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Abstract
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum

rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-

weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy

of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be

expressed as expectation values of operators, in the case of the EWSR a double commutator. While

most prior applications of the double-commutator have been to special cases, we derive general

formulas for matrix elements of both operators in a shell model framework (occupation space),

given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With

these new formulas, we easily evaluate centroids of transition strength functions, with no need to

calculate daughter states. We apply this simple tool to a number of nuclides, and demonstrate

the sum rules follow smooth secular behavior as a function of initial energy, as well as compare

the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find

surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the sd-shell.
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I. INTRODUCTION

Atomic nuclei are neither static nor exist in isolation. Their transitions play important

roles in fundamental, applied, and astro-physics, as well as revealing key information about

nuclear structure beyond just excitation energies. In this paper we focus on electromagnetic

and weak transitions; such transition strength distributions are important for γ-spectroscopy,

nucleosynthesis and ββ decays, as they are used to extract level densities [1], calculate

nuclear reaction rates in stellar processes [2] and analyze ββ decay matrix elements [3].

The strength function for a transition operator F̂ from an initial state i at energy Ei, to

a final state f at absolute energy Ef and excitation energy Ex = Ef − Ei is defined as

S(Ei, Ex) =
∑

f

δ(Ex + Ei −Ef )
∣

∣

∣
〈f

∣

∣

∣
F̂
∣

∣

∣
i〉
∣

∣

∣

2

. (1)

Sum rules are moments of the strength function,

Sk(Ei) =

∫

(Ex)
k S(Ei, Ex) dEx. (2)

Two of the most important sum rules, which we consider here, are S0, the non-energy-

weighted sum rule (NEWSR) or total strength, and S1, the energy-weighted sum rule

(EWSR). These sum rules provide compact information about strength functions. For ex-

ample, the famous Ikeda sum rule [4] for Gamow-Teller transitions is the difference between

the total β− strength and total β+ strength:

S0(GT−)− S0(GT+) = 3(N − Z)g2A,

where gA is the axial vector coupling relative to the vector coupling gV . For investigations

of ‘quenching’ of gA [5], the NEWSR S0 can be a probe of the missing strengths due to

hypothesized cross-shell configurations.

The centroid of a strength distribution is just the ratio of the EWSR to the NEWSR,

Ecentroid(Ei) =
S1(Ei)

S0(Ei)
. (3)

For a compact distribution of a giant resonance, Ecentroid(Ei) will be roughly the location

of the resonance peak, relative to the parent state energy Ei; of course, in the case of

highly fragmented strength distributions this interpretation no longer holds, and in severely

truncated model spaces the centroid will be too low compared to experiment. Both the

NEWSR S0 and Ecentroid(Ei) can test the validity of the general Brink-Axel hypothesis

[6, 7]. The general Brink-Axel hypothesis [8–10] assumes that the strength distribution of

transitions from any parent state is approximately the same, thus as a result Ecentroid(Ei)

is independent on Ei. Though it seems this hypothesis needs to be modified for E1[11–13],

M1[14–16] (the low-energy γ anomaly) and GT[17] transitions, it is still being widely used

to calculate neutron-capture rates [18], extract nuclear level densities [1, 19, 20] and can

have a substantial impact on astrophysical relevance [2, 21].

Sum rules are appealing not only because they characterize strength functions, but also

because using closure some sum rules can be rewritten as expectation values of operators

[22]. Allowing for transition operators with good angular momentum rank K, one should
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sum over the z-component M , and the total strength S0(Ei) becomes
∑

f

∑

M

|〈f |F̂K,M |i〉|2 =
∑

M

〈i|(F̂K,M)†F̂K,M |i〉. (4)

Thus S0(Ei) can be easily evaluated numerically without calculating any final state. The

strength sum can be used to evaluate the former mentioned Ikeda sum rule, useful as a check

on computations.

The EWSR can be written as the expectation value of a double commutator, as long as

the transition operator behaves as a spherical operator under Hermitian conjugation [23],
(

F̂KM

)†

= (−1)M F̂K,−M . (5)

If we do not have (5), one cannot write the EWSR operator as a double commutator. The

requirement of this will have consequences when we look at charge-changing transition such

as β decay. In that case, one must include both β− and β+ transitions.

