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Abstract: In order to describe obvious intruder states and nonzero quadrupole moments of γ-
soft nuclei such as 194Pt, a rotor extension plus intruder configuration mixing with 2n-particle and
2n-hole configurations from n = 0 up to n → ∞ in the O(6) (γ-unstable) limit of the interacting
boson model is proposed. It is shown that the configuration mixing scheme keeps lower part of the
γ-unstable spectrum unchanged and generates the intruder states due to the mixing. It is further
shown that almost all low-lying levels below 2.17MeV in 194Pt can be well described by modifying
the O(6) quadrupole-quadrupole interaction into an exponential form. The third order term needed
for a rotor realization in the IBM seems necessary to produce nonzero quadrupole moments with
the correct sign.
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1. Introduction

It has been shown that the interacting boson model (IBM) is quite successful in the description of both collective
valence shell [1] and multi-particle-hole [2–4] excitations in atomic nuclei. The IBM Hamiltonian can analytically
be solved in the U(5) (vibrational), O(6) (γ-unstable), and SU(3) (rotational) limits. Each limit is associated with
the corresponding level patterns and selection rules for transitions among excited states. Hence, the model is often
adopted as benchmarks to simplify the analysis and interpretation of experimental data.

It has been shown [2, 3] that there are clear evidence for the presence of multi-particle-hole excitations in nuclei
across the closed shells, in particular near closed-shell mass regions around proton number Z ∼ 50 and Z ∼ 82. Multi-
particle-hole excitations are not easy to be incorporated in large-scale shell-model calculations due to the extremely
large model space, which, however, can easily be handled within the IBM [5, 6]. IBM-2 in distinguishing neutron- from
proton-pairs is often adopted in the configuration mixing schemes, of which calculations including up to 6-particle and
6-hole excitations have been carried out [7, 8]. The configuration mixing due to the multi-particle-hole excitations was
considered in understanding shape coexistence phenomena by taking different symmetry limits of the IBM for different
configurations [9–14]. These IBM-mixing calculations have been proven to be successful in describing intruder states
and related phenomena in near closed shell nuclei, in which, however, many parameters are involved.

The purpose of this work is in two aspects. Firstly, it will be shown that a reasonably simplified configuration
mixing scheme based on the O(6)-limit of the IBM-1 is analytically solvable, which could be useful in the analysis
of experimental data of γ-soft nuclei such as 194Pt. Secondly, it is demonstrated that the rotor extension [15, 16] in
the O(6)-limit of the IBM seems necessary in order to produce nonzero quadrupole moments with correct sign and
O(6)-limit forbidden E2 transitions. It is futher revealed that almost all low-lying levels below 2.17MeV in 194Pt can
be well described by modifying the O(6)-type quadrupole-quadrupole interaction with an exponential form.

2. A solvable configuration mixing scheme in the O(6)-limit

In the original IBM-1, which describes a system of fixed total number of s- and d-bosons subject to one- and two-
body interactions, similar to the well-known consistent-Q (CQ) formalism, a typical Hamiltonian may be schematically
written as [1]

ĤCQ = ǫd n̂d − κ Q̂(χ) · Q̂(χ), (1)
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where ǫd, κ, and χ ∈ [−
√
7/2, 0] are real parameters of the model, n̂d =

∑

µ d
†
µdµ is the d-boson number operator,

and Q̂µ(χ) = d†µs+ s†d̃µ +χ(d†d̃)
(2)
µ is the quadrupole operator, in which (d†d̃)

(2)
µ stands for the l = 2 tensor coupling

of the d-boson creation and annihilation operators with d̃ = (−)µd−µ, and Q̂(χ) · Q̂(χ) =
∑

µ(−)µQ̂µ(χ)Q̂−µ(χ).

There are three standard IBM-1 dynamical symmetry (limit) cases: the U(5)-limit for κ = 0, the SU(3)-limit for
ǫd = 0 and χ = −

√
7/2, and the O(6)-limit for ǫd = 0 and χ = 0. In the O(6)-limit, for example, the eigenstates of

(1) denoted as |N, σ, ν, ρ, L,M〉 are nothing but the basis vectors of the group chain U(6)⊃O(6)⊃O(5)⊃O(3)⊃O(2),
where N is the total number of bosons, σ is the O(6) quantum number, ν is the d-boson seniority number, ρ is an
additional quantum number needed for the branching reduction of O(5)⊃O(3), and L and M are the quantum number
of the angular momentum and that of its third projection, respectively.

