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Ab initio methods aim to solve the nuclear many-body problem with controlled approximations.
Virtually exact numerical solutions for realistic interactions can only be obtained for certain special
cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to
handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to
perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax = 22 and to
reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis
implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations
impose finite-size corrections on observables computed in this basis. We perform IR extrapolations
of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed
UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV
converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range
of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs
the exponential IR convergence to the threshold energy for the first open decay channel. Using
large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

PACS numbers: 23.40.-s, 24.10.Cn, 21.10.-k, 21.30.-x

I. INTRODUCTION

The harmonic-oscillator basis continues to be most
popular in the computation of atomic nuclei. It is em-
ployed in the traditional shell model [1–3], nuclear den-
sity functional calculations [4–6], the no-core shell model
(NCSM) [7, 8], and other ab initio methods [9–11]. For
such ab initio approaches, one usually employs a very
large basis including many orbitals. This serves two si-
multaneous purposes: (i) the basis should capture the
correlations induced by the strong, realistic nucleon-
nucleon interactions that are used as input, and (ii) it
should build the long-range behavior of nuclear wave
functions and possibly incorporate effects of continuum
coupling [12]. Still, the basis must obviosuly be trun-
cated and one might ask the relevant question: What are
the corrections to energies and other observables that are
due to the finite size of the oscillator basis?

This question was addressed in several works by empir-
ical extrapolation schemes [13–17]. Only recently—based
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on the insight that a finite oscillator space introduces IR
and UV cutoffs [18–21]—were extrapolation formulas de-
rived for the harmonic-oscillator basis. The IR extrapola-
tion formulas [22] are the harmonic-oscillator equivalent
of Lüscher’s formula for the lattice [23]. The key insight
was that the spherical harmonic-oscillator basis is—at
low energies—indistinguishable from a spherical cavity
of radius L. As the Lüscher formula corrects the energy
shift from tunneling due to the periodic boundary condi-
tion of the underlying lattice, the IR extrapolation formu-
las correct the energy shift due to the Dirichlet boundary
condition at the radius L. Very recently, high-precision
expressions for the length scale L were derived for the
two-body problem [24], many-body spaces that are prod-
ucts of single-particle spaces [25], and the NCSM [26] in
which a total energy truncation is employed. Extrapo-
lation formulas were derived for energies [22], radii [24],
quadrupole transitions [27], and radiative capture reac-
tions [28]. For finite-volume corrections to the binding
energy of N -particle quantum bound states on the lat-
tice we refer the reader to Ref. [29].

The leading-order (LO) IR extrapolation formula for
energies is

E(L) = E∞ + a0 exp (−2k∞L). (1)

The energies E(L) are theoretical results for bound-state
energies, while a0 and k∞ are adjustable parameters that
are so far only understood in the two-body problem [24].
The IR extrapolation (1) reflects that a finite oscillator
basis effectively imposes a hard-wall boundary condition
at a radius L. Thus, a0 > 0 and the computed ener-
gies E(L) are above the infinite space result E∞. The
extrapolation formula (1) is expected to yield an ac-
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curate bound-state energy when UV convergence is al-
ready achieved, and when L significantly exceeds any
other relevant length scale, i.e. for k∞L → ∞. For
the deuteron, subleading corrections (in k∞L) to Eq. (1)
are also known [30]. We note that UV extrapolations
of bound-state energies are more challenging than IR ex-
trapolations because the former depend on the regulators
and short-range details of the employed interactions [31],
while the latter are insensitive to such details.

In practice, it is often challenging to fulfill the two
conditions (i.e. being both UV converged and working
at asymptotically large values of k∞L), and it would be
profitable to relax these conditions. We also note that IR
extrapolations of bound-state energies—when performed
at large UV cutoffs that significantly exceed the cutoff
of the employed interaction—sometimes fail to improve
on the variational minimum, see Refs. [26, 32] for exam-
ples. This casts some doubts on the usefulness of such
extrapolations and makes it necessary to revisit them in
more detail. The development of a practical and reliable
scheme for IR extrapolations is a specific purpose of this
paper.

While the NCSM method promises many-body results
without any uncontrolled approximations, it often faces
computational limits in terms of both CPU and mem-
ory requirements. A second objective of our work is to
push the limit of the exact-diagonalization method in nu-
clear physics. This extended reach will make it possible
to probe how numerical results depend on UV- and IR-
scales. In particular, we will see that the separation mo-
mentum of the lowest-lying decay channel is the relevant
low-momentum scale of bound states in finite nuclei. An
improved understanding of IR extrapolation can be em-
ployed to optimize the choice of model-space parameters
so that the information yield of costly many-body calcu-
lations is maximized.

This paper is organized as follows: In Section II we
propose IR extrapolation formulas for energies and radii
that are applicable in cases lacking a full UV convergence.
The extended reach of large-scale exact diagonalization
with the NCSM is presented in Sec. III, with more details
on the technical developments that have made such cal-
culations possible adjourned to the Appendix A. We then
present an extensive set of large-basis NCSM results and
apply the IR extrapolation formulas to several s- and p-
shell nuclei in Sec. IV and Sec. V, respectively. We also
present results from coupled-cluster computations. We
summarize our results in Sect. VI.

II. DERIVATION

Let us assume we work in model spaces with a fixed
value of Λ—the UV momentum cutoff scale—that is not
yet so large that UV convergence is fully achieved. Usu-
ally this is the case for values of Λ that only moderately
exceed the cutoff employed by the interaction. As the IR
length L is increased, the tail of the bound-state wave

function will be built up, and we see that Eq. (1) at fixed
Λ generalizes to

E(L,Λ) = E∞(Λ) + a0(Λ) exp [−2k∞(Λ)L]. (2)

Equation (2) is only the leading term for asymptotically
large k∞L but exhibits the full Λ dependence [at least for
Λ large enough to yield a bound-state energy E(L,Λ)].
We note that the combined IR and UV extrapolation for-
mula applied in Ref. [22] is a special case of Eq. (2) with
constant k∞, a0 and E∞(Λ) = E∞ +A0 exp (−2Λ2/A2

1).
Let us discuss subleading corrections to Eq. (2). Con-

tributions of partial waves with finite angular momentum
lead to corrections proportional to

σIR =
exp [−2k∞(Λ)L]

k∞(Λ)L
. (3)

Even smaller corrections are of order exp (−4k∞L). So
far, little is known about corrections in nuclei consisting
of three or more nucleons. Below we will argue that k∞ is
the momentum to the first open separation channel (or
particle-emission channel). In nuclei with several open
channels (e.g. separation of neutrons, of protons, or of al-
pha particles), the leading corrections from each channel
are expected to be on the order of exp [−2ksep(i)L], where
ksep(i) is the separation momentum of channel i. Such
corrections could be sizable for particle emission chan-
nels with similar energy thresholds and/or with sizable
asymptotic normalization coefficients (ANCs) [29, 33].

Let us consider applications of the extrapolation for-
mula (2) at fixed Λ. In the harmonic-oscillator basis, the
oscillator length is

b ≡
√

~
mω

(4)

for a nucleon mass m and the oscillator frequency ω. The
IR length scale L and the UV cutoff Λ are related to each
other [31]

L(N, b) = f(N)b,

Λ(N, b) = f(N)~b−1, (5)

because of the complementarity of momenta and coordi-
nates. Here, f(N) is a function that depends on the num-
ber N of quanta that can be excited. This function also
depends on the number of particles and differs for prod-
uct spaces and NCSM spaces. We will use the standard
notation Nmax to denote an NCSM truncation of Nmax

quanta above the lowest possible configuration. The
maximum number of quanta for a single particle in such
a basis will be, e.g., N = Nmax + 1 for a p-shell nucleus.
Following More et al. [24], f(N) ≈ [2(N + 3/2 + 2)]1/2

when N � 1 for a two-body system in the center-of-mass
frame. In general, f(N) ∝ N1/2 for N � 1 [26, 30].

