form factor hλν(x, y)
of Eq. (11). This can be expressed in terms of the cluster
form factor gλν(x, y) and three potential form factors

vQλν(x, y) = 〈AλJπT |AνVQ|ΦJ
πT
νxy 〉 , (14)

with Q a generic notation for either 1, 23 or 23 or 3N , as

hλν(x, y) =
(
Trel + V̄C + Eα1

+ Eα2
+ Eα3

)
gλν(x, y)

+ v1,23
λν (x, y) + v23

λν(x, y) + v3N
λν (x, y) .

(15)

The above expression was obtained by separating the mi-
croscopic A-nucleon Hamiltonian into its relative-motion,
average Coulomb and clusters’ components according to

H = Trel + V̄C + Vrel +H(A−a23) +H(a2) +H(a3) , (16)

and taking advantage of the fact that the antisym-
metrization operator commutes with H. Trel is the rel-
ative kinetic energy operator for the three-body sys-
tem, V̄C = V̄ 12

C + V̄ 13
C + V̄ 23

C is the sum of the pair-
wise average Coulomb interactions among the three clus-
ters, and Eαi is the eigenenergy of the i-th cluster, ob-
tained by diagonalizing their respective intrinsic Hamil-
tonians, H(A−a23), H(a2) and H(a3). Further, Vrel =

V1,23 + V23 + V3N denotes the relative potential, with

V1,23 =

A−a23∑
i=1

A∑
j=A−a23+1

(
V NNij − V̄ 12

C + V̄ 13
C

(A− a23)a23

)
,

(17)

V23 =

A−a3∑
k=A−a23+1

A∑
l=A−a3+1

(
V NNkl − V̄ 23

C

a2a3

)
, (18)

and V3N the inter-cluster interaction due to the three-
nucleon force, which in general is part of a realistic Hamil-
tonian. In Eqs. (17) and (18), the notation V NN stands
for the nuclear plus point-Coulomb two-body potential.
We note that Vrel is a short-range operator. Indeed, be-
cause of the subtraction of V̄C, the overall Coulomb con-
tribution decreases as the inverse square of the distances
between pairs of clusters.
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In the present paper we will consider only the nucleon-
nucleon (NN) component of the inter-cluster interaction
and disregard, for the time being, the term V3N . The in-
clusion of the three-nucleon force into the formalism, al-
though computationally much more involved, is straight-
forward and will be the matter of future investigations.
In the remainder of the paper, we will also omit the av-
erage Coulomb potential V̄C , which is null for neutral
systems such as the 4He+n+n investigated here. The
treatment of charged system is nevertheless possible (at
least in an approximate way) and can be implemented
along the same lines of Ref. [42].

The use of Jacobi coordinates and translational in-
variant NCSM eigenstates of the A-nucleon system and
microscopic-cluster states represents the ‘natural’ choice
for the computation of the configuration-space form fac-
tors of Eqs. (10) and (14). However, such a relative-
coordinate formalism is only practical for few-nucleon
systems. To access p-shell nuclei, it is more efficient

to work with single-particle coordinates and Slater-
determinant (SD) basis states. As we outline in the fol-
lowing, the unique properties of the HO basis allows us
to work with SD functions and still preserve the transla-
tional invariance of the form factors.

In a first step, we compute matrix elements analogous
to Eqs. (10) and (14) but evaluated in an HO SD basis,
i.e.

SD
〈AλJπT |Ot.i.|ΦJ

πT
γnxny 〉SD

, (19)

where Ot.i. = Aν , AνV1,23, AνV23 is a translational in-
variant operator. The SD NCSM eigenstates of the
A-nucleon system factorize into the product of their
translational-invariant counterparts with the 0~Ω HO

motion of their c.m. coordinate ~R
(A)
c.m.,

|AλJπT 〉SD = |AλJπT 〉R00(R(A)
c.m.)Y00(R̂(A)

c.m.) . (20)

At the same time, the kets in Eq. (19) are a set of HO three-cluster channel states, defined as

|ΦJ
πT
γnxny 〉SD =

[(
|A− a23 α1I

π1
1 T1〉SD

(
Y`x(η̂23) (|a2α2I

π2
2 T2〉|a3α3I

π3
3 T3〉)(s23T23)

)(J23T23)
)(ZT )

Y`y (R̂a23
c.m.)

](JπT )

×Rnx`x(η23)Rny`y (Ra23
c.m.) , (21)

describing the motion of the heaviest of the two clusters
and of the system formed by the second and third clusters
in the ‘laboratory’ reference frame. Here

~R(A−a23)
c.m. = R(A−a23)

c.m. R̂(A−a23)
c.m. =

1√
A− a23

A−a23∑
i=1

~ri ,

(22)

~R(a23)
c.m. = R(a23)

c.m. R̂
(a23)
c.m. =

1
√
a23

A∑
j=A−a23+1

~rj . (23)

are respectively the coordinates of the c.m. of the first
and last two clusters, |A − a23 α1I

π1
1 T1〉SD are the SD

NCSM eigenstates of the (A− a23)-nucleon system, i.e.

|A− a23 α1I
π1
1 T1〉SD (24)

= |A− a23 α1I
π1
1 T1〉R00(R(A−a23)

c.m. )Y00(R̂(A−a23)
c.m. ) ,

and Rnx`x(η23) and Rny`y (Ra23
c.m.) are HO radial wave

functions.
The HO channel states of Eq. (21) differ from

the original basis of Eq. (2) also in the an-
gular momentum coupling scheme, as reflected in
the new channel index γ = {A − a23 α1I

π1
1 T1;

a2 α2I
π2
2 T2;a3 α3I

π3
3 T3; `x s23J23 T23 Z `y}. Here J23 de-

notes the total (orbital plus spin) angular momentum
quantum number of the system formed by the second

and third clusters and ~Z = ~I1 + ~J23 a channel spin. The

use of different coupling schemes is purely dictated by
convenience, as it will become apparent from Secs. II C 1
and II D where we discuss, respectively, the derivation of
the matrix elements (19) in the special instance of a core
nucleus plus two single nucleons (a2, a3 = 1), and the
solution of the NCSMC dynamical equations.

Both the states of Eqs. (20) and (21) contain the spu-
rious motion of the center of mass. However, by ex-
ploiting the orthogonal transformation between the pairs

of coordinates {~R(A−a23)
c.m. , ~R

(a23)
c.m. } and {~R(A)

c.m., ~η1,23}, and
performing the transformation to the angular momen-
tum coupling scheme of Eq. (2) we recover the purely
translationally-invariant matrix elements over the origi-
nal channel states (2), i.e.

〈AλJπT |Ot.i.|ΦJ
πT
νxy 〉 =

∑
nxny

Rnx`x(x)Rny`y (y)
∑
ZJ23

ẐĴ23ŜL̂

× (−1)I1+J23+J+S+Z+`x+`y

×

 I1 s23 S

`x Z J23


 S `x Z

`y J L


× SD

〈AλJπT |Ot.i.|ΦJ
πT
γnxny 〉SD

〈ny `y 0 0 `y | 0 0ny `y `y〉 a23
A−a23

.

(25)
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Here, Ẑ =
√

2Z + 1, · · · etc., the generalized HO bracket
due to the c.m. motion is simply given by

〈ny `y 0 0 `y | 0 0ny `y `y〉 a23
A−a23

=(−1)`y
(

a23

A− a23

)
2ny+`y

2 ,

(26)

and we made use of the closure properties of the HO ra-
dial wave functions to represent the Dirac’s δ-function
of Eq. (2). Indeed, due to the finite range of the
square-integrable A-nucleon basis states |AλJπT 〉, the
configuration-space matrix elements of the translational
invariant operators Aν and HAν of Eqs. (10) and (11)
are localized and can be evaluated within an HO model
space.

1. Matrix elements for core+n+n systems

In this section we give an example of how SD form-
factor matrix elements of the type of Eq. (19) can be
derived working within the second quantization formal-
ism. We do this for the special case in which, both in the
initial and in the final state, two out of the three clus-
ters are single neutrons (such as the 4He+n+n system
investigated in this paper), and in particular we choose
a2, a3 = 1.

As pointed out in Sec. II.E.1 of Ref. [31], in such a
case it is convenient to incorporate the trivial antisym-
metrization for the exchange of nucleons A− 1 and A in
the definition of the channel basis of Eq. (2). This is sim-
ply accomplished by selecting only the states for which
(−1)`x+s23+T23 = −1. The inter-cluster antisymmetrizer
then reduces to the anstisymmetrization operator for a
binary (A− 2, 2) mass partition, A(A−2,2) (see, e.g., Eq.
(4) of Ref. [43]).

Further, it is useful to introduce a channel basis defined
entirely in single-particle coordinates, i.e.

|ΦJ
πT
κab
〉SD =

[
|A− 2α1I1T1〉SD

×
(
|na`aja 1

2 〉|nb`bjb
1
2 〉
)(IT23)

](JπT )

. (27)

Here, |na`aja 1
2 〉 and |nb`bjb 1

2 〉 are single-particle HO
states of nucleon A and A − 1, respectively, and κab =
{A− 2α1I

π1
1 T1; na`aja

1
2 ;nb`bjb

1
2 ; IT23}. Within this ba-

sis, the matrix elements of the translational-invariant op-
erators Ot.i. = A(A−2,2), and A(A−2,2)V1,23 can be easily
obtained in the second quantization formalism, and the
corresponding SD matrix elements of Eq. (19) can then
be recovered by means of a linear transformation as de-
scribed in detail in Sec. II.E.1 of Ref. [31].