Actually, besides the terms included in (1), other O(3) invariants, such as L̂·L̂, where L̂µ are the angular momentum

operators, can be considered. As will be shown later on, high order terms, such as (L̂× Q̂× L̂)(0) and ((L̂ × Q̂)(1) ×
(L̂ × Q̂)(1))(0), where Q̂µ ≡ Q̂µ(0) are the generators of the O(6) group, may also be included. In such a case, the
O(6)-symmetry is still preserved, but the O(5)-symmetry is broken. Eigenstates of such O(6)-limit Hamiltonian may
be denoted as |N, σ, η, L,M〉, where η is an additional quantum number needed in the O(6) ↓ O(3) reduction.

The Hamiltonian suitable to describe 2n-particle and 2n-hole configuration mixing from n = 0 up to n → ∞ in the
extended O(6)-limit of the interacting boson model may be written as

Ĥ = P̂ (2∆S0 + Ĥ0 + g(S+ + S−))P̂ , (2)

where Ĥ0 is an O(6)-limit Hamiltonian mentioned above, S0 = 1
2 (N̂ + 3), in which N̂ = n̂d + n̂s is the total boson

number operator with n̂s = s†s, ∆ > 0 represents the energy needed to excite two more particles from the closed shell
resulting in a configuration with two more particles and two more holes, and is taken to be a constant for simplicity,
S+ = S+

d − S+
s (S− = (S+)† ), in which S+

d = 1
2d

† · d† and S+
s = 1

2s
† 2 are the d- and s-boson pairing operator,

respectively, and g is the mixing parameter, of which the allowed range will be shown later on, P̂ , satisfying P̂ 2 = P̂
and P̂ † = P̂ , is the projection operator defined by

P̂ |N ′, σ, η, L,M〉 =
{

|N ′, σ, η, L,M〉 if N ′ ≥ N,
0 otherwise,

(3)

which keeps the Hamiltonian (2) to be effective only within the subspace spanned by [N ] ⊕ [N + 2] ⊕ [N + 4] ⊕ · · ·
mixed configurations, where N is the total boson number when no configuration mixing is considered, |N ′, σ, η, L,M〉
is the eigenstate of Ĥ0 with total number of bosons N ′. (3) extends the projection introduced previously [5–14].

It should be noted that one can get two sets of SU(1,1) generators using the boson pairing operators S±
d and S±

s .
One is generated by S+, S−, and S0, while another set is generated by A+ = S+

d + S+
s , A− = (A+)†, and S0.

These two sets of operators satisfy the same SU(1,1) commutation relations: [S0, S±] = ±S±, [S+, S−] = −2S0, and
[S0, A±] = ±A±, [A+, A−] = −2S0. However, only {S+, S−, S0} are commutative with the O(6) generators [17]. The
configuration mixing Hamiltonian used previously [5–14] was written as

Ĥmix = gsS
+
s + gdS

+
d + gsS

−
s + gdS

−
d . (4)

The coupling parameters gs and gd were all taken to be positive with gs > 0 and gd > 0, for example, shown in [5, 6],
while the configuration mixing Hamiltonian adopted in (2) is equivalent to (4) with gs = −gd = g > 0. Since S± are
commutative with the O(6) generators, and the 2n-particle and 2n-hole excitations are independent of the sign of g
shown later on, the mixing term adopted in (2) greatly simplifies the calculation in the O(6)-limit of the IBM and
keeps the nature of the 2n-particle and 2n-hole excitations unchanged.

The Casimir operator of the SU(1,1) generated by {S+, S−, S0} can be expressed as C2(SU(1, 1)) = S0(S0 − 1)−
S+S−. The basis vectors of U(6) ⊃ O(6) ⊃ O(3) are simultaneously the basis vectors of the SU(1,1) generated by
{S+, S−, S0}. Under the basis vector |N, σ, η, L,M〉, the eigenvalue of C2(SU(1, 1)) and that of S0 are given by

(

C2(SU(1, 1))
S0

)

|N, σ, η, L,M〉 =
(

S(S − 1)
1
2 (N + 3)

)

|N, σ, η, L,M〉 (5)
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with S = (σ + 3)/2.