We can express L in Eq. (5) as L(N,Λ) = ~f2(N)/Λ.
Thus, L ∝ N for N � 1 at fixed Λ. This shows that
IR extrapolations (2) at fixed Λ are actually exponen-
tial in N . Formally, this result coincides with several
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commonly used extrapolation formulas [13–17, 34]. We
also note that this result agrees with semiclassical argu-
ments regarding the convergence of bound-states in the
harmonic-oscillator basis [35].

For radii, we proceed as for the bound-state energies
and generalize the extrapolation formulas of Refs. [22, 30]
to

r2(L,Λ) = r2∞(Λ)− α(Λ) [k∞(Λ)L]
3

exp [−2k∞(Λ)L]
(6)

at fixed UV cutoff Λ. Here, corrections are of the size

σr,IR = [k∞(Λ)L] exp [−2k∞(Λ)L] (7)

for the two-body bound state. As for the energies, there
are other radius corrections in nuclei consisting of three
or more nucleons. For these reasons, we will employ only
the leading corrections, i.e. Eq. (2) for the energies and
Eq. (6) for radii in extrapolations of data. In the corre-
sponding χ2 fits, we will employ the uncertainties scaled
with (3) and (7), respectively.

In the extrapolation formulas (2) and (6), the Λ-
dependent quantities are taken as adjustable parameters.
In the deuteron, k∞ and a0 are related to the binding en-
ergy B and the ANC via [30]

B =
~2k2∞

2µ
, (8)

γ2∞ =
µa0
~2k∞

. (9)

Here µ = m/2 is the reduced mass, k∞ is the separation
momentum, and γ∞ is the ANC defined by large-r be-
havior of the deuteron wave function in the relative coor-
dinate ~r = ~r1−~r2. We note that the oscillator length for
this coordinate employs the reduced mass instead of the
nucleon mass in Eq. (4). Below, we will employ length
and momentum scales that are based on Eq. (4).

We would like to understand the physics meaning of
k∞ in IR extrapolations of NCSM results for few- and
many-body systems. For many-body bound states on
a cubic lattice, this parameter was very recently identi-
fied with the separation momentum [29]. In what follows
we arrive at a similar identification for the harmonic-
oscillator basis of the NCSM. In the NCSM, the IR
length (5) constitutes an effective hard-wall for the hy-
perradius ρ with

~ρ 2 =

A∑
j=1

~r 2
i −A~R 2

cm, (10)

where

~Rcm ≡
1

A

A∑
j=1

~rj (11)

is the center of mass coordinate. We use an orthog-
onal transformation and introduce Jacobi coordinates

FIG. 1. Choice of Jacobi coordinates for the deuteron (a),
the triton (b), and 6Li (c) such that ~ρ1 corresponds to the
channel with the lowest separation energy.

~ρ1, . . . , ~ρA such that

~ρA = A1/2 ~Rcm =
1√
A

A∑
j=1

~rj . (12)

Using an orthogonal transformation has the advantage
that the reduced mass corresponding to each of the Ja-
cobi coordinates is simply the nucleon mass m. Thus,
the oscillator length for each Jacobi coordinate is given
by Eq. (4).

We note that there are many ways to introduce Jacobi
coordinates ~ρ1 to ~ρA−1 that are orthogonal to each other
and orthogonal to ~ρA in Eq. (12). In particular, one can
choose ~ρ1 such that it corresponds to the lowest-energetic
separation channel. See, for example, the illustrations
in Fig. 1 where ~ρ1 = (~r2 − ~r1)/

√
2 for the deuteron,

~ρ1 = [~r3 − (~r1 + ~r2)/2]
√

2/3 for the triton (because its
lowest separation is into a neutron and a deuteron), and

~ρ1 = [(~r5 + ~r6)/2− (~r1 + ~r2 + ~r3 + ~r4)/4]
√

4/3 for 6Li
(because its lowest separation threshold is into an alpha
particle and the deuteron). Here, we limit ourselves to
breakup into two clusters. For any orthogonal choice of
Jacobi coordinates, the intrinsic hyperradius is

ρ2 =

A−1∑
j=1

ρ2j . (13)

We note that the effective hard-wall radius L of the
NCSM [26] constitutes a hard-wall boundary condition
also for the Jacobi coordinate ~ρ1. Thus, bound-state
wave functions in this coordinate fall off asymptotically

as e−k1ρ1 , with ~k1 being the momentum conjugate to ~ρ1.
We denote k1 ≡ ksep as the separation momentum, with
the corresponding separation energy

S =
~2k2sep

2m
, (14)

Here, m is the nucleon mass. We note that this mass (op-
posed to a reduced mass) enters here, because we used
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an orthogonal transformation from (~r1, . . . , ~rA) to the Ja-
cobi coordinates.

As the IR extrapolation (2) is based on the exponential
falloff ∼ exp(−k∞ρ1) of bound-state wave functions in
position space, we now identify

k∞ = ksep, (15)

with the separation energy S∞ = ~2k2∞/(2m). Based
on the derivation in Appendix C and Ref. [29] we also
identify

a0 =
~2ksepγ2sep

m
. (16)

Here γsep is the ANC corresponding to the Jacobi co-
ordinate ρ1. Taking the different choice of coordinates
into account, we note that Eqs. (14), (15), (16) yield the
same value for the separation energy (8) in case of the
two-body bound state [30].

We recall that the relation (15) between the momen-
tum of the lowest separation channel and the fit param-
eter k∞ from IR extrapolations in the NCSM is valid
only in the asymptotic regime k∞L → ∞. Many nuclei
exhibit n different separation channels, with proton, neu-
tron, and alpha-particle separation usually being among
the least energetic ones. These channels can correspond
to different orthogonal Jacobi coordinates or also to dif-
ferent choices of Jacobi coordinates (that are not orthog-
onal to each other). In any case, the corresponding mo-
menta k1 ≤ k2 ≤ · · · ≤ kn might not be well separated in
scale. In practical NCSM calculations one can only reach
the regime k1L � 1, and this means that other separa-
tion channels can yield non-negligible corrections to the
leading-order IR extrapolation formulas (2) and (6). In
those cases, IR extrapolation will only yield an approxi-
mate value for ksep, and the application of Eqs. (14) and
(15) will only yield an approximate value for the separa-
tion energy.

In Sec. IV and Sec. V we apply the extrapolation
formulas (2) and (6) to obtain bound-state energies
and radii at fixed Λ for different s- and p-shell nuclei,
respectively. We use the nucleon-nucleon interaction
NNLOopt [36] with a regulator cutoff Λχ = 500 MeV. The
nuclei 3H, 3He, and 4He will serve as examples where the
IR extrapolation scheme and the interpretation of the
results can be validated by also performing converged
NCSM calculations. We will then study several p-shell
systems: 6Li, 6,8He, and 16O. For 8He we benchmark IR
extrapolated results at fixed Λ from the NCSM and the
coupled-cluster method (CC) [10] while we use only the
CC method for 16O .

III. EXACT DIAGONALIZATION WITH THE
NCSM

The NCSM approach employed in this work has been
described in several papers, see e.g. the reviews [7, 8].

The main feature of this ab initio method is the use of the
harmonic-oscillator basis, truncated by a chosen maximal
total oscillator energy of the A-nucleon system as defined
by the model-space parameter Nmax. The Hamiltonian
matrix is constructed in this basis and the relevant eigen-
solutions are typically found using iterative diagonaliza-
tion methods.

In the NCSM approach one does not make any ap-
proximations concerning the structure of the many-body
wave function. Therefore, the method can, in principle,
describe any kind of (bound) many-body state; although
the convergence might be slow in some cases, e.g., for
systems that exhibit a large degree of clusterization or
very low separation thresholds. The main disadvantage
of this method is the rapid growth in model-space size
with the number of particles and Nmax truncation. In
many NCSM studies one employs basis-dependent uni-
tary transformations to speed up convergence. In this
work, however, we use bare nuclear interactions.