Taking into account that the application of A(A−2,2)

on the fully antisymmetric A-nucleon bra simply yields
the square root of the binomial coefficient

(
A
2

)
, we then

obtain

SD

〈
AλJπT

∣∣∣A2
(A−2,2)

∣∣∣ΦJπTκab

〉
SD

=
1√
2

∑
MI1

MI
mjamjb

CJMI1MI1
IMI

× CIMI
jamja jbmjb

CTMT

T1MT1
T23MT23

C
T23MT23
1
2mta

1
2mtb

× SD〈AλJ
πT |a†iaa

†
ib
|A−2α1I

π1
1 T1〉SD , (28)

and

SD

〈
AλJπT

∣∣A(A−2,2)V1,23
∣∣ΦJπTκab

〉
SD

= − 1√
2

∑
iāib̄ic̄ic̄′
MI1

MI
mjamjb

〈iāic̄|V NN |ic̄′ia〉CJMI1MI1
IMI

× CIMI
jamja jbmjb

CTMT

T1MT1
T23MT23

C
T23MT23
1
2mta

1
2mtb

× SD〈AλJ
πT |a†iāa

†
ic̄
a†ibaic̄′ |A−2α1I

π1
1 T1〉SD , (29)

where CJMj1mj1 j2mj2
are Clebsch-Gordan coefficients, a†

and a are creation and annihilation operators, respec-
tively, and iq = {nq`qjqmjq

1
2mtq} are single-particle

quantum numbers. Note that in Eq. (29), there are sum-
mations over the indexes iq̄ and the bar is only meant
to differentiate them better from the the ones that corre-
spond to the matrix element being calculated, i.e., from
ia and ib.

The above matrix elements had already being derived
and utilized in the computation of the cluster and cou-
pling form factors required for the unified description of
6Li structure and d+4He dynamics with chiral two- and
three-nucleon forces [10], as well as in the description of
d+7Li scattering based on a high-precision NN poten-
tial [44]. Here we present for the first time their algebraic
expressions.

Finally, different from the NCSMC formalism for the
description of deuterium-nucleus collisions, where the dy-
namics of the last two nucleons is already taken into ac-
count in the calculation of the (bound) deuterium eigen-
states, to obtain the three-cluster coupling form factor
of Eq.(15) one has also to compute the potential form
factor v23

λν(x, y) due to the V23 interaction of Eq. (18).
In the present (neutral) example this is simply given by
the action of the operator VA−1,A = V (x) on the cluster
form factor, i.e.,

v23
λν(x, y) = V (x) gλν(x, y) . (30)
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D. Solution of the dynamical equations

Rather than solving directly Eq. (5) we prefer to work
with the set of Schrödinger equations

(
H− E

)
C = 0 , (31)

where H is the orthogonalized NCSMC Hamiltonian,

H
λλ′

νxy,ν′x′y′ =
[
N−

1
2 HN−

1
2

]λλ′
νxy,ν′x′y′

=

 H
(11)

λλ′ H
(12)

λν′ (x′, y′)

H
(21)

λ′ν (x, y) H
(22)

νν′ (x, y, x′, y′)

 ,

(32)

N−
1
2 is the inverse square root of the norm kernel of

Eq. (7), and the orthonormal wave functions are given
by

C
λ′

ν′x′y′ =
[
N

1
2C
]λ′
ν′x′y′

=

(
cλ′

χν′(x
′, y′)

)
. (33)

Detailed expressions of N−
1
2 and of the elements of the

orthogonalized Hamiltonian kernel and wave function of
of Eqs. (32) and (33), respectively, can be found in Ap-
pendix A.

Further, we introduce the set of hyperspherical coor-
dinates

ρ =
√
x2 + y2 and α = arctan

x

y
, (34)

and reformulate Eq. (31) by taking advantage of the clo-
sure and orthogonality properties of the complete set of
functions (see also Appendix B and Sec. II.C of Ref. [31])

φ
`x,`y
K (α) = N

`x`y
K (sinα)`x(cosα)`yP

`x+ 1
2 ,`y+ 1

2
n (cos 2α) .

(35)
Together with the bipolar spherical harmonics

(Y`x(x̂)Y`y (ŷ))
(L)
ML

, these form the hyperspherical
harmonics functions

YK`x`yLML
(α, x̂, ŷ) = φ

`x,`y
K (α)

(
Y`x(x̂)Y`y (ŷ)

)(L)

ML
, (36)

i.e., the eigenfunctions with eigenvalue K(K + 4) of the
grand-angular part of the relative kinetic energy op-
erator for a three-body system. In the definition of

Eq. (35), Pα,βn (ξ) are Jacobi polynomials, N
`x`y
K normal-

ization constants, and K = 2n + `x + `y, with n a pos-
itive integer, is the hypermomentum quantum number.
Specifically, by i) using the expansion

χν′(ρ
′, α′) =

1

ρ′5/2

∑
K′

uν′K′(ρ
′)φ

`′x,`
′
y

K′ (α′) (37)

for the orthogonalized continuous amplitudes, ii) mul-

tiplying the lower block of Eq. (31) by φ
`x,`y
K (α), and

iii) performing all integrations over the hyperangular
variables α and α′, we arrive at the set of coupled Bloch-
Schrödinger equations


∑
λ′

H
(11)

λλ′ cλ′ +
∑
ν′K′

∫
dρ′ρ′5/2 H

(12)

λν′K′(ρ
′)uν′K′(ρ

′)− E cλ = 0

∑
λ′

H
(21)

λ′νK(ρ) cλ′ +
∑
ν′K′

∫
dρ′ρ′5/2 H

(22)

νK,ν′K′(ρ, ρ
′)uν′K′(ρ

′) + (LνK(ρ)− E) ρ−5/2 uνK(ρ) = LνK(ρ) ρ−5/2 uext
νK (ρ) .

(38)

Here, the elements of the orthogonalized Hamiltonian
kernel in the in the hyperradial variables are given by

H
(12)

λνK(ρ) = H
†(21)

λνK (ρ) (39)

=

∫
dα(sinα)2(cosα)2φ

∗`x,`y
K (α)H

(12)

λν (ρ, α)

and

H
(22)

νK,ν′K′(ρ, ρ
′)=

∫∫
dα dα′(sinα)2(cosα)2(sinα′)2(cosα′)2

× φ∗`x,`yK (α)H
(22)

νν′ (ρ, α, ρ′, α′)φ
′`′x,`

′
y

K (α′) .

(40)

To arrive at Eq. (38) we have also divided the configura-
tion space into two regions by assuming that the Coulomb
interaction (if present) is the only interaction experienced
by the clusters beyond the hyperradius ρ = a (i.e., in the
external region), and re-framed the three-cluster problem
within the microscopic R-matrix formalism [45]. This
is accomplished by adding to and subtracting from the
Hamiltonian matrix the operator L defined by the two-
by-two block matrix

LλνKρ =

(
0 0

0 LνK(ρ)

)
, (41)
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where the lower-diagonal block is given by the Bloch sur-
face operator (LνK being arbitrary constants),

LνK(ρ) =
~2

2m
δ(ρ− a)

1

ρ5/2

(
∂

∂ρ
− LνK

ρ

)
ρ5/2 . (42)

The operator of Eq. (42) allows one to conveniently im-
plement the matching between internal and external so-
lutions at the hyperradius ρ = a, and has the further
functions of restoring the hermiticity of the Hamiltonian
matrix in the internal region and enforcing the continu-
ity of the the derivative of the hyperradial wave function
at the matching hyperradius. Provided that the match-
ing hyperradius a lies outside of the short-to-mid range
where the discrete |AλJπT 〉 basis states contribute, only
the continuous component of the NCSMC wave function
is present in the external region. Therefore, to find the
solutions of the three-cluster NCSMC equations it is suf-
ficient to match the hyperradial wave function uνK(ρ)
entering Eq. (37) with the known exact solutions of the
three-body Schrödinger equation in the external region.
For bound states of three-body neutral systems (such as
the one investigated in this paper) these are entirely de-
scribed by the hyperradial wave functions

uext
νK(ρ) = BνK

√
kρKK+2(kρ) , (43)

where KK+2(kρ) are modified Bessel functions of the sec-
ond kind, k2 = −2mE/~2 is the wave number, and BKν
are constants. The study of continuum states requires

the use of a different set of external wave functions

uJ
πT
Kν (ρ) ∝

[
H−K(kρ)δνν′δKK′ − SνK,ν′K′H+

K(kρ)
]

(44)

with H± being the incoming and outgoing functions for
neutral systems [42], and S the three-body scattering ma-
trix of the process.

Finally, the discrete coefficients cλ and hyperradial
wave functions uνK(ρ) can be conveniently obtained by
applying to Eq. (38) the Lagrange-mesh method [46–50],
in an analogous way to that presented in Sec. II.D and
Appendix C of Ref. [31].

E. Probability density

For a three-body system it is useful to define the
probability density in terms of the Jacobi coordinates of
Eqs. (3) and (4). This provides a convenient visual de-
scription of the distribution of the clusters with respect
to one another. In particular, it highlights which config-
uration or configurations are preferred by the system.