Invoking closure and Eq. (5), S1(Ei) becomes
〈

i
∣

∣

∣

1

2

∑

M

(−1)M
[

F̂K,−M , [Ĥ, F̂K,M ]
]
∣

∣

∣
i
〉

. (6)

As an example, the Thomas-Reiche-Kuhn sum rule [24] evaluates the energy-weighted sum

of E1 strengths of an atom with N electrons, and conserves to a constant proportional

to N/me. In nuclear physics the corresponding sum rule is similar, though the EWSR is

proportional to NZ/2AmN because the dipole is relative to the center of mass. Another

example is related with the “scissor mode” in rare-earth nuclei [25], for which the EWSR

of low-lying ( < 4 MeV ) orbital M1 transitions shows a striking correlation with the E2

transition,

∑

x

B(M1; 0+1 → 1+x )E1+x
∝

∑

x

B(E2; 0+1 → 2+x ). (7)

This EWSR is derived both in the IBM-2 model [26], and in the shell model [27, 28] with

phenomenological interactions.

One can compute sum rules with the Lanczos algorithm [29–32], which has a deep connec-

tion to the classical moment problem. Given some initial state |Ψi〉, one applies an transition

operator F̂ and then uses F̂ |Ψi〉 as the pivot or starting state in the Lanczos algorithm. This

requires, however, one being able to carry out a matrix-vector multiplication in the Hilbert

space under consideration, which may not aways be possible or practical, for example in the

case of coupled clusters [33] or generator coordinate calculations [22, 34, 35]. Furthermore,

for example in the M-scheme, or fixed Jz, basis for the configuration-interaction shell model,

if the initial state has angular momentum Ji > 0, then applying an operator F̂K with an-

gular momentum rank K will produce a state with mixed Jf , with |Ji −K| ≤ Jf ≤ Ji +K

by the triangle rule. To compare to experiment, however, one generally needs a sum over

final M values and average over initial M values, and to correctly use the Lanczos method

one must either do this explicitly or project out states of good angular momentum and

extract strength functions via appropriate Clebsch-Gordan coefficients. This point is not

emphasized in the literature.
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In this paper we go beyond specific cases and, in the next section, write down the general

form of the operators (4) and (6) in a spherical shell model basis. Although straightforward,

the EWSR in particular is somewhat involved and to the best of our knowledge not published.

Appendix A provide some of the details of derivation. In Ref. [36] we make available a C++

code to generate those operator matrix elements. With such machinery one can directly

compute the NEWSR and EWSR easily for many nuclides and many transitions. Prior

work showed that the NEWSR follows simple secular behavior with the initial energy Ei

and gave a general argument [7]. In section III we show a few cases and also find simple

secular behavior. Finally, we illustrate the applicability by looking at systematics of ground

state E1 and E2 sum rules.

II. FORMALISM AND FORMULAS

We work in the configuration-interaction shell model, using the occupation representation

[37] with fermion single-particle creation and annihilation operators â†, â, respectively. As

is standard, our operators have good angular momentum. The labels of each single-particle

state include the magnitude of angular momentum j and z-component m; there are other

important quantum numbers, in particular parity, orbital angular momentum l and label

n for the radial wave function, but those values are absorbed into the values of matrix

elements, so, for example, the details of our derivation are independent of whether or not

one uses harmonic oscillator or Woods-Saxon or other single-particle radial wave functions.

Because we are working in a shell model basis, we differentiate between single-particle states

(labeled by j,m, and l, n, . . .) and orbits, by which we mean the set of 2j + 1 states with

the same j but different m. We assign fermion operators of different orbits different lower-

case Latin letters: â†, b̂†, etc., to prevent a proliferation of subscripts. (In our derviations,

when discussing generic operators, which may be single-fermion operators or composed of

products and sums of operators, we use lower-case Greek letters: α, β, . . . .) In order to make

our results broadly usable, we will be slightly pedantic.

To denote generic operators α̂, β̂ coupled up to good total angular momentum J and total

z-component M , we use the notation (α̂ ⊗ β̂)JM . Hence we have the general pair creation

operator

Â†
JM(ab) = (â† ⊗ b̂†)JM , (8)

with two particles in orbits a and b. We also introduce the adjoint of A†
JM(ab), the pair

annihilation operator,

ÃJM(cd) = −(c̃⊗ d̃)JM . (9)

Here we use the standard convention c̃mc
= (−1)jc+mc ĉ−mc

, where mc is the z-component

of angular momentum; this guarantees that if â†jm transforms as a spherical tensor, so does

ãjm [23]. An alternate notation is

ÂJM(cd) =
(

Â†
JM(cd)

)†

= (−1)J+MÃJ,−M(cd). (10)
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With this we can write down a standard form for any one- plus two-body Hamiltonian

or Hamiltonian-like operator, which are angular momentum scalars. To simplify we use