We discuss the frontier of NCSM calculations in terms
of model-space dimension and matrix sizes in the next
subsection, before describing the NCSM code pANTOINE
that has been used in this work.

A. Pushing the frontier of exact diagonalization

Let us use 6Li as an example of NCSM dimensions
and matrix sizes. The M-scheme (M = 1) model space
dimension as a function of Nmax is shown on a semi-
logarithmic scale in the upper panel of Fig. 2. We note
that 64-bit indices are needed when the dimension ex-
ceeds 4.2 · 109 (for 6Li this occurs at Nmax = 20). For
such dimensions it also becomes difficult to fit the full
vector in the machine memory.

However, the number of non-zero matrix elements,
and the corresponding number of operations needed for
matrix-vector multiplications, is the most restricting fac-
tor for these calculations. Restricting ourselves to two-
body interactions, the number of non-zero matrix ele-
ments for 6Li is shown in the lower panel of Fig. 2. The
data for this figure is generated employing the symme-
try of the Hamiltonian matrix, counting only matrix el-
ements in the upper half of the matrix. A staggering
amount of 2 PB memory storage space would be required
for the Nmax = 22 calculations assuming that we would
explicitly store the matrix using double precision. In or-
der to provide a relevant perspective on this number we
note that the most memory given for a machine on the
current TOP500 list is 1.6 PB [37]. Obviously, the in-
clusion of three-body interaction terms would make this
problem even more dramatic.

Let us also comment on the efficiency limit for perform-
ing the matrix-vector multiplications that are needed for
iterative diagonalization methods. While an explicit-
matrix code likely can perform 1 multiplication (mult)
per clock cycle in each core, a lower limit will be given by
the memory bandwidth. Assume the elements are orga-
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FIG. 2. Scaling plots for the 6Li nuclear many-body problem
(M = 1) as a function of the NCSM model space truncation
Nmax. (a) Model space dimension; (b) Number of nonzero
matrix elements (with two-body interactions only). The right
axes displays the corresponding size (in TB) assuming that
the elements are explicitly stored in double-precision floating-
point format. Extrapolated data is shown as open symbols.

nized such that the vector data resides in processor cache
and thus memory bandwidth can be fully utilized to load
indices and matrix data. Each element processed corre-
sponds to about 10 bytes loaded, in a streaming fashion.
State-of-the art server CPUs have 8 channels of DDR4
memory that can deliver just over 20 GB/s, and thus
sustain 16 Gmult/s per socket. At the same time, such
server CPUs may have 32 cores running at 2.7 GHz, giv-
ing 86.4G clock cycles/s. Memory bandwidth thus lim-
its the performed multiplications to 0.2 per clock cycle.
Utilizing the symmetry of the Hamiltonian matrix, this
becomes 0.4 mult/clock cycle. This number constitutes
an important performance benchmark for exact diago-
nalization codes.

A possible solution to overcome the memory size limit
is the implicit (re-)construction of matrix elements rather
than explicit storage. In the next section we briefly
discuss the sophisticated shell-model and NCSM code
pANTOINE that is designed to achieve just that. We
note that similar factorization techniques are used in the
configuration-interaction code BIGSTICK [38]. Unavoid-
ably, the bookkeeping that is needed to accomplish the
reconstruction of the matrix will lower the efficiency of
the calculations. We will show in Appendix A that care-
ful code design can limit this extra cost to about a factor
four in reduced efficiency.

π

ν

Mp Mp + 1

Mn Mn − 1

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6

FIG. 3. Many-body states in the proton and neutron sub-
spaces factorize into blocks according to their Jz projection.
A-particle states with fixed Jz = M are product states |I〉 =
|π〉⊗ |ν〉 with proton- and neutron states from corresponding
blocks.

B. Exact diagonalization with implicit matrix
construction

The A > 4 NCSM calculations presented in this work
have been performed with pANTOINE—an exact diago-
nalization code for nuclear physics that is based on the
NCSM version of ANTOINE originally developed by Cau-
rier and coworkers [39–41]. The main feature of this code
is the implicit construction of the Hamiltonian matrix,
implying on-the-fly computation of matrix elements in
the iterative matrix-vector multiplications. It employs
the fact that the total many-body space is a product of
the much smaller spaces spanned by protons and neu-
trons separately. A state I in the full-space basis can be
labeled by a pair of proton (π) and neutron (ν) states in
the subspace bases, as illustrated in Fig. 3. All the π (and
ν) states are divided into blocks defined by their Jz value.
To any proton block Jz,p = Mp there is a corresponding
neutron block Jz,n = Mn = M −Mp, where Jz = M is
the total angular momentum projection of the A-body
state. The full many-body basis is built by the associa-
tion of proton states π (belonging to the block Mp) with
neutron states ν (belonging to the corresponding neutron
block Mn). A simple numerical relation

I = R(π) + ν (17)

describing the index of a full multi-particle state can be
established. Non-zero elements of the matrix, HII′ =
V (K), are obtained through three integer additions: I =
R(π) + ν, I ′ = R(π′) + ν′ and K = Q(qπ) + qν . The
index qπ labels the one-body operator acting between π
and π′ states, and analogously the index qν links ν and
ν′ states. The storage of pre-calculated (π,π′,qπ) and
(ν,ν′,qν) labels remains possible as the dimensions in re-
spective proton- and neutron-spaces are moderate com-
pared to those of the full A-body space. Note that each
triple either applies to the proton- or neutron-subspace
only. By performing a double-loop over the pairs of such
triple-lists, and performing the index additions, all con-
nections in the matrix can be efficiently processed.

With pANTOINE we have introduced several improve-
ments of the ANTOINE code and managed to significantly
push the frontier of exact diagonalization methods for
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few and many-nucleon systems. In particular, we have
achieved to extend six-body (6Li) NCSM calculations
with two-body interactions from Nmax = 18, which was
the previous computational limit [26, 42], to Nmax = 22.
This translates to an increase of the model-space dimen-
sion by an order of magnitude from 2.7 · 109 to 2.5 · 1010.
More details on the technical development of our NCSM
code can be found in Appendix A.

IV. s-SHELL NUCLEI: VALIDATION AND
CONVERGENCE

A. A = 3 nuclei

The three-nucleon bound states of 3H and 3He can be
computed virtually exactly. While there is little need for
IR extrapolations of these calculations, they allow us to
validate the IR extrapolation scheme and to check the
relation (15) between the separation energy and the mo-
mentum k∞. The bound-state energies of these nuclei
are converged in the largest Nmax = 40 spaces we em-
ploy, and we find E(3He) = −7.52 MeV and E(3H) =
−8.25 MeV. The corresponding separation energies with
respect to the deuteron [E(2H) = −2.2246 MeV for the
interaction NNLOopt] give ksep ≈ 0.50 and 0.54 fm−1

from Eq. (14) for 3He and 3H, respectively.
We fix the UV cutoff Λ, and for Hilbert spaces with

Nmax ≤ max(Nmax) compute the corresponding oscilla-
tor length (i.e. the oscillator spacing ~ω(N,Λ)), using
the tables presented in Ref. [26] for the function f(N) in
Eq. (5) for the nucleus 3H. This yields Hilbert spaces with
identical UV cutoffs and different IR lengths L. At these
fixed Λ, we compute the ground-state energies E(L,Λ)
and point-proton radii r(L,Λ) and perform IR extrapo-
lations.

Let us discuss first the extrapolation of energies. The
χ2 fits of Eq. (2) to computational data employ the un-
certainty (3). This uncertainty is a naive estimate of sub-
leading corrections to Eq. (2) and ensures that numerical
data is weighted correctly as a function of L. The results
for 3H energies are shown in Fig. 4. The squares show
the variational minimum of the computed energy as a
function of the UV cutoff and for a given Nmax. The ex-
trapolated results are shown as circles, with uncertainty
estimates (3), scaled with the extrapolation distance, pre-
sented as a band.