In general, this probability density is given by

P (x, y) = x2y2|〈ΨJπT |δ(x− η23)δ(y − η1,23)|ΨJπT 〉|2.
(45)

However, given that the NCSMC wave function con-
tains not only a cluster part but also a many-body con-
tribution, in our formalism the probability density of
Eq. (45) is computed in an approximate way. We project
the whole wave function into the cluster basis, i.e.,

|ΨJπT
3B 〉 =

∑
ν

∫∫
dx dy x2 y2

[∑
ν′

∫∫
dx′dy′x′2y′2N−1/2(x, y, x′, y′)χ̃ν′(ρ

′, α′)

]
Aν |ΦJ

πT
νxy 〉 , (46)

where |ΨJπT
3B 〉 is the projected wave function and the ex-

pression enclosed by the square brackets represents the
coefficients of the expansion which are analogous to the
amplitudes GJ

πT
ν of Eq. (1). The coefficients χ̃ν (anal-

ogous to χν within the cluster part of the basis) can be
calculated through the projection:

χ̃ν(ρ, α) = 〈ΨJπT |Aν |ΦJ
πT
ν′x′y′〉 (47)

where |ΨJπT 〉 is the full NCSMC wave function. Then,
the probability density can be obtained by using |ΨJπT

3B 〉
in Eq. (45) and reduces to

P (x, y) ∼ x2y2
∑
ν

χ̃2
ν(x, y), (48)

which can be expressed in terms of the NCSMC wave
function coefficients cλ and χν(x, y) (related to Gν(x, y)
through Eq. (13)) by substituting Eq. (1) in Eq.(47) when
calculating χ̃2

ν(x, y), i.e.,

P (x, y) ∼ x2y2
∑
ν

[
χν(x, y)2

+
∑
λλ′

cλcλ′ ḡλν(x, y)ḡλ′ν(x, y)

+ 2
∑
λ

cλḡλν(x, y)χν(x, y)
]
. (49)

In order to have a more physical idea of the relative
positions of the clusters, the probability distribution is
typically plotted in terms of relative distances instead of
Jacobi coordinates.

The level of approximation within Eq. (49) can be esti-
mated by calculating the integral of the probability den-
sity. Given that the wave function is normalized, the
deviation of such integral from unity represents the part
of the wave function that is not taken into account within
this approximation.
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F. Radii

Root-mean square matter and point-proton radii are
essential observables in studying the spatial extension
and how inhomogeneous is their distribution of protons
and neutrons. In general, the matter radius operator is
defined as

r2
m ≡

1

A

A∑
i=1

(~ri − ~Rcm)2, (50)

where Rcm is the c.m. of the system, then the rms matter
radius is given by the the square root of its expectation
value. However, for a three-cluster system, such as 6He, it
can be decomposed into a relative part, which depends on
the relative distance among the clusters and an internal
part that acts on their inner coordinates. In particular,
when two of the clusters are single nucleons, the operator
can be written as

r2
m =

1

A
ρ2 +

A− 2

A
r2(c)
m , (51)

where r
2(c)
m is the rms matter radius operator of the A−2-

nucleon core.

When calculating the rms matter radius within the
NCSMC it is convenient to use both forms of the opera-
tor. Indeed, while for the discrete part of the basis using
the general expression (50) is more appropriate, it is nat-
ural to use the cluster decomposition of (51) when the
three-cluster part of the basis is involved.

In the case of the point-proton radius we can attempt a
similar cluster decomposition. While in this case it is not
possible to obtain a simple general expression analogous
to (51), for the particular case in which the core is the
only cluster with electric charge and it is an isospin zero
state, the point-proton radius can be reduced to:

r2
pp ≡

1

Z

A∑
i=1

(~ri − ~Rcm)2 (1 + τ
(z)
i )

2
= r2(c)

pp +R2(c) (52)

where Z is the total number of protons, r
(c)
pp is the rms

point-proton radius operator of the core and R(c) =√
2

A(A−2)ηc,nn is the distance between the c.m. of the

core and that of the whole system. Similar to the matter
radius, to calculate the expectation value on the NC-
SMC wave function, the general definition of the opera-
tor (given by the central part of Eq. (52)) is used when
dealing with the composite part of the basis while the re-
duced form on the right of (52) is used when the cluster
basis is involved.

The specific expressions for the expectation values of
these operators when using NCSMC wave functions can
be found in Appendix B.

III. APPLICATION TO 6He

In the following we discuss the application of the NC-
SMC approach for three-cluster dynamics to the descrip-
tion of the ground and continuum states of the Bor-
romean 6He nucleus, first published in Ref. [18], more
extensively as well as additional results.

The adopted NCSMC model space includes the first
nine positive-parity, and first six negative-parity square-
integrable eigenstates of 6He with J ≤ 2, obtained by di-
agonalizing the Hamiltonian within the six-body HO ba-
sis of the NCSM, as well as 4He(g.s.)+n+n three-cluster
channels for which the 4He core is also described within
the NCSM. Calculations are performed using the chiral
N3LO NN potential or Ref. [51] softened via the simi-
larity renormalization group (SRG) method [52–54], and
disregard for the time being 3N initial and SRG-induced
components of the nuclear Hamiltonian. This defines a
new NN interaction, denoted SRG-N3LO NN , unitar-
ily equivalent to the initial potential in the two-nucleon
sector only. Specifically, we adopt the resolution-scale
parameters λSRG = 1.5 fm−1 and λSRG = 2.0 fm−1, and
the same ~Ω =14 and 20 MeV HO frequencies used in
Refs. [31, 32] and [10], respectively. The results ob-
tained with the λSRG = 1.5 fm−1 resolution scale pro-
vide a benchmark for the method given that, with such a
soft potential, reliable values for the g.s. and 2+

1 energies
can be extracted, by extrapolation to the ‘infinite’ space,
from a NCSM calculation. Furthermore, the results ob-
tained with this potential can be directly compared with
those of Refs. [31, 32], using expansions based exclusively
on 4He(g.s.)+n+n microscopic cluster states. Such com-
parison allows us to better understand the importance
of the short range correlations that were missing in that
calculation. Conversely, calculations carried out with the
λSRG = 2.0 fm−1 resolution scale allow for a ‘more real-
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He
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He
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π
= 0

+
 ground state

(b)
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 = 2.0 fm
−1

6
He
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FIG. 2. Dependence of the NCSM 6He and 4He Jπ = 0+

ground state energies E(g.s.) on the HO model space size
Nmax for the SRG-N3LO NN potential with (a) λSRG = 1.5
fm−1 and ~Ω = 14 MeV, and (b) λSRG = 2.0 fm−1 and ~Ω =
20 MeV.
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22
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+
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+

31
+

FIG. 3. Dependence of the NCSM 6He Jπ = 0+ excitation energies (Ex) on the HO model space size Nmax for the SRG-N3LO
NN potential with (a) λSRG = 1.5 fm−1 and ~Ω = 14 MeV, and (b) λSRG = 2.0 fm−1 and ~Ω = 20 MeV.

istic’ study of the g.s. properties of 6He. Indeed, at this
momentum scale the net effects of the disregarded initial
and SRG-induced 3N interaction is mostly suppressed
in nuclei up to mass number A = 6, leading to binding
energies close to experiment [55]. Furthermore, for this
resolution scale two- and higher-body SRG corrections to
the 3H and 4He matter radii computed with bare oper-
ators (as done in the present work) have been shown to
be negligible (less than 1%) [56].

A. 4He and 6He square integrable eigenstates

In this section, we discuss our results for the NCSM
eigenstates used as input for the present NCSMC inves-
tigation of the Jπ = 0+ g.s. of 6He and low-lying α+n+n
continuum for partial waves up to Jπ = 2±.

The computed energy of the 6He g.s. within the NCSM
is presented in Fig. 2 as a function of the HO basis size
Nmax. Results obtained with λSRG = 1.5 fm−1 and ~Ω =
14 MeV, shown in panel (a), are compared with those in
panel (b) for λSRG = 2.0 fm−1 and ~Ω = 20 MeV. For
the softer (λSRG = 1.5 fm−1) potential, the variational
NCSM calculations converge rapidly and can be easily
extrapolated toNmax →∞ using an exponential function
of the type

E(Nmax) = E∞ + ae−bNmax . (53)

This yields E(g.s.)= −29.84(4) [31], which is about
0.6 MeV overbound with respect to experiment. The
convergence rate is clearly slower for the λSRG = 2.0
fm−1 interaction. Nevertheless, also in this case, the

infinite-space g.s. energy can be accurately obtained us-
ing the extrapolation techniques recently developed for
the NCSM [57–61]. This was recently demonstrated by
Sääf and Forssén, who obtained the extrapolated value
of E(g.s.)= −29.20(11) MeV [39] in close agreement with
experiment (-29.268 MeV). Also shown in Fig. 2 are the
corresponding results for the energy of the 4He g.s., which
is used to build the microscopic cluster states of Eq. (2).
For both λSRG values convergence is achieved within the
largest HO model space, yielding binding energies close
to experiment, as was already shown in Ref. [55].

Figure 3 shows the convergence pattern with respect
to the HO basis size of the excitation energies for the
first 10 positive-parity NCSM eigenstates of 6He. These
include four 0+ , two 1+ and three 2+ states, and one
3+ state. This latter state is not used in the present NC-
SMC calculations. As before, the results obtained with

TABLE I. Absolute energies of the first 9 positive-parity
states with J ≤ 2 for 6He calculated within the NCSM for
a model space of Nmax=12.