It can easily be verified that the Hamiltonian (2) can be solved exactly if eigenvalues of Ĥ0 are known. The first
set of eigenstates labeled with an additional quantum number ζ = 1, which are called normal states, is given by

|ζ = 1, ω〉 = Nζ=1 e
αS+ |N, σ, η, L,M〉, (6)

where Nζ=1 is the normalization factor, and ω ≡ {N, σ, η, L,M}.

Since [Ĥ0, S
+] = 0, and |N, σ, η, L,M〉 is an eigenstate of Ĥ0, using the Hausdorff-Campbell relation

ÂeB̂ = eB̂
(

Â+
1

1!
[Â, B̂] +

1

2!
[[Â, B̂], B̂] + · · ·

)

, (7)

we have

Ĥ |ζ = 1, ω〉 = Nζ=1 e
αS+

(

2∆Λ + Ĥ0 + 2α∆S+ + gS+ + 2gαΛ + gα2S+
)

|N, σ, η, L,M〉, (8)

where Λ = 1
2 (N + 3). Hence, if |ζ = 1, ω〉 is an eigenstate of Ĥ , the constant in the parentheses of (8) gives the

corresponding eigen-energy with

E
(ζ=1)
N,σ,η,L = ∆(N + 3) + gα(N + 3) + E0(σ, η, L), (9)

where E0(σ, η, L) is the eigenvalue of Ĥ0 under the eigenstate |N, σ, η, L,M〉, while the term proportional to S+ in
the parentheses of (8) must be zero, which leads to

g + 2α∆+ gα2 = 0 (10)

with two possible solutions

α± =
1

g
(−∆±

√

∆2 − g2), (11)

where g 6= 0 should be assumed. As shown in (10), when g = 0, α = 0 is the only solution corresponding to the
original O(6)-limit Hamiltonian without configuration mixing. Thus, the eigen-energy of (2) can be expressed as

E
(ζ=1)
N,σ,η,L = (±)(N + 3)

√

∆2 − g2 + E0(σ, η, L) (12)

corresponding to α = α±. Since Ĥ is Hermitian, α± must be real, which requires |g| ≤ ∆. It is obvious that the sign
of g does not affect the eigen-energy (12).

Other sets of excited eigenstates (called intruder states) labeled with ζ ≥ 2, which is not possible in the O(6)-limit
of the IBM without configuration mixing, also emerge due to the configuration mixing. For example, using the similar
procedure, one can also get excited states of the first set of (2):

|ζ = 2, ω〉 = Nζ=2 (1 + c S+)eαS
+ |ω〉, (13)

for fixed ω, where Nζ=2 is the normalization factor, which implies g 6= 0. As shown in (2), when g = 0 there is no
excited state similar to that shown in (13) built on the reference state |ω〉. Namely, excited states with ζ > 1 become
null when g = 0. The corresponding eigen-energy of (2) under (13) is

E
(ζ=2)
N,σ,η,L = E

(ζ=1)
N,σ,η,L + 2g cΛ (14)

with

c =
2∆+ 2gα±

2gΛ
= ±

√

∆2 − g2

gΛ
(15)
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when g 6= 0. Substituting (15) into (14), we get

E
(ζ=2)
N,σ,η,L = E

(ζ=1)
N,σ,η,L ± 2

√

∆2 − g2 (16)

for g 6= 0. Since physical spectrum should be lower-bound, only α = α+ shown in (11) is possible, which corresponds
to c given in (15) and the eigen-energy provided in (12) and (16) with positive sign. Otherwise, the spectrum will

become upper-bound, which is non-physical and discarded. In (16), 2
√

∆2 − g2 is the energy of the collective 2p-2h
excitation. Again, the sign of g does not affect the 2p-2h excitation energy. In the following, g > 0 is always assumed.