We see that the extrapolated results are a significant
improvement over the NCSM results; with increasing
Nmax they stabilize and are constant over an increas-
ing range of UV cutoffs. We note that the uncertainties
only estimate higher-order IR corrections due to the first
open decay channel. Missing UV corrections, or IR cor-
rections from other decay channels (with a separation
momentum ksep > k∞), are not included. For the tri-
ton, for instance, the separation into three nucleons has
a separation momentum ksep(t→ p+n+n) ≈ 0.63 fm−1.
This momentum is not much larger than the separation
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FIG. 4. (Color online) Extrapolated energy E∞(Λ) (circles)
for 3H with the NNLOopt NN interaction. The different
panels correspond to different NCSM model space trunca-
tions from max(Nmax) = 16 to max(Nmax) = 36. The grey
bands estimate uncertainties from subleading IR corrections.
The squares denote the minimum energy computed with the
NCSM as a function of Λ.

momentum for the disintegration t → d + n. We note
that the displayed uncertainties increase with increasing
Λ, because at fixed Nmax the IR length L decreases with
increasing Λ.

The results for the extrapolated point-proton radius
are presented in Fig. 5 as circles and compared to the
values obtained from the NCSM calculations. Here, dia-
monds show extrapolation result when k∞ is fixed from
the energy extrapolation. This resulted in the reproduc-
tion of the exact ground-state energies in the interval
1000 MeV . Λ . 1300 MeV. In general, the extrapola-
tion that leaves k∞ as an adjustable parameter (circles)
yields more stable extrapolated radii, and the extrapo-
lated radius can be read off the plateau that develops
as Nmax is increased. In the χ2 fits of the radius, we
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use an uncertainty (7) to account for subleading correc-
tions. These uncertainties, scaled with the extrapolation
distance, are also shown as bands in Fig. 5.
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FIG. 5. (Color online) Extrapolated ground-state (point-
proton) radii r∞(Λ) (circles) for 3H with the NNLOopt NN
interaction. The different panels correspond to different
NCSM model space truncations from max(Nmax) = 16 to
max(Nmax) = 36. The grey bands estimate uncertainties from
subleading IR corrections. The squares denote the maximum
radius computed with the NCSM as a function of Λ and model
space truncation.

The values for k∞ resulting from the fit of Eq. (2)
are shown in Fig. 6(b). We find that a stable region
is reached for large enough UV scales. We note that
fits performed at a UV cutoff Λ below the variational
minimum have UV corrections that are larger than the
IR corrections. This is reflected in a Λ dependence
of the fit parameters a0 and k∞. The values for k∞
obtained from the radius extrapolation are shown in
Fig. 6(c). In large model spaces, the values obtained
from the fit of energies and radii agree with each other.
We present the average value of these two fit parameters,
k∞ = 0.54(1) (obtained at the largest Nmax and Λ), as
the recommended result in Table I. This numerical result
validates our derivation in Sec. II since the momentum
scale extracted from the fits agrees very well with the
separation momentum ksep(3H) ≈ 0.54 fm−1 obtained
from the computed binding energies with the NNLOopt

interaction.

Values of a0 from the fit to Eq. (2) are shown

in Fig. 6(a). For the largest Nmax and Λ we find
a0 ≈ 280 MeV, which corresponds to the ANC γsep ≈
3.5 fm−1/2 in the orthogonal Jacobi coordinate ρ1. Us-
ing the results of Appendix C, the ANC in the phys-
ical separation coordinate then becomes (2/3)1/4γsep ≈
3.2 fm−1/2. We compare this value with the experimental
data of Refs. [43, 44], noting that experiments provide us
with a dimensionless normalization parameter. We use
Eq. (19) in the review [43] to convert this to an ANC of
2.1− 3.4 fm−1/2, in agreement with our theoretical value
extracted from the fit.

FIG. 6. (Color online) Fit parameters a0 (a), k∞(Λ) for 3H
energy extrapolation (b), and k∞(Λ) for radius extrapola-
tion (c) for different NCSM model space truncations from
max(Nmax) = 16 to max(Nmax) = 36. Open symbols denote
results for which UV corrections are expected to be larger
than IR ones, and the corresponding fits are unreliable. The
lowest, theoretical separation momentum is given as a dashed
line with an uncertainty band.

These numerical results suggest that the relevant low-
momentum scale for a bound state in a many-body sys-
tem indeed is set by the momentum corresponding to the
smallest separation energy. We note that this conclusion
is not limited to the oscillator basis, as similar results
were found for the lattice [29]. Of course, this is consis-
tent with view on the ANC, which governs astrophysical
reaction rates [33] at lowest energies.

We use the extrapolations at fixed Λ = 1200 MeV
to extract a sequence of recommended values for the
ground-state energy and the point-proton radius for 3H
as a function of the model-space truncation, see Fig. 7.
For 3He we find results of similar quality; they are given
in Appendix B.

Below, we will see that the relation (15) is also semi-
quantitatively fulfilled in A = 4, 6 and 16-body systems.
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FIG. 7. (Color online) Recommended results for the 3H
energy (upper panel) and radius (lower panel) for different
NCSM model space truncations from max(Nmax) = 16 to
max(Nmax) = 36.

TABLE I. Recommended results for the ground-state energy
E∞ (in MeV) and point-proton radius r∞ (in fm) for differ-
ent nuclei. All results are obtained with the NNLOopt NN
interaction. The variational minimum Emin

var for each nucleus
computed at the largest Nmax reached in the NCSM calcu-
lations is also shown. Finally, the momentum scale, k∞ (ex-
tracted from the energy and radius fits) is compared with the
lowest separation momentum, ksep, for this interaction from
Eq. (14).

E∞ r∞ Emin
var Nmax k∞ ksep

3H −8.250 1.60 −8.250 40 0.54(1) 0.54(1)
3He −7.502 1.793 −7.502 40 0.51(2) 0.51(1)
4He −27.592 1.434 −27.592 20 0.84(5) 0.97(3)
6Li −30.59(3) 2.42(2) −30.500 22 0.44(5) 0.19(8)
6He −27.3(2) 1.84(2) −26.976 16 0.47(3) –
8He −26.5(1.1) 1.82(3) −24.631 12 0.42(3) –

B. 4He

In this Section we present the IR extrapolations for
the ground-state energy and point-proton radius of 4He.
The top panel of Fig. 8 shows the ground-state energies
for 4He in model spaces with Nmax = 4, 6, . . . , 20 as a
function of the oscillator spacing ~ω. Solid lines con-
nect data points with equal Nmax. Dashed lines connect
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FIG. 8. (Color online) Computed ground-state energies (up-
per panel) and point-proton radii (lower panel) for 4He as a
function of the oscillator spacing ~ω in model spaces of size
Nmax as indicated. Solid lines connect data points with equal
Nmax. Dashed lines connect data points with equal UV cutoff
Λ, starting at Λ = 750 MeV to Λ = 1450 MeV (from left to
right in steps of 50 MeV).

data points with equal Λ, starting at Λ = 750 MeV to
Λ = 1500 MeV (from left to right in steps of 50 MeV).
In what follows, we will perform IR extrapolations with
Eq. (2) based on data points computed in model spaces
with equal UV cutoff Λ.

The lower panel of Fig. 8 shows the computed ground-
state point-proton radius for 4He as a function of the
oscillator spacing for model spaces of size Nmax as in-
dicated. Solid lines again connect radii at fixed Nmax

while dashed lines connect data at fixed UV cutoff Λ.
The results become almost independent of Nmax around
~ω ≈ 23 MeV, and it makes sense to identify this value
as the theoretical radius in an infinite space, see, e.g.,
Refs. [17, 42, 45]. Below we will see that the radius ex-
trapolations yield plateaus that allow one to read off the
radius with more confidence also when no full conver-
gence can be achieved.