Ĥ =
∑

ab

eabn̂ab +
1

4

∑

abcd

ζabζcd
∑

J

VJ(ab, cd)
∑

M

Â†
JM(ab)ÂJM(cd), (11)

where n̂ab =
∑

m â†mb̂m and ζab =
√
1 + δab. Here VJ(ab, cd) = 〈ab; J |V̂ |cd; J〉 is the matrix

element of the purely two-body part of Ĥ between normalized two-body states with good

angular momentum J ; because H is a scalar the value is independent of the z-component

M . One can also write this, in slightly different formalism, as

∑

ab

eab[ja]
(

â† ⊗ b̃
)

0,0
+

1

4

∑

abcd

ζabζcd
∑

J

VJ(ab, cd) [J ]
(

Â†
J(ab)⊗ ÃJ(cd)

)

0,0
, (12)

where we use the notatation [x] =
√
2x+ 1, which some authors write as x̂ (we use the

former to avoid getting confused with operators which always are denoted by either â or ã).

Finally we also introduce one-body transition operators with good angular momentum

rank K and z-component of angular momentum M ,

F̂K,M =
∑

ab

Fab[K]−1
(

â† ⊗ b̃
)

K,M
. (13)

Here Fab = 〈a||F̂K ||b〉 is the reduced one-body matrix element using the Wigner-Eckart

theorem and the conventions of Edmonds [23]. For non-charge-changing transitions, Eq. (5)

implies

Fab = (−1)ja−jbF ∗
ba. (14)

With these definitions and conventions, we can now work out general formulas for sum

rules. An important issue will be isospin. Realistic operators, such as M1, strongly break

isospin, and so rather than working in a formalism with good isospin we treat protons and

neutrons as being in separate orbits. (Counter to this, we give one example with isoscalar

E2 transitions in section III.)

A. Non-energy-weighted sum rules

The non-energy-weighted sum rule operator is given by

ÔNEWSR = ~F † · ~F =
∑

M

(

F̂KM

)†

F̂KM =
∑

M

(−1)M F̂K−M F̂KM , (15)

using Eq. (5). Then

ÔNEWSR =
∑

ab

n̂ab

∑

c

F ∗
caFcb

2ja + 1
−

∑

abcd

F ∗
cbFad

∑

J

{

ja jd K

jc jb J

}

∑

µ

Â†
Jµ(ab)ÂJµ(cd)

=
∑

ab

(â† ⊗ b̃)00
∑

c

[ja]
−1F ∗

caFcb −
∑

abcd

F ∗
cbFad

∑

J

{

ja jd K

jc jb J

}

[J ]
(

Â†
J(ab)⊗ ÃJ(cd)

)

00
.

(16)
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By writing out the operator as an angular momentum scalar and to look “just like” a

Hamiltonian, for purposes of use in a shell-model code, we have

ÔNEWSR =
∑

ab gab[ja](a
† ⊗ b̃)0,0 +

1
4

∑

abcdJ ζabζcdWJ(ab, cd) [J ]
(

A†
J(ab)⊗ ÃJ(cd)

)

0,0
,

(17)

where the single-particle matrix element is

gab =
∑

c

F ∗
caFcb

2ja + 1
. (18)

We do not assume isospin symmetry, but assume our orbital labels also reference pro-

tons/neutrons. So in (18) labels a and b must be the same, proton or neutron. Now

for the two-body matrix elements: for identical particles in orbits (i.e., a, b, c, d all label

protons or all label neutrons), we need to enforce antisymmetry, that is, W
pp(nn)
J (ab, cd) =

−(−1)ja+jb+JW
pp(nn)
J (ba, cd), etc:

W
pp(nn)
J (ab, cd) = −2 (1 + PabJ) ζ

−1
ab ζ

−1
cd

{

ja jd K

jc jb J

}

F
pp(nn)∗
cb F

pp(nn)
ad , (19)

where PabJ = −(−1)ja+jb+JPab, and Pab is the exchange operator swapping a ↔ b. Here

the only terms in F̂ which contribute are the non-charge-changing pieces, F pp and F nn.

For proton-neutron interactions, where we assume labels a, c are proton and b, d are

neutron, i.e., we want to compute W pn
J (aπbν , cπdν), we need to identify the proton-neutron

parts of F̂ . So we still have (18) and

W pn
J (ab, cd) = −

(

(

F pn∗
cb F pn

ad + (−1)ja+jb+jc+jdF np∗
da F np

bc

)

{

ja jd K

jc jb J

}

−(−1)J
(

(−1)ja+jbF pp∗
ca F nn

bd + (−1)jc+jdF nn∗
db F pp

ac

)

{

ja jc K

jd jb J

})

. (20)

The first two terms are for charge-changing transitions, while the last two are for charge-

conserving transitions. Note it is possible to create an operator for just one direction, e.g.,

a non-energy-weighted sum rule for β− transitions.