It is obvious that there is an additional collective 2-particle and 2-hole excitation with energy ∆2p2h = 2
√

∆2 − g2,
which is absent in the original O(6)-limit description. Since the energy needed to excite two more particles from
the closed shell resulting in the configuration with two more particles and two more holes is relatively large, the
excited levels with ζ ≥ 3 lie much higher in energy, which are not considered in the following. It is clear that the
spectrum generated from (2) with the configuration mixing keeps the lower part of the spectrum to be the same as
that generated from the O(6)-limit of the IBM, while there are a set of the O(6)-type levels with the band heads
provided by the 2n-particle and 2n-hole excitations, of which some low-lying levels are shown in Fig. 1. It is clearly
shown that the first set of levels with ζ = 1 are the same as those generated from the model without configuration
mixing (g = 0), the second set of levels with ζ = 2 are built on the 0+4 level with the gap ∆2p2h to the ground level,
and so on. Each set of the levels with ζ ≥ 2 is a replica of those with ζ = 1 generated from the original O(6)-limit
without configuration mixing, but there are energy gaps among different sets.

FIG. 1: (Color online) Low-lying level pattern of the solvable configuration mixing O(6) model with the Hamiltonian given
by (2), where the left 10 levels are the same as those generated from the O(6)-limit of the IBM with the first term of (2)

only, which, up to a constant, is typically given by Ĥ0 = −κQ̂ · Q̂ with eigen-energy E0 = −κ(σ(σ + 4) − ν(ν + 3)), where
κ is a scale parameter, and ν is the seniority number of the O(5) group. Only levels of normal states with (σ = N, ν ≤ 3),

(σ = N − 2, ν ≤ 1), and intruder levels with ν ≤ 1 are shown. 0+4 is the intruder state of the model with ∆2p2h = 2
√

∆2 − g2.

It is clear that the eigenstates (6), (13), etc are the SU(1,1) coherent states built on the O(6)-limit eigenstate of
the IBM due to the projection (3). As a consequence, matrix elements of any operator in the model can be derived
analytically. For example, one can prove that the norm

〈ω|eαS̃−

eβS̃
+ |ω〉 = (1− αβ)−N−3, (17)

which only depends on N . Hence, we have
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Nζ=1 = (1− α2)(N+3)/2. (18)

One can also derive

〈ζ = 1, ω|S±|ζ = 1, ω〉 = (Nζ=1)
2 ∂

∂α 〈ω|eαS̃
−

eβS̃
+ |ω〉

∣

∣

∣

β=α
= (Nζ=1)

2 ∂
∂β 〈ω|eαS̃

−

eβS̃
+ |ω〉

∣

∣

∣

β=α
. (19)

Thus, one can prove that

〈ζ′, ω′|ζ, ω〉 = δζ′,ζ δω′,ω. (20)

Similarly, the normalization factor of (13) can be expressed as

Nζ=2 =

√

(α2 − 1)α

c
Nζ=1 =

√

α2(N + 3)Nζ=1. (21)

Due to the configuration mixing, the operator of the total number of bosons N̂ is not a conserved quantity. The
degree of the configuration mixing may be measured by the expectation value and fluctuation of N̂ for a given state
defined as

N̄ = 1
N 〈ζ,N, σ, η, L,M |N̂ |ζ,N, σ, η, L,M〉,

δN = 1
N

(

〈ζ,N, σ, η, L,M |N̂2|ζ,N, σ, η, L,M〉 − N̄2
)

1
2

. (22)

For the ground state with σ = N , η = 1, and L = 0, (22) can be expressed explicitly as

N̄ζ=1 = 1− 2α
cN , (23)

δNζ=1 = 2
N

√

α
c(α2−1) =

2
cN

√

1
N+3 . (24)

It can be expected that the mixing is mainly driven by the mixing term in the Hamiltonian (2) with the mixing
parameter g. When g = 0, N̄ζ=1 = 1 and δNζ=1 = 0 indicating that the system is in the O(6)-limit without
configuration mixing. With the increasing of g > 0, the mixing occurs with N̄ζ=1 > 1 and δNζ=1 > 0. Though both
N̄ and δN increase with the increasing of g with 0 < g < ∆, the increasing in N̄ with the increasing of g is more
noticeable. The expectation value of the total number of bosons of the first excited intruder state with σ = N , η = 2,
and L = 0 corresponding to 0+4 state shown in the caption of Fig. 1 can also be derived, which is given by

N̄ζ=2 = 1
N 〈ζ = 2|N̂ |ζ = 2〉 =

N+2
N + 2α2(α2−1)