The trend of the radius curves can be understood as
follows. With increasing oscillator spacings, the com-
puted radius decreases because the IR length of the model
space also decreases. In this regime, UV corrections to
the bound-state become increasingly smaller. For de-
creasing values of the oscillator spacing, the UV cutoff Λ
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FIG. 9. (Color online) Extrapolated energy E∞(Λ) (cir-
cles) for 4He. The different panels correspond to different
NCSM model space truncations from max(Nmax) = 10 to
max(Nmax) = 20. See caption of Fig. 4 for further details.

decreases, and the computed binding energy decreases,
thus leading to a more weakly bound system and an ever
increasing radius. In this regime, IR corrections to the
radius become increasingly smaller as the oscillator spac-
ing is further decreased.

We perform a χ2 fit to the ground-state energies
E(L,Λ) based on the extrapolation formula (2) and use
the theoretical uncertainties (3) in the fit. We recall that
this uncertainty only accounts for some of the missing IR
corrections. Missing UV corrections are not addressed
and one should therefore not expect a proper error es-
timate for small values of Λ. The fit results for the pa-
rameters E∞(Λ) are shown as circles in Fig. 9 for various
values of Nmax. We see that the extrapolation energies
are an improvement compared to the variational minima
(shown as squares).
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FIG. 10. (Color online) Extrapolated ground-state (point-
proton) radii r∞(Λ) (circles) for 4He. The different panels
correspond to different NCSM model space truncations from
max(Nmax) = 10 to max(Nmax) = 20. See caption of Fig. 5
for further details.

For the ground-state radius we perform χ2 fits of
Eq. (6) to our computed results, using the uncertainty (7)
to account for subleading corrections. The results for r∞
and the corresponding uncertainty estimates are shown
as circles and bands in Fig. 10; here we used k∞ as a
fit parameter. In contrast, one might also employ for
k∞ the same values as found in the energy extrapola-
tion. Employing the latter in the fit of the radii [i.e.
making only r∞ and α adjustable parameters in Eq. (6)]
yields extrapolated results that are shown as diamonds
in Fig. 10, with a green uncertainty band. In very large
spaces, both extrapolation results approach each other.
In smaller spaces, extrapolated radii exhibit a weaker
Λ dependence if k∞ is an adjustable parameter. The
extrapolation results can be compared to the computed
NCSM results (squares).

The results for the fit parameter k∞ from the en-
ergy and radius extrapolations are shown in the top and
bottom panels of Fig. 11, respectively. For the largest
model spaces and cutoffs around 1 GeV they are consis-
tent with (but not identical to) each other. The Nmax

dependence of k∞ is smallest for the energy extrapo-
lation, and we focus on them. We note that k∞ de-
pends weakly on Λ as this quantity increases beyond
Λ & 1000 MeV. This is consistent with our expecta-
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FIG. 11. (Color online) Fit parameter k∞(Λ) for 4He en-
ergy extrapolation (left panel) and radius extrapolation (right
panel) for different NCSM model space truncations from
max(Nmax) = 10 to max(Nmax) = 20. The lowest, theo-
retical separation momentum is given as a dashed line with
an uncertainty band.

tions because these results are increasingly well UV con-
verged. We find k∞ ≈ 0.87 ± 0.03 fm−1 from the en-
ergy extrapolation and compute a corresponding sepa-

ration energy S =
k2∞
2m ≈ 15.8 ± 1.1 MeV. This value is

somewhat smaller than the theoretical values for the pro-
ton and neutron separation energies Sp ≈ 19.3 MeV and
Sn ≈ 20.1 MeV, respectively. The corresponding separa-
tion momenta are ksep ≈ 0.96 and 0.98 fm−1, see Table I,
about 10% larger than from our energy extrapolation.

We note that the two-nucleon separation energies are
significantly larger than the nucleon separation energy
of about 20 MeV. Thus, they should yield only smaller
and negligible corrections. Furthermore, the 4He nucleus
is essentially an s-wave state, and corrections to the en-
ergy extrapolation (1) due to other partial waves are also
expected to be small.

We collect recommended values for ground-state en-
ergy and the charge radius of 4He in the panels of Fig. 12.
The extrapolated values and corresponding uncertainties
are taken at Λ = 1100 MeV.

V. p-SHELL NUCLEI: LOW-MOMENTUM
SCALES OF MANY-BODY SYSTEMS

A. 6Li

6Li is a weakly bound nucleus due to the proximity of
the 6Li→ 4He + d breakup channel at only 1.5 MeV ex-
citation energy. The experimental charge radii rc(

ALi) =
2.5432(262), 2.4173(28), and 2.327(30) fm for A = 6, 7,
and 8, respectively [46], confirm that 6Li can be viewed
as a deuteron-halo nucleus. This makes ab initio compu-
tation of this nucleus somewhat challenging [42, 47, 48],
and IR extrapolations can be useful.
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FIG. 12. (Color online) Recommended results for the 4He
energy (upper panel) and radius (lower panel) for different
NCSM model space truncations from max(Nmax) = 10 to
max(Nmax) = 20.

At fixed UV cutoff Λ and N we compute the corre-
sponding oscillator spacing ~ω(N,Λ), using the tables
presented in Ref. [26] for the nucleus 6Li. We choose
model spaces with N ≤ Nmax and compute the ground-
state energy and its point-proton radius. The upper
panel of Fig. 13 shows the ground-state energies for 6Li
in model spaces with Nmax = 4, 6, 8 . . . , 22 as a function
of the oscillator spacing ~ω.

For the radii in the lower panel, many lines merge
around r ≈ 2.3 fm at ~ω ≈ 12 MeV, and one might be
tempted to identify this almost-Nmax-independent value
as the theoretical radius in an infinite space. As we will
see below, however, IR extrapolations yield a larger ra-
dius than this merging point might suggest.

We perform a χ2 fit to the resulting energies based
on the extrapolation formula (2) and use the theoretical
uncertainties (3). The fit results for the energy E∞(Λ)
are shown in Fig. 14. We see that for a range of Λ
around 1100 MeV, the IR extrapolation significantly im-
proves over the variational minimum. For smaller val-
ues of Λ . 1000 MeV (but still above the UV cutoff of
NNLOopt Λχ = 500 MeV), the lack of UV convergence
yields energies that increase with decreasing values of Λ.
For larger values of Λ & 1200 MeV the extrapolated ener-
gies increase as Λ is increased. This can be understood as
follows: At large values of Λ, UV convergence is presum-
ably achieved. However, as is reflected by the increasing
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FIG. 13. (Color online) Computed ground-state energies (up-
per panel) and point-proton radii (lower panel) for 6Li as a
function of the oscillator spacing ~ω in model spaces of size
Nmax as indicated. Solid lines connect data points with equal
Nmax. Dashed lines connect data points with equal UV cutoff
Λ, starting at Λ = 750 MeV to Λ = 1400 MeV (from left to
right in steps of 50 MeV).

theoretical uncertainties, the maximum L values achiev-
able in spaces withN ≤ Nmax decrease with increasing Λ,
and we are not any more in the regime where the asymp-
totic formula (2) is valid. We recall that at smaller values
of L subleading IR corrections to Eq. (2) must become
relevant, leading to a more complicated non-exponential
(i.e. slower than exponential) IR convergence. Fitting
such data points with an exponential yields higher val-
ues for E∞. These results at high values of Λ are con-
sistent with Refs. [26, 30] where IR extrapolations for
fully UV-converged ground-state energies are close to the
variational minimum, thus questioning the utility of such
extrapolations.