B. Energy-weighted sum rules

We define

ÔEWSR =
1

2

∑

M

(−1)M
[

F̂K,−M , [Ĥ, F̂K,M ]
]

=
∑

ab

gab[ja](a
† ⊗ b̃)0,0 +

1

4

∑

abcd

ζabζcd
∑

J

WJ(ab, cd) [J ]
(

A†
J (ab)⊗ ÃJ(cd)

)

0,0
.

(21)

In this format the EWSR operator is an angular momentum scalar and, again, looks “just

like” a Hamiltonian, for purposes of use in a shell-model code.
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In order to derive the EWSR as a expectation value of a double-commutator, we must

use (5). Then, for example, for Gamow-Teller we cannot compute the EWSR for β− or β+

alone, but must compute it for the sum. While this is physically less interesting, it is the

only possibility for an expectation value of a two-body operator. If we do not use (5), the

EWSR becomes

S1(Ei) =
〈

i
∣

∣

∣
F̂ †[Ĥ, F̂ ]

∣

∣

∣
i
〉

=
〈

i
∣

∣

∣
[F̂ †, Ĥ]F̂

∣

∣

∣
i
〉

=
1

2

〈

i
∣

∣

∣
F̂ †[Ĥ, F̂ ] + [F̂ †, Ĥ]F̂

∣

∣

∣
i
〉

, (22)

and the resulting operator will have three-body components.

After annihilating commutators and recoupling angular momentums, the one-body parts

of ÔEWSR in Eq.(21) are

gab =
δjajb

2(2ja + 1)

∑

cd

(−eacFcdF
∗
bd + FacecdF

∗
bd + F ∗

caecdFdb − F ∗
caFcdedb) , (23)

where eab are the one-body parts of the Hamiltonian in Eq.(11), and the two-body matrix

elements of ÔEWSR are

WJ(abcd) =

5
∑

i=1

W i(abcd; J), (24)

with (using Eq. (14) where possible to eliminate or reduce phases)

W 1(abcd; J) = −1

2
(1 + PcdJ)

∑

efJ ′

(−1)J+J ′

(2J ′ + 1)πJ ′

deζefζ
−1
cd VJ(ab, ef)

×FecFfd

{

J K J ′

jd je jf

}{

J K J ′

je jd jc

}

, (25)

W 2(abcd; J) = −1

2
(1 + PcdJ)

∑

efJ ′

(2J ′ + 1)πJ ′

cfζceζ
−1
cd VJ(ab, ce)

×FefF
∗
df

{

J K J ′

jf jc je

}{

J K J ′

jf jc jd

}

, (26)

W 3(abcd; J) = (1 + PabJ )(1 + PcdJ)
∑

efJ ′

(2J ′ + 1)ζbeζdfζ
−1
ab ζ

−1
cd VJ ′(be, df)

×F ∗
eaFfc

{

J K J ′

je jb ja

}{

J K J ′

jf jd jc

}

, (27)

W 4(abcd; J) = PacPbdW
1∗(abcd; J), (28)

W 5(abcd; J) = PacPbdW
2∗(abcd; J), (29)

where ζab =
√
1 + δab as former defined, and πJ ′

de is defined as

πJ ′

de =

{

0, if d = e and J ′ is odd;

1, else.
(30)

We introduce this symbol because in the derivations of W 1(abcd; J), J ′ is an intermediate

angular momentum, which accounts for the total angular momentum of two fermion anni-

hilators in orbits d and e. As the Pauli principle demands, when d and e are the same orbit,

J ′ must be even in (25). Similarly, in (26) when c and f are the same orbit, J ′ must be

even. For detailed explanations please see (A12-A13) and discussion there.
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III. RESULTS

Our formalism applies to configuration-interaction (CI) calculations in a shell-model basis.

In CI calculations one diagonalizes the many-body Hamiltonian in a finite-dimensioned,

orthonormal basis of Slater determinants, which are antisymmeterized products of single-

particle wavefunctions, typically expressed in an occupation representation. The advantage

of CI shell model calculations is that one can generate excited states easily, and for a modest

dimensionality one can generate all the eigenstates in the model space.