Jπ λSRG = 1.5 fm−1 λSRG = 2.0 fm−1

0+ −29.75 −28.72
−22.73 −20.10
−20.46 −15.25
−19.04 −13.39

1+ −24.25 −22.28
−18.77 −13.57

2+ −27.40 −26.24
−24.78 −22.99
−19.22 −13.84



11

TABLE II. Absolute energies of the first 6 negative-parity
states with J ≤ 2 for 6He calculated within the NCSM for a
model space of Nmax=13.

Jπ λSRG = 1.5 fm−1 λSRG = 2.0 fm−1

0− −21.40 −17.84
1− −23.84 −20.97

−21.63 −17.98
−19.90 −16.12

2− −23.33 −20.45
−19.67 −15.96

the λSRG = 1.5 and 2.0 fm−1 interactions are shown in
panel (a) and (b), respectively. Except for the 2+

1 state,
which presents a very mild Nmax dependence, the conver-
gence rate is steady but slow, and tends to deteriorate as
the excitation energy increases. The convergence rate is
once again much faster for the softer potential, which also
generates a more compressed excitation spectrum com-
pared to the λSRG = 2.0 fm−1 interaction. The overall
picture is similar for the negative-parity states. A sum-
mary of the NCSM eigenenergies used as input in the
largest model space adopted is given in Tables I and II
for positive and negative parities, respectively.

B. 6He ground state within the NCSMC

The convergence of the 6He g.s. energy computed
within the NCSMC in terms of the size of the model
space is compared with the corresponding NCSM results
in Fig. 4. More detailed comparisons (including with the
results obtained working in a cluster basis alone [31]) are
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(b)
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(NCSMC)

∞

6
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FIG. 4. Same as Fig. 2 including also the dependence of
the NCSMC 6He Jπ = 0+ ground state energy (E) on the
HO model space size Nmax for the SRG-evolved N3LO NN
potential with (a) λSRG = 1.5 fm−1 and ~Ω = 14 MeV, and
(b) λSRG = 2.0 fm−1 and ~Ω = 20 MeV. The extrapolated
Nmax →∞ NCSM 6He is shown as a band of which the width
represents the extrapolation uncertainty.

presented in Tables III and IV for the λSRG = 1.5 fm−1

and λSRG = 2.0 fm−1 interactions, respectively. The 3rd

column of Table III shows the energy of the ground state
of 4He within the NCSM, which defines the three-body
breakup energy threshold Eth(α + n+ n) for all present
6He calculations. This is clearly already converged at the
largest adopted model space size. The chosen values of
the SRG resolution scale λSRG yield an almost identical
g.s. energy for 4He, close to the experimental value of
−28.296 MeV [62]. In general, however, the SRG-N3LO
NN interaction is not unitarily equivalent to the original
N3LO NN potential in the A > 2 nucleon sector. The
interested readers can find the dependence of the 4He
g.s. energy on the λSRG momentum scale in Ref. [63].
The next three columns show the energy of the g.s. of
6He calculated within the 4He(g.s.)+n+n cluster basis of
Ref. [31], the NCSM and NCSMC. We can see that the
fastest convergence is reached within the NCSMC. Fur-
thermore, while the results from Ref. [31] also present a
weak dependence on the HO model space size, they do
not converge to the correct energy, which can be esti-
mated by extrapolating to the infinity model space the
NCSM results. This proves that the many-body correla-
tions disregarded when using the cluster basis alone are
indeed necessary for the correct description of the system
and are correctly taken into account within the NCSMC.
While the convergence of the NCSMC 6He g.s. energy
with respect to the model space size is shown here for
the case in which only one eigenstate of the composite
system is included in the calculations, we also present
the result obtained by including four eigenstates of 6He
for the largest model space size. This shows that the in-
clusion of additional eigenstates of the composite system
has only a small effect on the g.s. energy.

It is worth noting that the NCSMC is a variational
approach as long as the adopted model space captures
in full the wave function of the clusters (here, the 4He
core) and of the aggregate system (here, 6He) or, equiv-
alently, if it includes all possible pre-diagonalized eigen-
vectors of the clusters and of the aggregate system within
the chosen Nmax HO basis size. That is, the NCSMC is
a variational approach as long as the generalized clus-
ter expansion is not truncated. Such a model space is
computationally unachievable and, for p-shell nuclei, we
truncate the generalized cluster expansion to include only
a few eigenstates of the cluster and aggregate nuclei. In
particular, in the present application we only include the
g.s. of the 4He core. The effect of this truncation man-
ifest itself in the smallest HO base sizes, and can give
rise to the non-variational behavior shown in Table III
(the same argument applies to the cluster basis calcu-
lation of Ref. [31]). However, as the adopted HO basis
size increases, thanks to the overcomplete nature of the
NCSMC basis the wave functions of clusters and aggre-
gate system are better and better represented within the
truncated cluster expansion and the convergence behav-
ior becomes variational, with the typical approach to the
g.s. energy from above.
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TABLE III. Computed 6He g.s. energies (in MeV) within the cluster basis [4He(g.s.)+n+n] [31] (4th column), NCSM (5th

column) and NCSMC including Nλ = 1 eigenstate of the composite system (6th column) as a function of the HO model space
size Nmax for the SRG-evolved N3LO NN potential with λSRG = 1.5 fm−1. Also shown for the biggest model space are the
results for the NCSMC including Nλ = 4 6He eigenstates, and the NCSM 6He energy obtained through the exponential fit from
Eq. (53). Results for 4He and experimental values for 6He are presented in the 3rd and last column, respectively.

Nmax (Nλ) 4He NCSM 6He [31] 6He NCSM 6He NCSMC 6He Expt.
6 (1) −27.98 −28.91 −28.95 −30.02
8 (1) −28.17 −28.62 −29.45 −29.69
10 (1) −28.21 −28.72 −29.66 −29.86
12 (1) −28.22 −28.70 −29.75 −29.86 −29.268 [20]
12 (4) – – – −29.88
14 – −28.22 – – –
∞ – – – −29.84(4) –

In Ref. [18] the equivalent results were presented
in terms of the absolute HO model space size Ntot =
N0 + Nmax, where N0 is the number of quanta shared
by the nucleons in their lowest configuration. However,
given that the input for the NCSMC includes the ele-
ments of the composite and cluster bases at the same
Nmax, we came to the conclusion that a comparison in
terms of Nmax provides a better picture of the relevance
of each component in the full calculation. We also note
that the last three columns of Table I in Ref. [18] present
a mismatch with respect to the model space size reported
in the first column, showing results obtained with an
Nmax value larger by 2 units. Therefore, we call the
reader to consider the present tables to be the accurate
representation of the results.

As seen in Table IV, convergence is not as obviously
reached when using the harder potentials with λSRG =
2.0 fm−1. Within the NCSMC, there still are 200 keV dif-
ference between the Nmax= 10 and 12 results. However,
the fact that the value obtained for Nmax= 12 (-29.17
MeV) is in agreement with the NCSM extrapolation from
Ref. [39] (-29.20(11)) is a good indicator that our results
are at least very close to convergence at this model space
size.

We can estimate how much of the wave function can be

TABLE IV. Same as Table III, now using the potential ob-
tained with a SRG evolution parameter of λ =2.0 fm−1. The
NCSM extrapolation shown is the one from Ref. [39]. Note
that for this potential the cluster basis alone does not yield a
bound 6He ground state.

Nmax (Nλ) 4He NCSM 6He NCSM 6He NCSMC
6 (1) −27.44 −26.44 −28.31
8 (1) −27.95 −27.70 −28.81
10 (1) −28.18 −28.37 −28.97
12 (1) −28.23 −28.72 −29.17
12 (4) – – −29.17
14 – −28.24 – –
∞ – – −29.20(11)[39]
6He Expt. −29.268 [20]

TABLE V. Percentage of the norm of the 6He g.s. wave func-
tion that comes directly from the NCSM part of the basis
(
∑
λ c

2
λ).

Nmax λSRG =1.5 fm−1 λSRG =2.0 fm−1

8 78% —
10 88% 71%
12 91% 76%

described through the NCSM by calculating the percent-
age of the norm that comes directly from the discrete part
of the basis, i.e.

∑
λ c

2
λ. These percentages are shown in

Table V for the two different potentials used, as well as
for different sizes of the model space. We find that, as one
would expect, the NCSM component of the basis is able
to describe a much larger percentage of the wave func-
tion when using the softer potential corresponding to the

FIG. 5. (Color online) Probability distribution the Jπ = 0+

ground state of the 6He. Here rnn =
√

2 ηnn and rα,nn =√
3/4 ηα,nn are, respectively, the distance between the two

neutrons and the distance between the c.m. of 4He and that
of the two neutrons.
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component, respectively, as a function of the relative coordinates rnn =
√

2 ηnn and rα,nn =
√

3/4 ηα,nn.

TABLE VI. Computed 4He and 6He matter radii (in fm) for λSRG = 1.5 fm−1 and λSRG = 2.0 fm−1 as a function of the HO
model space size Nmax within the NCSM, and the NCSMC including Nλ = 1 eigenstates of the composite system. Also shown
for the biggest model space are the results for the NCSMC including Nλ = 4 6He eigenstates. Experimental values for 6He are
presented in the last column.