Our results for the point-proton radius are shown in
Fig. 15 for increasing values of Nmax. The raw results
r(Nmax,Λ) are shown as red squares. Blue circles show
extrapolated results where k∞ is treated as a fit param-
eter; here, Λ-independent plateaus develop as Nmax is
increased. Green diamonds show extrapolation results
where k∞ is taken from the energy extrapolation; while
the results display a weaker Λ dependence than the raw
data, no plateaus are formed in this case. Our extrapo-
lated radius result, r∞ = 2.417±0.02 fm, yields a charge
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FIG. 14. (Color online) Extrapolated energy E∞(Λ) (cir-
cles) for 6Li. The different panels correspond to different
NCSM model space truncations from max(Nmax) = 12 to
max(Nmax) = 22. See caption of Fig. 4 for further details.

radius rc = 2.55(2) fm in agreement with data [46], and
the theoretical uncertainty also reflects that our radius
is not yet fully converged. Here we used the well-known
formula r2c = r2∞ + 〈r2p〉+ (N/Z)〈r2n〉+ 0.033 fm2, where

〈r2p〉 = 0.769 fm2 and 〈r2n〉 = −0.116 fm2 are the mean
squared charge radii of the proton and neutron, respec-
tively, and the last correction is the Darwin-Foldy term.

The momenta k∞ resulting from the energy and ra-
dius extrapolation are shown in the left and right panel
of Fig. 16, respectively. These momentum parameters
only start to stabilize for the largest values of Λ, perhaps
suggesting that UV convergence is about to be reached.
We note that k∞ still decreases by about 0.02 fm−1 as
Nmax is increased from 14 to 16 (and from 16 to 18). The
values from the energy and radius extrapolation both lack
IR convergence and differ by about 20%.
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FIG. 15. (Color online) Extrapolated ground-state (point-
proton) radii r∞(Λ) (circles) for 6Li. The different panels
correspond to different NCSM model space truncations from
max(Nmax) = 10 to max(Nmax) = 20. See caption of Fig. 5
for further details.

For 6Li, the deuteron separation energy (or the alpha-
particle separation energy) is Sα ≈ 1.6 MeV experimen-
tally and about 0.8 MeV when computed from the bind-
ing energy difference between 6Li on the one hand, and
4He and 2H on the other hand. This small separation
energy makes the computation of the binding energy
and radius of this nucleus a challenge in ab initio cal-
culations. Single-nucleon separation energies are signifi-
cantly larger, and corresponding IR corrections are thus
much smaller. At ΛUV = 1500 MeV in the largest model
spaces, we have k∞L ≈ 4, barely in the regime k∞L� 1
that is required for IR extrapolations. As the 6Li nucleus
has significant s-wave and p-wave contributions, the cor-
responding (k∞L)−1 corrections to the IR extrapolation
formula (1) could still be sizable. This is possibly also
reflected in the slow convergence of k∞. Taking a value
of k∞ ≈ 0.44±0.05 fm−1 from the extrapolations we find
for the separation energy

Sα =
~2k2∞
2m

≈ 3.9± 1 MeV. (18)

This is still larger than expected from binding-energy dif-
ferences. We note that our value for k∞ is consistent with
the value k∞ ≈ 0.49 fm−1 reported in Ref. [26].

Recommended values for the ground-state energy of
6Li are shown in the top panel of Fig. 17.

FIG. 16. (Color online) Fit parameter k∞(Λ) for 6Li en-
ergy extrapolation (left panel) and radius extrapolation (right
panel) for different NCSM model space truncations from
max(Nmax) = 10 to max(Nmax) = 20. The lowest, theo-
retical separation momentum is given as a dashed line with
an uncertainty band.
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FIG. 17. (Color online) Recommended results for the 6Li
energy (upper panel) and radius (lower panel) for different
NCSM model space truncations from max(Nmax) = 12 to
max(Nmax) = 22.

B. 6,8He

We also computed the nuclei 6,8He. In finite model
spaces, the binding energies of these nuclei are smaller
than the binding energy of 4He. Thus, they are unbound



13

with respect to emission of the alpha-particle. While this
is a shortcoming of the employed NNLOopt interaction,
it is still interesting to study these cases in more detail.
In an infinite space, the 6,8He systems are thus a 4He
nucleus and free neutrons, and the expectation is that
the ground-state energy is that of the 4He nucleus (as
kinetic energies of the neutrons can be arbitrarily small
and the s-wave scattering of neutrons among each other
and off the 4He nucleus yields arbitrary small contribu-
tions). Thus, the wave functions of the 6,8He systems
would not fall off exponentially, and the extrapolation
formulas could not be applied. However, when apply-
ing the extrapolation formulas to these systems, we still
got meaningful results, i.e. the energy seems to converge
exponentially with increasing size L of the model space.
This unexpected result is shown in Fig. 18 for 6He.
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FIG. 18. (Color online) Extrapolated ground-state energy
E∞

6He. The different panels correspond to different NCSM
model space truncations. See caption of Fig. 4 for further
details.

How can this be understood? The model spaces we
employ have a maximum extent (i.e. a corresponding
hard-wall radius) of about L ≈ 10 fm in position space.
The 6,8He nuclei have nucleons with angular momen-
tum l = 1 in a simple shell-model picture, and grand
angular momentum K = 2 in hyperspherical coordi-
nates. The corresponding angular momentum barrier is
~2(K + 3/2)(K + 5/2)/(2mL2) ≈ 3 MeV high even at
the hard-wall radius. (For 4He we have K = 0 and the
barrier is less than an MeV at the boundary.) Thus, the

FIG. 19. (Color online) Fit parameter k∞(Λ) for 6He en-
ergy extrapolation (left panel) and radius extrapolation (right
panel) for different NCSM model space truncations from
max(Nmax) = 12 to max(Nmax) = 18.

binding of the 6He nucleus is a transient behavior that
appears in model spaces that are sufficiently large to ex-
hibit a convergence of results but still too small to reflect
the asymptotic true nature of this six-nucleon system.

The top panel of Fig. 19 shows the corresponding k∞
values obtained from the extrapolation of the ground
state energy. These values are still not converged.

We also performed coupled-cluster computations [10,
49] of 8He in the Lambda-CCSD(T) approximation [50].
These calculations employ a model space that is a prod-
uct of single-particle spaces. We denote the truncation of
this space with Nsp,max. The relevant IR lengths [and UV
cutoffs via Eqs. (5)] are taken from Ref. [25]. The results
for the ground-state energy are shown in Fig. 20, using
the same energy scale as for the NCSM results. We note
that both methods yield an extrapolated ground-state
energy for 8He somewhat below −26 MeV. However, the
employed model spaces and UV cutoffs Λ differ from each
other.

For the product space employed in the coupled-cluster
computations, we have not been able to relate the fit
parameter k∞ to an observable. We note that the result
for k∞ in NCSM and coupled-cluster calculations differ
from each other.

C. 16O

Wendt et al. reported NCSM results for 16O using
the NN potential NNLOopt. These are expensive com-
putations and we do not repeat them here. In their
IR extrapolation, they found a fit parameter of k∞ ≈
0.47 fm−1. This corresponds to a separation energy of
about S ≈ 4.6 MeV. In 16O, the lowest-energetic dis-
integration threshold is alpha-particle emission, and the
threshold is at 7.16 MeV experimentally. The coupled-
cluster computations of 16O require less effort than the
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FIG. 20. (Color online) Extrapolated energy E∞(Λ) (circles)
for 8He from the NCSM (upper panels) and the coupled-
cluster method (lower panels) with different model space trun-
cations. The band estimates uncertainties from subleading IR
corrections. The squares denote the minimum energy com-
puted with the respective method as a function of Λ.

NCSM and converge rapidly in the model spaces consid-
ered in this work. The results for the parameters E∞(Λ)
from the χ2 fits are shown in Fig. 21.