We use the BIGSTICK CI shell model code [38, 39] to calculate the many-body matrix

elements Hαβ = 〈α|Ĥ|β〉 and then solve Ĥ|i〉 = Ei|i〉. Greek letters (α, β, . . .) denote generic

basis states, while lowercase Latin letters (i, j, . . .) label eigenstates. As BIGSTICK computes

not only energies but also wavefunctions, we can easily compute sum rules as an expecta-

tion value, as in Eq. (6). We also tested our formalism by fully diagonalizing modest but

nontrivial cases, with typical M-scheme dimensions on the order of a few thousand, where

we compute transition density matrices and the subsequent transition strengths between all

states. This is a straightforward generalization of previous work on the NEWSR [7].
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FIG. 1. Energy weighted sum rules (EWSR) and transition strength function centroids as a function

of initial energy Ei. Results are put into 2 MeV bins with the average and root-mean-square

flucutation shown; the fluctuations are not sensitive to the size of the bins. (a) EWSRs for isoscalar

E2 for 34Cl in the sd shell. The (red) solid line is the secular behavior predicted by spectral

distribution theory, as described in Ref. [7]. (b) Centroids for M1 transitions in 21Ne in the sd

shell. (c) EWSR for E1 transitions in 10B in 0p-1s-0d5/2 space. (d) Centroids for Gamow-Teller

transitions, sum of β±, for 27Ne in the sd shell.

To illustrate our formalism we use phenomenological spaces and interactions, for example,

the 1s1/2-0d3/2-0d5/2 or sd shell, using a universal sd interaction version ‘B’ (USDB) [40].
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FIG. 2. Ground state E1 energy-weighted sum rule (EWSR) for Z = N nuclides computed in the

0p-1s-0d5/2 shell model space (SM), normalized by the Thomas-Reiche-Kuhn (TRK) EWSR.

We show results for selected nuclides, for which we can fully diagonalize the Hamiltonian

in the model space, as a function of initial energy (relative to the ground state) in Fig. 1.

The centroids are simply evaluated by the ratio of the EWSR to the NEWSR, as in Eq. (3).

Because of the finite model space and because we consider the sum rules for all states, the

centroids and the EWSR must go from positive to negative. Panel (a) shows the EWSR for

isoscalar E2 transitions in 34Cl, while panel (b) shows the centroids for transitions in 21Ne

with standard g-factors [41]. While we assume harmonic oscillator single-particle wave func-

tions for the basis, taking ~Ω = 41A−1/3MeV, because we compute centroids the oscillator

length divides out. All results were put into 2 MeV bins, but the size of the fluctuations

shown by error bars are insensitive to the size of the bins. Also shown is the spectral

distribution theory prediction of the secular behavior: one exploits traces of many-body

operators to exactly arrive at smooth secular behavior shown by the red solid line in panel

1(a). Not only can one compute the EWSR as an expectation value, the secular behavior

with excitation energy is quite smooth and by relating the EWSR to the expectation value

of an operator, and defining a inner product using many-body traces, that behavior can be

understood from a simple mathematical point of view, as discussed in more detail in [7] (the

reason we choose isoscalar E2 is that the publically available code we used to compute the

inner product [42] only allows interactions with good isospin). Panel (d) shows the centroids

for charge-changing Gamow-Teller transitions starting from 27Ne. Because Eq. (6) requires

the transition operator of rank K to follow (5), we have to sum both β+ and β− transitions.

For 27Ne the total β− strength is 21.239 g2A, which dominates over β+ whose total strength

is 0.239 g2A, satisfying the Ikeda sum rule. Again, because we are taking ratios the value of

gA divides out for the centroids.

We also considered E1 transitions in a space with opposite parity orbits, the 0p1/2-0p3/2-

1s1/2-0d5/2 or p-sd5/2 space, chosen so we could fully diagonalize for some nontrivial cases.

The interactions uses the Cohen-Kurath (CK) matrix elements in the 0p shell[43], the older

USD interaction [44] in the 0d5/2-1s1/2 space, and the Millener-Kurath (MK) p-sd cross-shell

matrix elements[45]. Within the p and sd spaces the relative single-particle energies for the
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CK and USD interactions, respectively, are preserved, but sd single-particle energies shifted

relative to the p-shell single particle energies to get the first 3− state in 16O at approximately

6.1 MeV above the ground state. The rest of the 16O spectrum, in particular the first excited

0+ state, is not very good, but the idea is to have a non-trivial model, not exact reproduction

of the spectrum. Panel (c) of Fig. 1 shows the E1 EWSR for 10B, where, as with the other

cases, due to the finite model space the sum rule is not constant. One of the most important

and most famous application of sum rules is to electric dipole (E1) transitions, where the

Thomas-Reiche-Kuhn (TRK) sum rule [24] predicts S1 = (NZ/A)e2~2/2mN . Fig. (2) shows

the ground state E1 energy-weighted sum rule for Z = N nuclides in this space, normalized

by the TRK prediction. The enhancement over the TRK sum rule, between 40 and 125%, is

similar to previous results, [24, 46–50]. While one should not take these results as realistic,

given the smallness of the model spaces and the crudity of the interaction, it nonetheless

illustrates the simplicity of this approach.
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FIG. 3. In the sd-shell using the Brown-Richter USDB interaction. (a) Centroids of E2 transitions

from the ground state as a function of neutron number N . Includes nuclides with both even and

odd proton number, with symbols in the boxes on both panels. (b) Excitation energies of the first

2+ state for even-even nuclides only.