Nc

(

1
α(α2−1) +

1
c +

α
α2−1 − (α+ 2c

α2−1 )(
1
αc +

1
α2−1 )

)

. (25)

In this case, g 6= 0 should be assumed. When g → 0, N̄ζ=2 → 1 + 2/N indicating that the collective 2p-2h excitation
component dominates in the 0+4 state. With the increasing of g > 0, the mixing of [N + 2m] configurations with
m ≥ 2 in this intruder state occurs with N̄ζ=2 > 1+ 2/N . Since the increasing in N̄ζ with the increasing of g is more
noticeable, only N̄ζ with ζ = 1 and ζ = 2 are shown in Fig. 2. As shown in Fig. 2, the ground state with ζ = 1 is
dominated by the [N ] configuration, while 0+4 state with ζ = 2 is dominated by the [N + 2] configuration, as long as
the mixing parameter is small with g ∼ 0.

It can be understood that the differences of the mixing scheme with infinite number of configurations considered
in this work from those with finite number of configurations studied previously are in two aspects. Firstly, the
eigen-energies and eigen-states of the two schemes are quite the same, but the number of excitations ζmax should
be terminated in the latter. For example, when m + 1 configurations [N ] ⊕ [N + 2] ⊕ [N + 4] ⊕ · · · ⊕ [N + 2m] are
adopted, the projection P̂ should be restricted by another additional condition with P̂ |N ′, ω〉 = 0 for N ′ > N + 2m.
Hence, the term exp[αS+] in (6) and (13) in this case is equivalent to its Taylor expansion in terms of α with m+ 1
terms due to the projection, resulting in a system with finite number of collective 2-particle and 2-hole excitations.
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FIG. 2: (Color online) The ground state expectation value of the total number of bosons N̄ζ=1 given by (23) (solid curve)
and the expectation value of the total number of bosons of the first intruder 0+4 state N̄ζ=2 given by (25) (dashed curve) as
functions of the mixing parameter ḡ = g/∆0, where ∆0 is an arbitrary scale factor, and ∆̄ = ∆/∆0. N = 10 and ∆̄ = 1 are
taken in the plot.

Secondly, the Taylor expansion in terms of α for the norm N with m + 1 terms in the current scheme is equivalent
to that in the mixing scheme with finite number of configurations if the same form of the eigenstates is adopted,
though there will be a little difference in the result due to the finite term cutoff. Since physical quantities, such as
B(E2) values, are related to the norms involved, the results of the Taylor expansion for the norms involved with m+1
terms are similar to those of the mixing scheme with m + 1 configurations. Since g/∆ < 1 is always satisfied, there
is no much difference of the exact results provided in this work from those with the finite-term Taylor expansions
because α ∼ −g/(2∆) is a small quantity, which justifies that the configuration mixing scheme with infinite number
of configurations is acceptable.

As shown in [5–14], the effective boson charge needs to be taken with different values for different multi-particle-hole
configurations. The E2 operator used in this work is simply chosen as

Tµ(E2) = q2P̂N Q̂µP̂N + q′2P̂ Q̂µP̂ , (26)

where P̂N is a projection onto the configuration without multi-particle-hole excitations, with which the B(E2) values
are given by

B(E2;ωi, Li → ωf , Lf) =
1

2Li + 1
|〈ωf , Lf ||T (E2)||ωi, Li〉|2, (27)

where ωi and ωf stand for other relevant quantum numbers involved.

Similar to the O(6)-limit of the model without configuration mixing, reduced matrix elements of any operator in the
model can be derived analytically when the O(5)-symmetry is preserved. In this case, the reduced matrix elements
of T (E2) operators for the transition between the normalized normal or intruder states under the U(6) ⊃ O(6) ⊃
O(5) ⊃ O(3) basis can be expressed as

〈ζ = 1, N ′, σ′, ν′, ρ′, L′‖T (E2)‖ζ = 1, N, σ, ν, ρ, L〉
= δNN ′δσσ′ q2((Nζ=1)

2 + λ)〈N, σ′, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉, (28)

〈ζ = 2, N ′, σ′, ν′, ρ′, L′‖T (E2)‖ζ = 2, N, σ, ν, ρ, L〉
= δNN ′δσσ′ q2(α

2(N + 3)(Nζ=1)
2 + λ)〈N, σ′, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉, (29)

while those for the transitions between the normalized normal and intruder states are given by

〈ζ = 1, N ′, σ′, ν′, ρ′, L′‖T (E2)‖ζ = 2, N, σ, ν, ρ, L〉
= δNN ′δσσ′ q2

√

α2(N + 3)(Nζ=1)
2〈N, σ′, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉, (30)
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where λ = q′2/q2.