The extrapolated energy is consistent with the (practi-
cally fully converged) value of E ≈ −130.1 MeV obtained
in model spaces with Nsp,max = 12. We note that the fit
of the momentum stabilizes around k∞ ≈ 0.97 fm−1,
but we have not been able to relate this value to an ob-
servable. We also note that coupled-cluster calculations
in the employed Lambda-CCSD(T) approximation [50]
would be insensitive to the emission of alpha particles as
this would require at least four-particle–four-hole excita-
tions. For the employed interaction, the neutron separa-
tion energy is about 20 MeV [36].

VI. SUMMARY AND DISCUSSION

In this paper, we presented three main results. First,
we further advanced the shell-model code pANTOINE,
a parallel version of the Strasbourg shell-model code
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FIG. 21. (Color online) Extrapolated energy E∞(Λ) (circles)
for 16O. The different panels correspond to different model
space truncations. The grey bands estimate uncertainties
from subleading IR corrections. The squares denote the mini-
mum energy computed with the Lambda-CCSD(T) as a func-
tion of Λ.

ANTOINE, to deal with unprecedented large harmonic os-
cillator model spaces. This allowed us to present bench-
mark results for a variety of light nuclei and to further
explore asymptotic IR extrapolation formulas. The in-
clusion of three-nucleon forces into this computational
algorithm is an ongoing task. Second, we performed IR
extrapolations of ground-state energies and radii of p-
shell nuclei at fixed UV cutoffs in a considerable range
of such cutoffs. This allowed us to improve over previous
extrapolations (taken at very large UV cutoffs), and to
present extrapolations with increased accuracy and pre-
cision. In particular, the extrapolated energies and radii
are stable in a range of UV cutoffs and—for the ground-
state energy—consistently improve over the variational
minimum obtained with the available computational re-
sources. We also found that the momentum k∞ relevant
for the extrapolation is—within our uncertainties—the
same for ground-state energies and radii. Third, the ex-
trapolation results support the hypothesis that the mo-
mentum k∞ (which is the smallest relevant momentum
for ground-state energies and radii) corresponds to the
momentum of the lowest-energetic separation channel.
This identification could be interesting for EFT argu-
ments in general and for uncertainty quantification in
particular. We recall that it is not really established what
is the typical or relevant momentum scale in finite nuclei.
Estimates range from the inverse of the nucleon-nucleon
scattering length on the small side to the Fermi momen-
tum on the high side. Our results suggest that k∞ is
the smallest relevant scale. This could imply that the
precise reproduction of nucleon-nucleon scattering data
at momenta below k∞ is probably not necessary for the
computation of well-bound nuclear states. Of course,
(excited) states closer to threshold could require more
accurate properties of the nucleon-nucleon interaction at
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lowest momenta.
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Appendix A: Technical details of the pANTOINE

NCSM implementation

The pANTOINE NCSM code uses an iterative scheme
to find the extreme eigenvalues of very large, but rela-
tively sparse, Hermitian matrices. Matrix-vector opera-
tions consume the most execution time. Matrix-element
indices are computed on-the-fly, as described in Sec. III.
The code runs very efficiently on single shared-memory
machines, although it requires large memory resources
(≥ 32 GB). To handle vectors much larger than available
memory, the operation y = Mx can be split into subsets:
yi = (Mi1x1 +Mi2x2 + · · · ).

For two-body nuclear interactions, the code generates
the Hamiltonian matrix on the fly, which removes the
need to distribute matrix elements over thousands of
nodes. Accordingly, the results shown in Figs. 22, 23
were obtained on a single compute node. The current
production version requires node-local disk space for tem-
porary storage. For job sizes exceeding available mem-
ory, it uses local scratch space efficiently, doing sustained
multi-100 MB/s streaming reads while maintaining close
to full multi-core matrix-vector CPU load.

Still, the most extreme calculations for 6Li require al-
most 10 TB of storage for Hamiltonian matrix data and
Lanczos vectors (about half each), see Fig. 22(a). Even
though the loaded index triple-values and matrix data
is used multiple times (due to the double loops), large
read speeds, as presented in Fig. 22(b), are key for being
able to diagonalize matrices with dimensions surpassing
1010. For Nmax ≥ 18 the Lanczos vector is split in several
blocks. With a split vector, mirror blocks are handled
separately causing multiple passes over the same implicit
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FIG. 22. pANTOINE scaling plots for the 6Li nuclear many-
body problem as a function of the NCSM model space trun-
cation Nmax. The model space dimension is shown in Fig. 2.
(a) Total storage required for implicit matrix construction and
for 15 iterations of Lanczos vectors; (b) Average read speed
of implicit matrix data from disk. For Nmax ≥ 18 the Lanczos
vector is split in several blocks.

matrix data. Since more data is read in total, the average
read speed increases.

The main improvements of pANTOINE are: (i) extend-
ing the memory management to handle 64-bit offsets
and thus allowing much larger working sets and subset
vectors; (ii) multi-threaded inner loops of the matrix-
vector operations using OpenMP; (iii) speeding up the
scratch I/O by the use of raw C-style functions; (iv)
asynchronous read of scratch data, making most I/O
be hidden under useful CPU use (matrix-vector calcula-
tions). Essentially, improvement (i) enables us to handle
the larger model-spaces, while (ii) makes it feasible to
run them in reasonable (but still long) times. (iii) and
(iv) are needed to make (ii) significant, as I/O-related
processing and waiting times otherwise dominate.

Let us use the Nmax = 22 6Li run as a specific exam-
ple. There are 5200 different nljm single-particle states
and the resulting M = 1 many-body basis has the dimen-
sion 2.50 · 1010. The full space corresponds to ∼ 200 GB
of storage space per eigenvector using double-precision
for the amplitudes. Note that the proton and neutron
(three-body) sub-spaces are much smaller than the full
six-body space. The sub-space dimension is 1.83 · 106.
There are 4.88 · 1014 non-zero matrix elements that are
applied on-the-fly from 4.1 TB of implicit matrix data.
However, since the data is used in different combinations,
the program actually reads 24.9 TB of data from disk per
iteration. At every iteration, the full matrix-vector op-



16

0.7

0.8

0.9

1.0
M

u
lt

.
n

on
ze

ro (a)

0.0

0.1

0.2

0.3

0.4

0.5

M
u

lt
./

cl
o
ck

-c
y
cl

e

Disk I/O needed

Intel(R) Xeon(R) E5 1650v2 (b)

single-thread

multi-thread

multi-thread
(split vector)

0 2 4 6 8 10 12 14 16 18 20 22

Nmax

0.0

0.1

0.2

0.3

0.4

0.5

M
u

lt
./

cl
o
ck

-c
y
cl

e

Intel(R) Xeon(R) X5570

(c)

FIG. 23. pANTOINE scaling plots for the 6Li nuclear many-
body problem (M = 1) as a function of the NCSM model
space truncation Nmax. (a) Multiplication efficiency (defined
as the number of non-zero matrix elements divided by the
actual number of multiplications being performed); Multipli-
cation per clock cycle for (b) Intel(R) Xeon(R) E5 1650v2
and (c) Intel(R) Xeon(R) X5570 using a single thread (dotted
line), multiple threads (solid line with circles), and multiple-
threads with splitting of the Lanczos vector (solid line with
square symbols).

eration requires 5.54 · 1014 multiplications, which takes
a couple of days on a single compute node. The dif-
ference between number of non-zero elements and total
number of multiplications come from the use of precal-
culated index-triples. It is not possible to avoid matrix-
elements that vanish due to non-trivial cancellations of
Clebsch-Gordan coefficients. Fig. 23(a) shows how this
inherent inefficiency develops with model space size.