λSRG = 1.5 fm−1 λSRG = 2.0 fm−1 Expt.

Nmax (Nλ) 4He NCSM 6He NCSM 6He NCSMC 4He NCSM 6He NCSM 6He NCSMC 6He

6 (1) 1.489 2.14 2.47 1.471 2.01 2.47
8 (1) 1.490 2.18 2.35 1.461 2.06 2.40 2.33(4)[64]
10 (1) 1.487 2.22 2.38 1.461 2.10 2.42 2.30(7)[65]
12 (1) 1.490 2.25 2.37 1.459 2.15 2.41 2.37(5)[66]
12 (4) – – – – – 2.46(2)

λSRG = 1.5 fm−1 resolution scale, and also a larger and
larger percentage as the HO model space size increases.

1. Spatial distribution

In Fig. 5 we show the probability density, as de-
fined in section II E, for the ground state of 6He in
terms of the the distance between the two halo neu-
trons (rnn =

√
2 ηnn) and the distance between the 4He

core and the center of mass of the external neutrons
(rα,nn =

√
3/4 ηα,nn). This density plot presents two

peaks, which correspond to the two preferred spatial con-
figurations of the system. The di-neutron configuration,
which corresponds to the two neutrons being close to-
gether, clearly presents a higher probability respect to
the cigar configuration in which the two neutrons are far
apart and at the opposite sides of the core. This distribu-
tion is in agreement with previous studies [31, 39, 50, 67–
70]. In order to estimate the reliability of the approx-
imation of Eq. (49), which uses the projection of the
NCSMC wave function into the cluster basis, we inte-
grated the probability density given by Eq. (49). This
integral is equivalent to the square of the norm of the
projected wave function. We obtained 0.971 for the po-

tential with λSRG = 1.5 fm−1 and 0.967 for the potential
with λSRG = 2.0 fm−1. Given that we work with nor-
malized wave functions, the proximity of these integrals
to the unity indicates that only a small part of the wave
functions was lost when performing the projection.

When the 6He ground state wave function is calculated
within the NCSM basis, the probability density can be
obtained by projecting into a cluster basis in the same
way as it is done for the NCSMC in Eq. (46). The ob-
tained projected wave function presents the same distri-
bution observed in the case of the NCSMC, with the dif-
ference that it is less extended. This picture is consistent
with the results previously reported in Ref. [39], and is to
be expected given that within this basis the three-body
asymptotic behavior is not well described. This is easily
appreciated in Fig. 6, where the contour diagram of the
probability distribution is shown for the NCSMC in panel
(b) and for the NCSM component in panel (c). In the
contour plots, it is also easier to determine the position
on the probability maxima: within the di-neutron config-
uration the highest probability density appears when the
neutrons are about 2 fm apart and the 4He core about 3
fm from them. Within the cigar configuration, the neu-
trons are about 4 fm apart and the core around 1 fm
from their center of mass.
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TABLE VII. Computed 4He and 6He point-proton radii (in fm) for λSRG = 1.5 fm−1 and λSRG = 2.0 fm−1 as a function of the
HO model space size Nmax within the NCSM, and the NCSMC including Nλ = 1 eigenstates of the composite system. Also
shown for the biggest model space are the results for the NCSMC including Nλ = 4 6He eigenstates. Experimental values for
6He are presented in the last column.

λSRG = 1.5 fm−1 λSRG = 2.0 fm−1 Expt.

Nmax (Nλ) 4He NCSM 6He NCSM 6He NCSMC 4He NCSM 6He NCSM 6He NCSMC 6He

6 (1) 1.501 1.75 1.92 1.474 1.68 1.91
8 (1) 1.493 1.77 1.85 1.464 1.70 1.86
10 (1) 1.490 1.78 1.86 1.464 1.72 1.89 1.938(23) [38]
12 (1) 1.487 1.79 1.85 1.462 1.74 1.87
12 (4) – – – – – 1.90(2)

In panel (a) of Fig. 6, the most relevant hyperradial
components ũνK(ρ) of the α+n+n relative motion are
shown. The hyperradial components ũνK(ρ) are analo-
gous to uνK(ρ) from Eq. (37) but defined for the pro-
jected wave function from Eq. (46). The solid blue lines
are the components from the full NCSMC wave function
while the dashed red lines represent the contribution to
the full NCSMC wave function coming from the discrete
NCSM eigenstates. This figures also provides a good vi-
sualization of how the short range of the NCSM wave
function is complemented with the cluster basis to repro-
duce the extended wave function typical of halo nuclei by
means of the NCSMC.

2. Radii

The spatial extension of a particular state can be esti-
mated by its matter radius as described in section II F.
In table VI, we show the calculated NCSMC rms mat-
ter radius for the ground state of 6He as a function of
the HO model space size Nmax. Results are shown for
both λSRG = 1.5 fm−1 and λSRG = 2.0 fm−1. The re-
sults obtained within the NCSM alone are also shown
for comparison. The introduction of 4He(g.s.)+n+n mi-
croscopic cluster basis states provides a matter radius
closer to experiment within smaller model spaces. Con-
trary to the NCSM, the convergence of the radius with
respect to the size of the model space is achieved within
the NCSMC at computationally accessible model spaces.
The importance of the inclusion of the cluster states is
even more pronounced for the potential with λSRG=2.0

TABLE VIII. Summary of the results presented in Fig. 7,
with Λlowk in units of fm−1. See text for further details.

S2n (MeV) rm (fm) rpp (fm)
NCSM (Nmax = 12) 0.49 2.15 1.74
NCSM [39] (Nmax =∞) 0.95(10) – 1.820(4)
NCSMC (Nmax = 12) 0.94(5) 2.46(2) 1.90(2)
EIHH [38] (Λlowk = 1.8) 1.036(7) 2.30(6) 1.78(1)
EIHH [38] (Λlowk = 2.0) 0.82(4) 2.33(5) 1.804(9)
Expt. 0.975 2.33(10) 1.938(23)

fm−1, for which the NCSM results are further away from
convergence. Similar to the g.s. energy discussed ear-
lier, here too the convergence of the NCSMC is studied
for the case in which only one eigenstate of the compos-
ite system is included in the calculation. In the largest
HO model space, the inclusion of 3 additional (4 total)
square-integrable eigenstates of the 6He system, yields a
2% increase of the matter radius. Besides the contribu-
tions coming from the rms matter radii of the additional
discrete basis states, which are largely suppressed by the
fact that the corresponding expansion coefficients (cλ)
are small, such an increase comes from the matrix el-
ements of the matter radius operator between the first
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FIG. 7. (Color online) NCSM (green symbols) and NC-
SMC (blue symbols) rms matter (triangles) and point-proton
(squares) radii, and two-neutron separation energy (circles),
obtained using the SRG-N3LO NN interaction with λSRG =
2.0 fm−1 in the largest HO model space (Nmax = 12). Also
shown are the infinite-basis (∞) extrapolations from Sääf et
al. [39] (red symbols) and the EIHH results from Ref. [38] (in-
digo symbols) based on the Vlowk(N3LO) NN interaction at
the resolution scales Λlowk = 1.8, and 2.0 fm−1. The range of
experimental values are represented by horizontal bands (see
text for more details).
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FIG. 8. Most relevant attractive eigenphase shifts below 6 MeV above the two-neutron emission threshold [Eth(α+n+n)]
computed within the NCSMC [panels (a) and (b)] and within the more limited model space spanned by the 4He(g.s.)+n+n
cluster basis alone of Ref. [32] [panels (c) and (d)], using the SRG-evolved N3LO NN potential with λSRG = 1.5 fm−1. We
show positive parity states in panels (a) and (c), and negative parity states in panels (b) and (d).

and third 0+ square integrable basis states. Our most
complete results of 2.46(2) fm lies just above the range
of experimental matter radii spanned by the values and
associated error bars of Refs. [64–66] of 2.33(10).

Table VII presents analogous results for the point-
proton radius. Convergence behavior and comparisons
with the NCSM are also analogous. Even though the
protons belong to the core and not to the halo, the ex-
tension of the halo plays an important role for the point-
proton radius. It displaces the center of mass of the core
from the center of mass of the whole system, increasing
the point-proton radius as it is easily seen in Eq. (52).
Our most complete results of 1.90(2) fm is on the lower
side but compatible with the bounds for the point-proton
radius [1.938(23) fm] as evaluated in Ref. [38].

It is important to point out that while the use of the
λSRG=1.5 fm−1 SRG parameter produces a softer NN
potential and hence faster convergence, it is known that
at this resolution scale there are significant SRG-induced
3N forces as well as SRG-induced two- and three-body
contributions to the radii. Within the present calcula-
tions we are disregarding such induced terms. Therefore,
the results obtained with this resolution scale are ex-
pected to be far from realistic and they should be under-
stood as an instrument to study the NCSMC approach
rather than as realistic predictions for the 6He nucleus.