When high order terms (L̂ × Q̂ × L̂)(0) and ((L̂ × Q̂)(1) × (L̂ × Q̂)(1))(0) are included in Ĥ0 as shown in the next
section, the eigenstates of Ĥ0 may be expressed as

|N, σ, η, L,M〉 =
∑

ν,ρ

C(η)
ν,ρ |N, σ, ν, ρ, L,M〉 (31)

where |N, σ, ν, ρ, L,M〉 is the basis vectors of U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3), and C
(η)
ν,ρ is the corresponding expansion

coefficient, which can be obtained by diagonalizing the Hamiltonian Ĥ0 in the U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) basis. The
additional quantum number η labels the η-th eigenstate of Ĥ0 for fixed σ and L. For this case, the reduced matrix
elements of T (E2) needed in the next section may be expressed as

(ζ = 1, N ′, σ′, η′, L′‖T (E2)‖ζ = 1, N, σ, η, L)

= δNN ′δσσ′ q2((Nζ=1)
2 + λ)

∑

ν′,ρ′,ν,ρ C
(η′)
ν′,ρ′C

(η)
ν,ρ 〈N, σ′, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉 (32)

and

(ζ = 1, N ′, σ′, η′, L′‖T (E2)‖ζ = 2, N, σ, η, L)

= δNN ′δσσ′ q2
√

α2(N + 3)(Nζ=1)
2
∑

ν′,ρ′,ν,ρC
(η′)
ν′,ρ′C

(η)
ν,ρ 〈N, σ′, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉. (33)

The reduced matrix element 〈N, σ′, ν′, L′‖Q̂‖N, σ, ν, L〉 involved in (28)-(30) and (32)-(33) can further be expressed
as [18]

〈N, σ, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉 =
√
2L′ + 1〈N, σ, ν′‖Q̂‖N, σ, ν〉〈ν, ρ, L; 1, 2‖ν′, ρ′, L′〉 (34)

with

〈N, σ, ν′‖Q̂‖N, σ, ν〉 =















(σ(σ + 4)− ν(ν + 4))1/2
√

ν+1
2ν+5 , for ν′ = ν + 1,

(σ(σ + 4)− (ν − 1)(ν + 3))1/2
√

ν+2
2ν+1 , for ν′ = ν − 1,

(35)

where 〈ν, ρ, L; 1, 2‖ν′, ρ′, L′〉 is the elementary Wigner coefficient (isoscalar factor) of O(5) ⊃ O(3), which was given,
for example, in [19, 20]. The reduced matrix elements and the elementary Wigner coefficients of O(5) ⊃ O(3) satisfy
the following relations:

〈N, σ, ν′‖Q̂‖N, σ, ν〉 =
√

dim[ν]

dim[ν′]
〈N, σ, ν‖Q̂‖N, σ, ν′〉, (36)

〈N, σ, ν′, ρ′, L′‖Q̂‖N, σ, ν, ρ, L〉 = (−1)L+2−L′〈N, σ, ν, ρ, L‖Q̂‖N, σ, ν′, ρ′, L′〉, (37)

and

〈ν, ρ, L; 1, 2‖ν′, ρ′, L′〉 = (−1)L
′+2−L

√

dim[ν′](2L+ 1)

dim[ν](2L′ + 1)
〈ν′, ρ′, L′; 1, 2‖ν, ρ, L〉, (38)

where

dim[ν] =
1

6
(ν + 1)(ν + 2)(2ν + 3) (39)

is the dimension of the O(5) irreducible representation (ν, 0). In the O(5)-symmetry preserved case shown above, since
N is a finite number and α is small, the transitions among both normal and intruder states are similar to those in the
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O(6)-limit without configuration mixing. The E2 selection rules are quite the same as those given in the O(6)-limit
without configuration mixing, which are given by δσ = 0, and δν = 0 or ±1.