By expressing sum rules as operators, one can efficiently search for systematic behaviors.

For example, we searched for correlations in the sd shell suggested by Eq. (7) but found none.

Further investigation instead led us to systematics of the E2 transitions in the sd shell, shown

in Fig. 3. Again we used the Brown-Richter USDB interaction, and used effective charges

of 1.5e and 0.5e for protons and neutrons, respectively. The USDB interaction is known to

be relatively good at producing low-lying energy spectra and transitions of sd-shell nuclei,

so we use it to calculate Ecentroid; while the E2 operator can connect to 2~Ω excitations,

such transitions are excluded from this model space, so here the centroids mostly signal the

10



low-lying transition strengths. The left panel, (a), gives the energy centroid, the ratio of the

EWSR to the NEWSR easily calculated as expectation values, for isotopes of neon through

argon, for neutron numbe N = 9-19. The data suggest a convergence at the semi-magic

closure of the 0d5/2 shell at N = 14, which is a maximum for nuclides with Z < 14 and a

minimum for Z > 14. We have no simple explanation for this behavior, although it seems

clearly tied to the semi-magic nature of N = 14; it is quite different from the excitation

energy of the first 2+ energy in the even-even nuclides, shown in the right panel (b), which,

although we do not show it, closely follow the experimental values. (The closest behavior

in the literature we can find are simple behaviors of 2+1 and 4+1 excitation energies in heavy

nuclei as a function of the number of valence protons and neutrons [51–54], demonstrating

the close relationship between collectivity and the proton-neutron interaction. However we

found that those simple relationships between the number of valence nucleons and the 2+1
and 4+1 energies do not hold in the sd shell.) We also note an advantage of sum rules over

other regularities such as 2+ excitation energies: they can be applied easily to all nuclides,

while E(2+1 ) may signal the underlying structure of only even-even nuclei. Indeed Fig. 3(a)

demonstrates this. Clearly much more exploration can be done.

IV. SUMMARY

We presented explicit formulas of operators for non-energy-weighted (S0) and energy-

weighted (S1) sums rules of transition strength functions, calculated as expectation values in

a shell model occupation-space framework. These formulas are implemented in the publically

available code PandasCommute [36], which can generate the sum rule operator one- and two-

body matrix elements from general shell-model interactions and transition operator matrix

elements. We presented examples of electromagnetic and weak transitions for typical cases

in sd and psd5/2 shell model spaces; sd shell calculations show that the centroids exhibit an

secular dependence on the parent state energy. Calculation of the E1 energy-weighted sum

rule in a crude model space nonetheless show an enhancement over the Thomas-Reiche-Kuhn

sum rule similar to previous results. We also showed intriguing systematics of E2 centroids

in the sd shell.

This methodology can be further extended to no-core shell model spaces, even with

isospin non-conserving forces (e.g. Coulomb force). As one only needs a parent state and

the Hamiltonian of the many-body system, Ecentroid might play the role of a test signal in

calculations in sequentially enlarged spaces, thus may be useful to address e.g. quenching,

impact of T = 0/T = 1 interactions on strength functions and so on.
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Appendix A: Derivation of the double commutator

In this appendix we give some details of the derivation of the matrix elements for the

EWSR operator, which requires double commutation. Given the one- and two-body matrix

elements of the Hamiltonian, eab and VJ(ab, cd) as defined in (11), and the reduced one-

body matrix elements Fab of the transition operator as in (13), we want to find the one-body

matrix element gab, and the two-body matrix elements WJ(ab, cd) of the EWSR sum rule

operator, as defined in (21). We remind the reader that we do not assume isospin symmetry

and that the single-particle orbit labels, a, b, c, d, etc., may refer to distinct proton and

neutron orbits.