A summary of the rms radii obtained for the more

realistic λSRG=2.0 fm−1 interaction is presented in Ta-
ble VIII and visualized in Fig. 7 together with the cor-
responding results for the separation energy, the infinite-
basis extrapolations from Ref. [39], and the effective in-
teraction hyperspherical harmonics (EIHH) calculations
from Ref. [38], based on the Vlowk(N3LO) NN inter-
action at the resolution scales Λlowk = 1.8, and 2.0
fm−1. (The results presented Table VIII have been
obtained with improved accuracy and supersede those
shown in Table II of Ref. [18], where the labeling of the
HO model space size was also incorrectly reported to
be lower by two units.) An estimate of our uncertain-
ties, based on both the convergence of the two-neutron
emission threshold Eth(α+n+n) and the influence of 6He
square-integrable states beyond the g.s., is reported for
the largest model space. The two-nucleon separation en-
ergy obtained within the NCSMC is close to its empirical
value, and the computed rm and rpp radii are, respec-
tively, at the upper end of and on the lower side but
compatible with their experimental bands. Interestingly,
our point-proton radius is substantially larger than both
the extrapolated value of Sääf et al., which “calls for fur-
ther investigations” [39], and the EIHH result of Bacca
et al. [38]. This latter calculation also yields a matter
radius smaller than ours though within the experimental
bounds. The present combination of S2n and rpp values
are more in line with the Green’s function Monte Carlo
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the 4He(g.s.)+n+n cluster basis alone of Ref. [32] (red dot-
dashed line) using the SRG-evolved N3LO NN potential with
λSRG = 1.5 fm−1.

results of Ref. [35], based on NN+3N forces constrained
to reproduce the properties of light nuclei including 6He.

C. 4He+n+n continuum

We investigated the low-lying α+n+n continuum for
partial waves up to Jπ = 2± by solving the set of
Eqs. (38) with the boundary conditions from Eq. (44).
The eigenphase shifts were extracted from the diagonal-
ization of the three-body scattering matrix SνK,ν′K′ .

Convergence of the results with respect to the HO
model-space size and the parameters used to perform
the matching between the solutions in the internal re-
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FIG. 10. Most relevant eigenphase shifts for the Jπ= 0+

channel below 6 MeV above the two-neutron emission thresh-
old [Eth(α+n+n)] computed within the NCSMC (blue solid
line) and within the more limited model space spanned by
the 4He(g.s.)+n+n cluster basis alone of Ref. [32] (red dot-
dashed line) using the SRG-evolved N3LO NN potential with
λSRG = 1.5 fm−1.
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FIG. 11. Convergence with respect to the number (Nλ)
of square-integrable eigenstates of the composite system in-
cluded in the NCSMC calculation of the most relevant eigen-
phase shifts for the 0+ channel below 8 MeV above the two-
neutron emission threshold [Eth(α+n+n)], using the SRG-
evolved N3LO NN potential with λSRG = 1.5 fm−1. Also
shown are the results from Ref. [32], corresponding to the
inclusion of zero composite states (Cluster basis).

gion and the asymptotic wave functions within the R-
matrix approach was reached at similar values as those
used in our previous study of Ref. [32], lacking the contri-
bution from square-integrable eigenstates of the compos-
ite system. Specifically, our best results were obtained at
Nmax=12, which is the maximum computationally ac-
cessible HO model space size, and interested readers can
find a complete list of the remaining parameters for each
channel in Appendix D.

In Fig. 8(a) and (b), we present a summary of the
most relevant attractive eigenphase shifts below 6 MeV
obtained for the λSRG = 1.5 fm−1 interaction within the
NCSMC by including the first nine positive-parity and
six negative-parity J ≤ 2 square-integrable eigenstates
of the composite system. This figure can be compared
with Fig. 1 of Ref. [32] – for convenience shown again
in Fig. 8(c) and (d) – which presents analogous results
computed within the more limited model space spanned
by the 4He(g.s.)+n+n cluster basis alone. Although the
qualitative behavior of the eigenphase shifts is similar,
within the NCSMC the centroid values of all resonances
tend to be shifted to lower energies and the resonance
widths tend to shrink due to the effect of the inclusion of
discrete eigenstates of the composite system. The most
significant change is observed for the first 2+ resonance,
which becomes much sharper (with a width of Γ = 15
keV) and is shifted to lower energies (with the new cen-
troid at 0.536 MeV). This behavior suggests a likely sig-
nificant influence of the chiral 3N force on this state. The
effect in other partial waves is more modest. In particu-
lar, the 1− eigenphase shift does not change significantly,
excluding core-polarization effects as the possible origin
of a low-lying soft dipole mode. This can more readily be
observed in Fig. 9 and 10, where we show a direct com-
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parison between the present results and those of Ref. [32]
for the lowest resonances in the 1± and 2+ channels and
for the lowest three eigenphase shifts in the 0+ chan-
nel, respectively. The repulsive eigenphase shift in the
0+ channel corresponds to the ground state of 6He, and
the small difference between the calculations is related to
the difference in the binding energy, as it was shown in
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FIG. 14. Spectra of low-lying energy levels of the 6He nu-
cleus computed within the NCSMC using the SRG-evolved
N3LO NN potential with λSRG = 1.5 fm−1 and λSRG = 2.0
fm−1 compared to the most recent experimental spectrum of
Ref. [27].

Table III.

The convergence of the eigenphase shifts with respect
to the number of eigenstates of the composite system
included in the calculation was found to be very fast.
The mere inclusion of the lowest eigenstate is in gen-
eral sufficient to obtain reasonable convergence in the
low-energy region. As an example, we show in Fig. 11
the convergence pattern of the most relevant Jπ = 0+

eigenphase shifts with respect to the number of NCSM
eigenstates of the composite system for a small model
space of size Nmax= 7. Two eigenstates are already suf-
ficient for obtaining convergence up to 5 MeV. For en-
ergies below 3 MeV, a single eigenstate is enough. This
convergence behavior is of course related to the value
of the eigenenergies associated with the included square-
integrable eigenstates. The further the eigenvalue is from
the energy under consideration, the smaller the contri-
bution to the eigenphase shifts from the correspond-
ing eigenstate. (The eigenenergies of all positive- and
negative-parity eigenstates included in the Nmax = 12
calculations are shown in tables I and II, respectively.)
For comparison, the eigenphase shifts of Ref. [32], cal-
culated within the cluster basis alone, are also shown
(corresponding to zero eigenstates included).

From the calculated eigenphase shifts, it is possible to
extract information about the resonances by calculating
the centroids ER and widths Γ as the values of Ekin =
E − Eth(α+n+n) for which the first derivative δ′(Ekin)
of the eigenphase shifts is maximal and Γ=2/δ′(ER), re-
spectively [71]. The resulting low-lying 6He spectrum of
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energy levels for the SRG-evolved N3LO NN interaction
with λSRG = 1.5 fm−1 is shown in Fig. 12. There, we
compare the present NCSMC results with the spectra
computed within the cluster basis alone [32], and within
the NCSM (i.e., by treating the 6He excited states as
bound states). Besides the results at Nmax = 12, for the
NCSM we also show the spectrum obtained by extrap-
olation to the infinite HO model space using the expo-
nential form of Eq. (53). Note that, while for the results
of Ref. [32] and the NCSMC the resonances are repre-
sented by their centroids (solid line) and width (shaded
area), for the NCSM we only show the energy levels and
associate estimated uncertainty of the extrapolation. In-
deed, such a bound-state technique does not yield res-
onance widths. While broad, higher-energy states such
as the 1+

2 resonance are well described already within a
4He(g.s)+n+n picture and very narrow resonances such
as the first 2+ can already be explained within the bound-
state approximations of the NCSM, for other intermedi-
ate levels both short-range many-body correlations and
continuum degrees of freedom play an important role.

The harder NN interaction obtained with the SRG
resolution scale of λ = 2.0 fm−1 produces a qualita-
tively similar picture, but with higher-lying and wider
resonances. This is highlighted in Figs. 13 and 14, show-
ing respectively the lowest-lying eigenphase shifts for the
Jπ = 1± and 2+ channels, and a comparison of the com-
puted energy levels with the most recent experimental
spectrum of Ref. [27]. The observed dependence on the
value of the SRG resolution scale provides an estimate of
the effect of induced 3N (and higher order) forces, which
have been disregarded in the present study and are cru-
cial to restore the formal unitarity of the adopted SRG
transformation of the Hamiltonian. More in general, the
inclusion of 3N forces (including the initial chiral 3N
force) is indispensable to arrive at an accurate descrip-
tion of the spectrum as a whole. Indeed, while the SRG-
evolved NN interaction with λ = 2.0 fm−1 provides a re-
alistic description of the energy and structure of the 6He
ground state, neither of the two adopted resolution scales
describes accurately the spectrum of the low-energy ex-
cited states. At the same time, based on these results
we conjecture that the parity of the J = 1 resonance
populated at SPIRAL through the 8He(p,3He)6He* two-
neutron transfer reaction [27] is likely positive, making
it less probable that this state is the soft-dipole mode
called for by Refs. [24] and [26].

IV. CONCLUSIONS

We presented the extension of the ab initio no-core
shell model with continuum to the treatment of bound
and continuum nuclear systems in the proximity of a
three-body breakup threshold. This approach takes si-
multaneously into account both many-body short-range

correlations and clustering degrees of freedom, allowing
for a comprehensive ab initio description of nuclear sys-
tems presenting a three-cluster configuration such as Bor-
romean halo nuclei and light-nuclei reactions with three
nuclear fragments in either entrance or exit channels.