In order for I/O reads not to act as a significant bottle-
neck, a fast scratch storage component of the computer is
required. Due to the multi-threaded calculations needing
separate large output vectors, it is also beneficial to use
fewer but fast and efficient processor cores. For this cal-
culation we used a purpose-built machine with a 6-core
Xeon E5-1650v2 CPU, 128 GB of RAM and 10 × 4 TB
HGST NAS disks in a RAID 5 configuration, capable
of streaming scratch data at ∼ 1 GB/s. In this case,
streaming reads averaging 108 MB/sec, see Fig. 22(b),
were done in parallel with maintaining a very large CPU

load. The decrease in multiplication efficiency shown
in Fig. 23(b) at Nmax ≈ 12 − 14 is due to operating-
system disk cache space running out, necessitating I/O
each iteration. The low efficiency at the smallest Nmax

is due to block-scheduling overhead each iteration, which
also is included in the measurements. The multiplica-
tion efficiencies for multi-thread runs with split vectors
were measured with the Lanczos vectors divided in four
roughly equal pieces, except for Nmax = 22 where sixteen
pieces were used.

Despite the heavy I/O and on-the-fly computation of
matrix element indices the code performed 2.40 ·109 mul-
tiplications/sec in average. With 6 × 3.6 GHz available,
this implies an impressive load of 0.111 multiplications
per clock cycle and core, see Fig. 23(b). The dashed
curves show the upper efficiency limit given by the avail-
able execution resources of each processor type, consider-
ing the assembler code of the dominating computational
kernel.

Appendix B: 3He

While the extrapolation results for 3H were shown al-
ready in Sec. IV A, the corresponding results for 3He en-
ergies (radii) are shown in Fig. 24 (Fig. 25).

The values for k∞ resulting from the fit of Eq. (2)
are shown in Fig. 26 and we find that a stable region is
reached for large enough UV scales. The value in this
stable region agrees very well with the 3He separation
momentum for 3He → d + p, which is k∞ ≈ 0.50 fm−1.
We note that this momentum is not well separated from
the momentum ksep(3He → p + p + n) ≈ 0.60 fm−1 for
three-body breakup.

Based on these observation we use the extrapolations
at (fixed) Λ = 1200 MeV to extract a sequence of recom-
mended results for the ground-state energy and the point-
proton radius as a function of the model-space trunca-
tion, see Fig. 27. Overall, the quality of the results for
3He is similar to those obtained for 3H in Sect. IV A.

Appendix C: Asymptotic normalization coefficient

We want relate the parameter a0 of Eq. (2) to the
asymptotic normalization coefficient. For the two-body
system, the relation

a0 =
~2k∞γ2∞

µ
(C1)

was derived in Ref. [30] using scattering theory. Here, µ
is the reduced mass, k∞ the canonical momentum corre-
sponding to the two-particle distance |~r1 − ~r2|, and γ∞
the corresponding ANC. It is straightforward to derive
the analogous expression for any two-body breakup. In
the orthogonal Jacobi coordinates (12) this yields

a0 =
~2k∞γ2∞

m
. (C2)
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FIG. 24. (Color online) Extrapolated energy E∞(Λ) (circles)
for 3He. See caption of Fig. 4 for further details.

For completeness, we also give a derivation of this re-
sult using the Hamiltonian. The derivation adapts the
approaches of Lüscher [23] and König et al. [51] to our
case.

Let ρ1 be the orthogonal Jacobi coordinate that de-
scribes the separation between two clusters, and m the
nucleon mass. Then the bound-state wave function of
the two clusters is ψsep(ρ1) = usep(ρ1)/ρ1, the separation
energy is Esep = −~2k2sep/(2m), and for interactions of
range R, we have for ρ1 � R

usep(ρ1) = γsepe
−ksepρ1 . (C3)

Here the ANC ensures that the wave function is properly
normalized. Let us consider the wave function

u(ρ1) =

{
αusep(ρ1), ρ1 < R,

αγsepe
−ksepR e−ksepρ1−e−ksep(2L−ρ1)

e−ksepR−e−ksep(2L−R) , R ≤ ρ1 ≤ L.

Here, u(ρ1) is the exact finite-space wave function with
separation energy Esep of the Hamiltonian H for R ≤
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FIG. 25. (Color online) Extrapolated ground-state (point-
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max(Nmax) = 16 to max(Nmax) = 36. See caption of Fig. 5
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FIG. 26. (Color online) Fit parameter k∞(Λ) for 3He en-
ergy extrapolation (left panel) and radius extrapolation (right
panel) for different NCSM model space truncations from
max(Nmax) = 16 to max(Nmax) = 36. Open symbols denote
results for which UV corrections are expected to be larger
than IR ones, and the corresponding fits are unreliable. The
lowest, theoretical separation momentum is given as a dashed
line with an uncertainty band.
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ρ1 ≤ L. We have u(L) = 0, since L is our hard-wall
radius, and we assume R � L. Inspection shows that
the normalization constant α = 1 + O(ksepLe

−2ksepL).
We also have

u(R) = αγsepe
−ksepR,

u′(R+ ε) = −ksepu(R) coth (ksep [L−R]) ,

u′(R− ε) = −ksepu(R), (C4)

where ε � R is a small distance. We see that the wave
function is continuous at ρ1 = R, but its derivative makes
a jump

u′(R+ ε)− u′(R− ε) ≈ −2ksepe
−2ksep(L−R)u(R) (C5)

at ρ1 = R. Thus, u(ρ1) is an exact finite-space eigenfunc-
tion with energy Esep of the Hamiltonian H ′ = H + V
with

V (ρ1) = −~2ksep
m

e−2ksep(L−R)δ(ρ1 −R). (C6)

We note that V is exponentially small. Thus, u(ρ1) is an
exponentially good approximation of the eigenfunction of

H in a finite space. Let uL(ρ1) denote the exact finite-
space eigenstate of H, with eigenvalue EL. We have

uL(ρ1) = βu(ρ1) + δu(ρ1), (C7)
with β = 1 + O(e−ksepL) and δu(ρ1) = O(e−ksepL), and
〈u|δu〉 = 0. Thus

〈uL|H|u〉 = 〈uL|(H ′ − V )|u〉

= Esep〈uL|u〉+
~2ksep
m

e−2ksepLuL(R)u(R),

〈uL|H|u〉 = EL〈uL|u〉, (C8)

from acting with H to the right and to the left, respec-
tively. As 〈uL|u〉 = 1 +O(e−ksepL) and u(R) ≈ uL(R) ≈
usep(R) up to exponentially small corrections, we get

EL − Esep =
~2ksepγ2sep

m
e−2ksepL (C9)

in leading order. This is the desired result.
The generalization to many-body bound states and

two-cluster breakup is straightforward, e.g. by follow-
ing König and Lee [29]. In this case, the A-body wave
function is the product

ΨA(~r1, . . . , ~rA) =

Ψa(~r1, . . . , ~ra)ΨA−a(~ra+1, . . . , ~rA)ψsep(~ρ1). (C10)

Here, ρ1 denotes the orthogonal Jacobi coordinate be-
tween the clusters of a and A− a particles, respectively.
For ease of notation we supressed the spin/isospin de-
grees of freedom, and it is also understood that the overall
wavefunction ΨA needs to be properly antisymmetrized.
The separation momentum is

ksep = ~−1
√

2m (BA −Ba −BA−a), (C11)

and Bn is the binding energy of the cluster with mass
number n. We can now follow the derivation of Ref. [29]
and arrive at the result (C9) for the correction to the
separation energy.

In contrast to Ref. [29], the nucleon mass m (and not
a reduced mass) enters the expression (C11), because we
employ an orthogonal Jacobi coordinate ρ1 instead of the
physical separation

~r ≡ 1

a

a∑
i=1

~ri −
1

A− a
A∑

i=a+1

~ri (C12)

of the center of masses between both clusters. Thus,
our asymptotic normalization coefficient γsep needs to be
rescaled before it can be compared to data. We have
ρ1 =

√
a(A− a)/A|~r|. Thus our ksep is the physical sep-

aration momentum times the factor
√
A/[a(A− a)], and

our ANC is the physical ANC times (A/[a(A− a)])1/4.
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