3. Application to 194Pt

In the IBM description, the Platinum isotopes are mainly within the U(5)-O(6) transitional region. As shown in
previous works [21, 22], the U(5) ingredient in even-even 172−194Pt is not negligible, especially in the isotopes with
the mass number A ≤ 190. Therefore, though the presence of intruder states in even-even 182−184Pt is much more
evident, the current model based on the O(6)-limit is only suitable to describe 194Pt which is nearest to the O(6)-limit
point of the Casten triangle [21, 22]. Among the Platinum isotopes, there are abundant data of reduced E2 transition
matrix elements, quadrupole moments, and B(E2) values of 194Pt obtained from Coulomb excitations [23, 24], which
are very much helpful for a detailed analysis. Hence, 194Pt is chosen as an example to be described by the O(6)-limit
Hamiltonian (2). The Platinum isotopes were studied earlier in the IBM-2 framework [25], in which only excited
sates in the ground band up to 8+1 , a few excited states in the quasi-β and quasi-γ bands were considered, and only
quadrupole moment of 2+1 state was calculated. The shape evolution in Platinum isotopes was investigated [21] by
using the extended consistent-Q formalism (ECQF) of the IBM, in which intruder configuration was not taken into
account. Level patterns and B(E2) ratios of the isotopes were globally fitted rather well in [21]. However, the possible
intruder state 0+4 and so on in 194Pt were excluded. A comparison of the results of the IBM plus configuration mixing
(IBM-CM) with those of the ECQF was made in [22], in which the 0+4 in 194Pt was considered. In both [21] and [22],
only excited states with excitation energy below 1.5MeV in 194Pt were included. It can be observed that the level
energy of 5+1 state in both the IBM-CM and the ECQF shown in [22] is 0.5-0.7MeV higher than the corresponding
experimental value. Actually, there are 4+, 5+, 6+, and 8+ states with excitation energy ∼ 2.0MeV. It can be
expected that level energies of other excited states with higher angular momentum quantum numbers provided from
both the IBM-CM and the ECQF calculations would also be much higher than the corresponding experimental values.
Moreover, similar to the original O(6)-limit case in the IBM-1, quadrupole moments of low-lying states calculated
from the IBM-CM are zero, while those calculated from the ECQF are all with opposite sign.

Based on the above observations, we propose the following O(6)-limit Hamiltonian for the purpose:

Ĥ0 = −κ0 e
ξ Q̂·Q̂Q̂ · Q̂+ a L̂2 + bX3 + dX4, (40)

where κ0 > 0, 0 < ξ ≪ 1, a > 0, b, and d are free parameters,

X3 =

√
30

6
(L̂× Q̂ × L̂)(0), (41)

and

X4 = −5
√
3

18
((L̂ × Q̂)(1) × (L̂ × Q̂)(1))(0). (42)

The quadrupole-quadrupole interaction in the original O(6)-limit of the IBM-1 is replaced by the exponential form
shown in (40), which is effective to produce relatively lower excitation energies of excited states with large d-boson
seniority numbers. A similar exponential form of Q̂ · Q̂ was introduced in [26] for the symplectic no-core shell-model
calculations, which justifies the IBM form used in (40) is reasonable as long as the parameter ξ ≪ 1. The third and
fourth order terms X3 and X4 in (40) are originated from the mapping result of a triaxial rotor Hamiltonian to that
of the SU(3)-limit in the IBM [15, 16]. Though the quadrupole operator in the SU(3)-limit and that in the O(6)-limit
are different, they are quite the same in the large-N limit. Therefore, the second to the fourth terms of (40) are
also equivalent to a rotor image in the IBM. Since the quadrupole operators used in (40) are the generators of O(6),
the model described by (40) is called the γ-soft rotor. It is obvious that the third and the fourth order terms keep
the O(6)-symmetry, but break the O(5)-symmetry. As a result, the selection rules for the reduced matrix elements
of Q̂ between eigenstates of (40) are altered. Especially, besides nonzero reduced matrix elements with δσ = 0 and
δν = ±1, the reduced matrix elements with δσ = 0 and δν = 0 or ±2 could also be nonzero. For this case, the
eigenstate of (40) is given by (31).