After introducing the NCSMC ansatz for systems char-
acterized by a three-cluster asymptotic behavior, we dis-
cussed the dynamical equations, and gave the algebraic
expressions of the overlap and Hamiltonian couplings be-
tween the discrete and continuous NCSMC basis states
for the particular case of core+n+n systems. Further, we
discussed the procedure adopted for the solution of the
three-cluster dynamical equations for bound and scatter-
ing states, and explained how we calculate the probabil-
ity density, and the matter and point-proton root-mean-
square radii starting from the obtained NCSMC solutions
for core+n+n systems. The new formalism was then ap-
plied to conduct a comprehensive study of many-body
correlations and α-clustering in the ground-state and low-
lying energy continuum of the Borromean 6He nucleus us-
ing the chiral N3LO NN potential or Ref. [51] softened
via the similarity renormalization group method [52–54].

Calculations were carried out using a soft (λSRG = 1.5
fm−1) SRG resolution scale to allow for a direct com-
parison with the results obtained in the more limited
studies of Refs. [31, 32], based solely on the three-cluster
portion of the NCSMC basis. While working within
the 4He(g.s.)+n+n microscopic cluster basis it is pos-
sible to reproduce the correct asymptotic behavior of
the 6He wave function, we demonstrated that additional
short-range six-body correlations (included in the form of
square-integrable eigenstates of the composite 6He sys-
tem) are necessary to correctly describe also the inte-
rior of the wave function for both the ground and scat-
tering states. In particular, a significant portion of the
ground-sate energy and the narrow width of the first 2+

resonance stem from many-body correlations that, in a
microscopic-cluster picture, can be interpreted as core-
excitation effects.

A second and physically more interesting potential
(λSRG = 2.0 fm−1) was also used. Though the inclu-
sion of 3N forces (currently underway) remains crucial
to restore the formal unitarity of the adopted SRG trans-
formation of the Hamiltonian and arrive at an accurate
description of the spectrum as a whole, the present re-
sults demonstrated that rms matter and point-proton
radii compatible with experiment can be obtained start-
ing from a soft NN interaction reprodu cing the 6He
small binding energy.

In the future we plan to reexamine the ab initio cal-
culation of the 6He β-decay half-life, first carried out in
Ref. [34], in the context of chiral effective field theory
using wave functions with proper asymptotic behavior.
This work also sets the stage for the ab initio study of
the 4He(2n, γ)6He radiative capture and is a stepping
stone in the calculation of the 3H(3H, 2n)4He fusion.



19

Appendix A: Norm and Hamiltonian kernels

Here we present the explicit expressions for the NCSMC Hamiltonian and norm kernels entering Eqs. (32) and (33).

There, the square and inverse-square root of the NCSMC norm kernel, N±
1
2 , can be written as

(N±
1
2 )λλ

′

νxy,ν′x′y′ =

 0 0

0 δνν′
δ(x−x′)
xx′

δ(y−y′)
yy′ − δνν′δn′xnxδn′ynyRnx`x(x)Rnx`x(x′)Rny`y (y)Rny`y (y′)



+

(
δλλ̃ 0

0 Rnx`x(x)Rny`y (y)δνν̃

)
(N±

1
2 )λ̃λ̃

′

ν̃nxny,ν̃′n′xn
′
y

(
δλ̃′λ′ 0

0 Rn′x`′x(x′)Rn′y`′y (y′)δν̃′ν′

)
, (A1)

where the sum over the repeating indexes λ̃, ν̃, nx, ny, λ̃
′, ν̃′, n′x, and n′y is implied, and the notation

(N±
1
2 )λλ

′

νnxny,ν′n′xn
′
y

=

 (N±
1
2 )

(11)
λλ′ (N±

1
2 )

(12)
λν′n′xn

′
y

(N±
1
2 )

(21)
λ′νnxny

(N±
1
2 )

(22)
νnxny,ν′n′xn

′
y

 (A2)

stands for the matrix elements of the square and inverse-square root of the NCSMC norm kernel within the model
space, which are computed from the NCSMC model-space norm kernel

Nλλ′

νnxny,ν′n′xn
′
y

=

(
δλλ′ ḡλν′n′xn′y

ḡλ′νnxny δνν′δnxn′xδnyn′y

)
(A3)

using the spectral theorem. The orthogonalized Hamiltonian within the model space can then be calculated as follows

H
λλ′

νnxny,ν′n′xn
′
y

=

 H
(11)

λλ′ H
(12)

λν′n′xn
′
y

H
(21)

λ′νnxny H
(22)

νnxny,ν′n′xn
′
y

 = (N−
1
2 )λλ̃νnxny,ν̃ñxñyH

λ̃λ̃′

ν̃ñxñy,ν̃′ñ′xñ
′
y
(N−

1
2 )λ̃

′λ′

ν̃′ñ′xñ
′
y,ν
′n′xn

′
y
, (A4)

where the sum over the repeating indexes λ̃, ν̃, ñx, ñy, λ̃
′, ν̃′, ñ′x, and ñ′y is, once again, implied, and

Hλλ′

νnxny,ν′n′xn
′
y

=

(
Eλδλλ′ h̄λν′n′xn′y

h̄λ′νnxny Hνnxny,ν′nx n′y

)
, (A5)

is the model-space component of the NCSMC Hamiltonian kernel of Eq. (6). We note that the coupling form factors

in configuration space, h̄λν(x, y) = [hN− 1
2 ]λν(x, y) are related to those in the model space, h̄λνnxny , through Eqs. (11)

and (25), and the lower-diagonal block is the model-space component of the orthonormalized integration kernel of
Eq. (8). Additional details on how this kernel is computed can be found in Ref. [31], where we introduced the
formalism for the description of three-cluster dynamics based solely on expansions over three-cluster channels states
of the type of Eq. (2).

Finally, in the following we provide detailed expressions for the blocks forming the orthogonalized NCSMC Hamil-
tonian of Eq. (32), including the terms that extend beyond the HO model space P . In particular, in the following we
will use the notation n ∈ P to indicate that the radial quantum number n ≤ Nmax. Note that for the upper diagonal
bock there are not additional terms that reach beyond the the HO model space and, therefore, it is trivially given by
the upper diagonal block of Eq. (A4).

H
(12)

λν′ (x′, y′) =
∑
n′xn

′
y

Rn′x`′x(x′)Rn′y`′y (y′)H
(12)

λν′n′xn
′
y

+
∑
λ̃

(N−
1
2 )

(11)

λλ̃

 ∑
n′y∈P

RN+1`′x
(x′)gλ̃ν′Nn′y

T
`′x
NN+1Rn′y`′y (y′) +

∑
n′x∈P

RN+1`′y
(y′)gλ̃ν′n′xN

T
`′y
NN+1Rn′x`′x(x′)


+
∑
ν̃

∑
ñxñyn′y∈P

(N−
1
2 )

(12)
λν̃ñxñy

(
1

2
Λ
− 1

2

ν̃ñxñy,ν′Nn′y
+

1

2
Λ

1
2

ν̃ñxñy,ν′Nn′y

)
T
`′x
NN+1RN+1`′x

(x′)Rn′y`′y (y′)

+
∑
ν̃

∑
ñxñyn′x∈P

(N−
1
2 )

(12)
λν̃ñxñy

(
1

2
Λ
− 1

2

ν̃ñxñy,ν′n′xN
+

1

2
Λ

1
2

ν̃ñxñy,ν′n′xN

)
T
`′y
NN+1RN+1`′y

(y′)Rn′x`′x(x′) , (A6)
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H
(21)

λ′ν (x, y) =
∑
nxny

Rnx`x(x)Rny`y (y)H
(21)

λ′νnxny

+
∑
λ̃

 ∑
ny∈P

RN+1`x(x)gλ̃νNnyT
`x
NN+1Rny`y (y) +

∑
nx∈P

RN+1`y (y)gλ̃νnxNT
`y
NN+1Rnx`x(x)

 (N−
1
2 )

(11)

λ̃λ′

+
∑
ν̃

∑
ñxñyny∈P

RN+1`x(x)Rny`y (y)T `xN+1N

(
1

2
Λ
− 1

2

νNny,ν̃ñxñy
+

1

2
Λ

1
2

νNny,ν̃ñxñy

)
(N−

1
2 )

(21)
λ′ν̃ñxñy

+
∑
ν̃

∑
ñxñynx∈P

Rnx`x(x)RN+1`y (y)T
`y
N+1N

(
1

2
Λ
− 1

2

νnxN,ν̃ñxñy
+

1

2
Λ

1
2

νnxN,ν̃ñxñy

)
(N−

1
2 )

(21)
λ′ν̃ñxñy

, (A7)
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and

H
(22)

νν′ (x, y, x′, y′) =
δ(y − y′)
yy′

δνν′Tν(x)
δ(x− x′)
xx′

+
δ(x− x′)
xx′

δνν′Tν(y)
δ(y − y′)
yy′

− δνν′

 ∑
ny∈P

(
RN+1`x(x)T `xN+1NRN`x(x′) +RN`x(x)T `xNN+1RN+1`x(x′)

)
Rny`y (y)Rny`y (y′)

+
∑
nx∈P

Rnx`x(x)Rnx`x(x′)
(
RN+1`y (y)T

`y
N+1NRN`y (y′) +RN`y (y)T

`y
NN+1RN+1`y (y′)

)
+

∑
nxnyn′x∈P

Rnx`x(x)T `xnxn′xRn
′
x`
′
x
(x′)Rny`y (y)Rny`′y (y′)

+
∑

nxnyn′y∈P
Rnx`x(x′)Rnx`′x(x′)Rny`y (y)T

`y
nyn′y

Rn′y`′y (y′)