Taking the expression of the Hamiltonian in (12) into the double commutator in (21),

ÔEWSR splits into two terms,

ÔEWSR = −1

2
(−1)K [K]

∑

ab

eab[ja]
[

[Q̂0(ab), F̂K ]K , F̂K

]

0

−1

8
(−1)K [K]

∑

abef

ζabζef
∑

J

VJ(ab, ef)[J ]
[

[(A†
J(ab)⊗ ÃJ(ef))0, F̂K ]K , F̂K

]

0
(A1)

where Q̂KM(ab) is defined as Q̂KM(ab) ≡ (â† ⊗ b̃)KM . We have changed dummy indices in

the second term, so that VJ(ab, ef) rather than VJ(ab, cd) appears here, as it does in (25),

for convenience of later explanations of how to derive (25).

These terms involve commutators with angular momentum recouplings. Such commuta-

tors are dealt with in a unified manner by authors of Ref. [55, 56] with a generalized Wick

theorem. We introduce their methodology in brief and return to (A1) with the borrowed

tool. They define a generalized commutator,

[α̂, β̂] = α̂β̂ − θαβ β̂α̂, (A2)

where α̂, β̂ are operators in occupation space, including single-particle fermion creation and

annihilation operators, one-body transition operators, and fermion pair creation and anni-

hilation operators. If jα, jβ are the angular momenta of the operators, then

θαβ =

{

−1, jα, jβ are half integers;

1, otherwise.
(A3)

With these definitions, it’s straight forward to derive

[α̂β̂, γ̂] = α̂[β̂, γ̂] + θβγ [α̂, γ̂]β̂. (A4)

Now we also introduce a generalized commutator with good angular momentum coupling,

[α̂, β̂]jm ≡ (α̂⊗ β̂)jm − (−1)jα+jβ−jθαβ(β̂ ⊗ α̂)jm. (A5)
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and for spherical tensor products

[(α̂⊗ β̂)j , γ̂]j′ =
∑

j′′

U(jαjβj
′jγ; jj

′′)(α̂⊗ [β̂, γ̂]j′′)j′

+θβγ
∑

j′′

(−1)jα+j′−j−j′′U(jαjβjγj
′; jj′′)([α̂, γ̂]j′′ ⊗ β̂)j′, (A6)

where

U(jαjβjγj
′; jj′′) ≡ (−1)jα+jβ+jγ+j′[j][j′′]

{

jα jβ j

j′ jγ j′′

}

, (A7)

and [x] ≡
√
2x+ 1 as defined before.

Now we go back to (A1). We remind the reader that, according to (13), F̂K,M =
∑

ab Fab[K]−1Q̂K,M(ab), so the first term in (A1) is a linear summation of terms in the

form of
[

[Q̂0(ab), Q̂K(cd)]K , Q̂K(ef)
]

0
.

With (A6) we can derive
[

Q̂J(ab), Q̂K(cd)
]

J ′M ′

=
[

(â† ⊗ b̃)J , (ĉ
† ⊗ d̃)K

]

J ′M ′

= (−1)ja+jd+J ′

δbc[J ][K]

{

ja jb J

K J ′ jd

}

Q̂J ′M ′(ad)

−(−1)jb+jc+J+Kδda[J ][K]

{

ja jb J

J ′ K jc

}

Q̂J ′M ′(cb), (A8)

and thereafter
[[

Q̂J(ab), Q̂K(cd)
]

J ′

, Q̂K(ef)
]

JM
= [J ][J ′](2K + 1)

{

+φaeKδbcδfa

{

J K J ′

jd ja jb

}{

J K J ′

ja jd je

}

Q̂JM(ed)

−φdfJJ ′δbcδde

{

J K J ′

jd ja jb

}{

J K J ′

jd ja jf

}

Q̂JM (af)

+φbfKδadδbe

{

J K J ′

jc jb ja

}{

J K J ′

jb jc jf

}

Q̂JM(cf)

−φceJJ ′δadδcf

{

J K J ′

jc jb ja

}{

J K J ′

jc jb je

}

Q̂JM(eb)

}

,

(A9)

where φaeK = (−1)ja+je+K , other φ··· are similar. We take (A9) into the 1st term in (A1),

and end up with the expression for gab in (23).

The second term in (A1) is a linear summation of terms
[

[(A†
J(ab)⊗ ÃJ(ef))0, F̂K ]K , F̂K

]

0
.