+

∑
nxnyn′xn

′
y

Rn′x`′x(x′)Rn′y`′y (y′)Rnx`x(x)Rny`y (y)H
(22)

νnxnyν′n′xn
′
y

+
∑
λ̃

 ∑
ny∈P

RN+1`x(x)gλ̃νNnyT
`x
NN+1Rny`y (y) +

∑
nx∈P

RN+1`y (y)gλ̃νnxNT
`y
NN+1Rnx`x(x)


×

∑
n′xn

′
y∈P

Rn′x`′x(x′)Rn′y`′y (y′)(N−
1
2 )

(12)

λ̃ν′n′xn
′
y

+
∑
ν̃

∑
ñxñy
nyn

′
x

n′y∈P

RN+1`x(x)Rny`y (y)T `xN+1N
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2
Λ
− 1

2

νNny,ν̃ñxñy
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1

2
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1
2

νNny,ν̃ñxñy

)
(N−

1
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ν̃ñxñy,ν′n′xn

′
y
Rn′x`′x(x′)Rn′y`′y (y′)

+
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′
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Rnx`x(x)RN+1`y (y)T
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2
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2

νnxN,ν̃ñxñy
+

1

2
Λ

1
2

νnxN,ν̃ñxñy

)
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1
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(22)
ν̃ñxñyν′n′xn

′
y
Rn′x`′x(x′)Rn′y`′y (y′)

+
∑
λ̃

∑
nxny

(N−
1
2 )

(21)

λ̃νnxny
Rnx`x(x)Rny`y (y)

×
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n′y∈P

RN+1`′x
(x′)gλ̃ν′Nn′y

T
`′x
NN+1Rn′y`′y (y′) +

∑
n′x∈P

RN+1`′y
(y′)gλ̃ν′n′xN

T
`′y
NN+1Rn′x`′x(x′)
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+
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NN+1RN+1`′x(x′)Rn′y`′y (y′)

+
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∑
ñxñy
nxny
n′x∈P

Rnx`x(x)Rny`y (y)(N−
1
2 )

(22)
νnyny,ν̃ñxñy

(
1

2
Λ
− 1

2

ν̃ñxñy,ν′n′xN
+
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2
Λ

1
2

ν̃ñxñy,ν′n′xN

)
T
`′y
NN+1RN+1`′y

(y′)Rn′x`′x(x′) ,

(A8)

where the subindex N is the maximum size of the HO model space, which has been referred to as Nmax throughout
the paper, T `nn′ = 〈n`|T̂rel|n′`〉 are matrix elements of the relative kinetic energy operator, and Λ represents the
model-space norm kernel within the more limited formalism for the description of three-cluster dynamics based solely
on expansions over three-cluster channels states of the type of Eq. (2) (see Eqs. (A3) - (A6) of Ref. [31]).
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Appendix B: Wave functions

As described in section II D, instead of solving directly Eq. (5) we solve the set of orthogonalized Schrödinger

equations Eq. (32). Therefore, we obtain the orthogonalized vector of the expansion coefficients C
λ

νxy instead of the

original Cλ
νxy. These two arrays are related through Eq. (33), which can be inverted into

Cλ
νxy =

[
N−

1
2C
]λ
νxy

=

(
cλ

χν(x, y)

)
. (B1)

Therefore, we can recover the original Cλ
νxy through the following expressions:

cλ =
∑
λ′

(N−
1
2 )

(11)
λλ′ cλ′ +

∑
ν

∫∫
dxx2dyy2(N−

1
2 )

(12)
λνxyχν(xy)

χν(xy) =
∑
λ

(N−
1
2 )

(21)
λνxycλ +

∑
ν′

∫∫
dx′x′2dy′y′2(N−

1
2 )

(22)
νxyν′x′y′χν′(x

′y′) . (B2)

Appendix C: Radii expressions

The expectation value for the radii operators within the NCSMC wave function can be expressed in terms of the
cluster and composite bases as

〈ΨJπT |r̂2|ΨJπT 〉 =
∑
λλ′

cλcλ′〈AλJπT |r̂2|Aλ′JπT 〉

+
∑
λν′

cλ

∫
dx′dy′x′2y′2GJ

πT
ν′ (x′, y′)〈φJ

πT
ν′x′y′ |Âν′ r̂2|AλJπT 〉

+
∑
λ′ν

cλ′

∫
dxdyx2y2GJ

πT
ν (x, y)〈Aλ′JπT |r̂2Âν |φJ

πT
νxy 〉

+
∑
νν′

∫∫
dxdydx′dy′x2y2x′2y′2GJ

πT
ν (x, y)GJ

πT
ν′ (x′, y′)〈φJ

πT
ν′x′y′ |Âν′ r̂2Âν |φJ

πT
νxy 〉, (C1)

where, r̂2 represents either the matter or point proton radii operators. The root mean square radii are given by the
square root of these matrix elements. Note that in Eq. (C1) the first term corresponds to the expectation value within
a NCSM calculation weighted by the product of the discrete expansion amplitudes cλ and cλ′ . This first term is
calculated using the general expressions of the corresponding operators, however, the rest of the terms are calculated
using the expressions that were derived in Sec. II F considering the clusterization of the system, i.e., Eq. (51) and the
right side of Eq. (52) for the matter and point-proton radii, respectively. For the coupling terms, i.e., the second and
third terms in Eq. (C1), mixed matrix elements are needed. We calculate these matrix elements by expanding, in an
approximate way, the NCSM state into the cluster basis. While this is in principle a rough approximation we can
conclude a posteriori that the results are not significantly affected by this approximation given that the contribution
of these coupling terms in this first order is already very small compared to the other terms.

When calculating the matter radius, Eq. (C1) reduces to

〈ΨJπT |r2
m|ΨJπT 〉 =

=
∑
λλ′

cJ
πT
λ cJ

πT
λ′ 〈AλJπT |r2

m|Aλ′JπT 〉

+

(
A− 2

A

)∑
νν′

〈A− a23 α1I
π1
1 T1|r2,core

m |A− a23 α1I
π1
1 T1〉

∫∫
dxdyx2y2W JπT

νν′ (x, y)

+
1

A

∑
νν′

∫∫
dxdyx2y2ρ2W JπT

νν′ (x, y) . (C2)

For the point-proton radius, Eq. (52) is valid given that the core is the only charged cluster and has isospin zero.
The expectation value is given by
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〈ΨJπT |r2
pp|ΨJπT 〉 =

=
∑
λ

cJ
πT
λ cJ

πT
λ′ 〈AλJπT |r2

pp|Aλ′JπT 〉

+ 〈A− a23 α1I
π1
1 T1|r2,core

pp |A− a23 α1I
π1
1 T1〉

∫∫
dxdyx2y2W JπT

νν′ (x, y)

+

√
2

A(A− 2)

∑
νν′

∫∫
dxdyx2y4W JπT

νν′ (x, y) . (C3)

Here and in the equation above we have defined

W JπT
νν′ (x, y) =

1

2
GJ

πT
ν′− (x, y)GJ

πT
ν+ (x, y) +

1

2
GJ

πT
ν′+ (x, y)GJ

πT
ν− (x, y)

+
∑
λ′

cJ
πT
λ′ gJ

πT
λ′ν′ (x, y)GJ

πT
ν− (x, y) +GJ

πT
ν′− (x, y)

∑
λ

cJ
πT
λ gJ

πT
λν (x, y), (C4)

with

GJ
πT
ν± (x, y) =

∑
ν′

∫∫
dx′dy′x′2y′2[N JπT

νν′ (x, y, x′, y′)]±1/2χJ
πT
ν′ (x′, y′). (C5)

Appendix D: Parameters of the calculations

A thorough study of the convergence of the results with respect to the parameters defining the size of the continuous
portion of our model space besides the HO model space size (Nmax = 12) was carried out if Refs. [31, 32]. These
are the maximum value Kmax of the hyperangular momentum in the expansion (37), and the size Next >> Nmax

of the extended HO basis used to represent a delta function in the core-halo distance entering the portion of the
Hamiltonian kernel of Eq. (8) that accounts for the interaction between the halo neutrons (see Eq. (39) of Ref. [31]).
At all stages of the calculation, the hyperradius a used to match the internal and asymptotic solutions within the R-
matrix method on the Lagrange mesh, and the number ns and nα of mesh points used for carrying out the integrations
in the hyperradial and hyperangular coordinates, respectively, were chosen large enough to reach stable, a-independent
results. For completeness, in Tables IX and X we list all parameters besides the HO model space size (Nmax = 12)
used for our best calculations for each JπT channel.

TABLE IX. Parameters used for the calculations with λSRG=1.5 fm−1

Jπ Next Kmax a (fm) ns nα
0+ 200 40 45 125 40
0− 70 18 30 60 20
1+ 70 19 30 60 30
1− 110 23 40 80 40
2+ 90 20 30 60 40
2− 70 18 30 60 20

TABLE X. Parameters used for the calculations with λSRG=2.0 fm−1

Jπ Next Kmax a (fm) ns nα
0+ 200 40 45 150 50
1+ 110 23 40 95 45
1− 110 23 40 95 45
2+ 90 20 30 60 40
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[37] E. Caurier and P. Navrátil, Phys. Rev. C 73, 021302

(2006).
[38] S. Bacca, N. Barnea, and A. Schwenk, Phys. Rev. C86,

034321 (2012).
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