With (A6) it’s straight forward to derive
[(

A†
J(ab)⊗ ÃJ(ef)

)

0
, F̂K

]

K,M
=

∑

J ′

(−1)J+K+J ′

[J ′][J ]−1[K]−1
(

A†
J(ab)⊗ [ÃJ(ef), F̂K ]J ′

)

K,M

+
∑

J ′

[J ′][J ]−1[K]−1
(

[A†
J (ab), F̂K ]J ′ ⊗ ÃJ(ef)

)

K,M
, (A10)
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and thereafter
[

[(A†
J(ab)⊗ ÃJ(ef))0, F̂K ]K , F̂K

]

0

=
∑

J ′

[J ′][J ]−1[K]−1
{

(−1)J+K+J ′

(

A†
J (ab)⊗

[

[ÃJ(ef), F̂K ]J ′, F̂K

]

J

)

0
(A11)

+2
(

[A†
J (ab), F̂K ]J ′ ⊗ [ÃJ(ef), F̂K ]J ′

)

0
+ (−1)J+K+J ′

([

[A†
J(ab), F̂K ]J ′ , F̂K

]

J
⊗ ÃJ(ef)

)

0

}

.

Linear summations of the 1st term in the brace of (A11) lead toW 1(abcd; J) andW 2(abcd; J)

in (25-26), the 2nd term to W 3(abcd; J) in (27), and the 3rd term to W 4(abcd; J) and

W 5(abcd; J) in (28-29). The symmetry between (25-26) and (28-29) originates from here.

We take the 1st term in the brace of (A11) as an example, and explain restrictions caused

by Pauli’s principle mentioned before. Use (A6) again to derive
[

ÃJ(ef), F̂K

]

J ′M ′

=
∑

gd

Fgd[K]−1
[

ÃJ(ef), Q̂K(gd)
]

J ′M ′

= −[J ](1 + PefJ)
∑

d

Ffd

{

je jf J

K J ′ jd

}

ÃJ ′M ′(de). (A12)

Based on (A12), we derive
[

ÃJ ′(de), F̂K

]

JM
and go further to

[

[ÃJ (ef), F̂K ]J ′, F̂K

]

J,M
=

∑

cdgh

(2K + 1)−1FgdFhc

[

[ÃJ(ef), Q̂K(gd)]J ′, Q̂K(hc)
]

JM

= [J ][J ′](1 + PefJ)
∑

cd

πJ ′

deFfdFec

{

J K J ′

jd je jf

}{

J K J ′

je jd jc

}

ÃJM(cd) (A13)

+(−1)J+J ′

[J ][J ′](1 + PefJ)
∑

cd

πJ ′

deFfdF
∗
cd

{

J K J ′

jd je jf

}{

J K J ′

jd je jc

}

ÃJM(ec).

Note that ÃJ ′M ′(de) does not show up in (A13), but as it appeared in (A12) as a necessary

stone in the water, therefore the restriction by Pauli’s principle on ÃJ ′M ′(de) is inherited

by (A13), i.e. when d and e in (25) are the same orbit J ′ must be even. So we

introduced πJ ′

de as defined in (30) to stand for this restriction.

We take the 1st term of (A13) into the 1st term in the brace of (A11), pick up factors

in (A1), and we end up with W 1(abcd; J) in (25); similarly the 2nd term of (A13) end up

with W 2(abcd; J) in (26). Naturally the restriction πJ ′

de is inherited by W 1(abcd; J) and also

W 2(abcd; J), but because we exchange indices when deriving W 2(abcd; J), the restriction

becomes πJ ′

cf in (26).

The same trick is applied to the other two terms in the brace of (A11), with (A6) it’s

straight forward to derive
[

Â†
J(ab), F̂K

]

J ′M ′

=
∑

ef

[K]−1Fef

[

Â†
J(ab), Q̂K(ef)

]

J ′M ′

= (−1)K [J ](1 + PabJ )
∑

e

F ∗
be

{

J K J ′

je ja jb

}

Â†
J ′M ′(ea), (A14)
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and thereafter
[

[Â†
J(ab), F̂K ], F̂K

]

JM

= [J ][J ′](1 + PabJ )
∑

eg

πJ ′

aeF
∗
beF

∗
ag

{

J K J ′

je ja jb

}{

J K J ′

ja je jg

}

Â†
JM(ge)

+(−1)J+J ′

[J ][J ′](1 + PabJ)
∑

eg

πJ ′

aeF
∗
beFge

{

J K J ′

je ja jb

}{

J K J ′

je ja jg

}

Â†
JM(ag). (A15)

With (A12, A14) one can derive the second term in the brace of (A11), and end up with

W 3(abcd; J) in (27); with (A15) one can derive the third term in the brace of (A11), and

get W 4(abcd; J) and W 5(abcd; J) in (28-29) after picking up factors in (A1).
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[11] J. Ritman, F.-D. Berg, W. Kühn, V. Metag, R. Novotny, M. Notheisen, P. Paul, M. Pfeiffer,
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