It is shown [27] that the coherent state method is able to establish a correspondence between quantum variables
and classical (geometrical) variables, with which the classical equilibrium shapes and their evolution of a nucleus
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described by the IBM have been studied [28, 29]. In order to show the potential shape of (40) in the classical limit,
we use the standard coherent state defined as [30]

|N, β, γ〉 = (N !(1 + β2)N )−
1
2

(

s† + β cos γ d†0 +
1√
2
β sin γ (d†2 + d†−2)

)N

|0〉 (43)

to obtain the scaled potential surface of the four terms involved in (40) in the large-N limit. Since ξ ≪ 1, the first
term of (40) can be expressed as

− κ0 e
ξ Q̂·Q̂Q̂ · Q̂ = −κ0

(

Q̂ · Q̂+ ξ(Q̂ · Q̂)2 +
1

2
ξ2(Q̂ · Q̂)3 + · · ·

)

(44)

after the Taylor expansion around ξ = 0. Though the expectation value of (44) under (43) can not be evaluated easily,
the expectation value of each term in the expansion shown in (44) is given by

1
N2 〈Q ·Q〉

∣

∣

N→∞
= 4β2

(1+β2)2 ,
1
N4 〈(Q ·Q)2〉

∣

∣

N→∞
= 16β4

(1+β2)4 , · · · , 1
N2k 〈(Q ·Q)k〉

∣

∣

N→∞
∼ β2k

(1+β2)2k . (45)

Namely, the classical potential of the first term of (40), similar to that of the Q̂ · Q̂ in the O(6)-limit, is γ-independent.
The expectation values of the second and the fourth terms are given by

1
N 〈L̂2〉

∣

∣

∣

N→∞
= 6β2

1+β2 ,
1

N3 〈X4〉
∣

∣

N→∞
= 2β4

3(1+β2)3 , (46)

which are also γ-independent. While The expectation value of the third term is

1

N2
〈X3〉

∣

∣

∣

∣

N→∞

= − 2β3

(1 + β2)2
cos(3γ). (47)

In contrast to the SU(3)-limit case shown in [15, 16], there is no triaxial shape emerging from (40). Since the X3

term in the classical limit is proportional to cos(3γ), similar to the SU(3)-limit of the IBM-1, only axial deformation
with γ = 0 or γ = π/3 is possible. Hence, if the parameters of the Hamiltonian (40) are appropriately scaled with
N , the shape at the ground state of this model is axially deformed with either prolate (γ = 0) when b > 0 or oblate
(γ = π/3) when b < 0 in the large-N limit as estimated by the coherent state description.

Using the γ-soft rotor Hamiltonian (40), we are able to describe level energies of 194Pt up to 2.17MeV. We observe
that the parameter d taken to be 0 is always better as far as the level energies are concerned, so that the X4 term
in (40) can be removed for 194Pt. The other parameters used are κ0 = 7.3 keV, ξ = 0.0178, a = 10 keV, and

b = −4.5 keV, while the gap ∆2p2h = 2
√

∆2 − g2 = 1.547MeV is fixed according to the 0+4 level energy, from which

the parameter ∆ > 0 can be expressed as ∆ =
√

0.5983 + g2, where ∆ and g are in MeV. The mixing parameter g is
then fixed from a global fits to the reduced T (E2) matrix elements (32) and (33) which depend on ∆ and g according
to (11). The fitting results of the level energies up to 2.17MeV in comparison to the corresponding experimental data
are shown in Table I. It can be checked against the experimental level energies shown in [24] that most level energies
of positive parity states are fitted rather well. With excitation energy below 2.17MeV, negative parity states, both
spin and parity undetermined level energies, and those of obvious 1+ states are excluded. Moreover, the level energies
at 2.004MeV and 2.158MeV with spin and parity assignments (1+, 2+) and 1+, 2+, respectively, are also not included.
As shown in Table I, spins of some excited states are not fully confirmed, so that the spin assignments to these states
in the theory are tentative, which may be altered according to further experimental results. In addition, some level
energies higher than 2.17MeV provided in Table I, such as 3+3 at 2.275MeV, 7+1 at 2.423MeV, 8+2 at 2.689MeV, 10+1 at
2.849MeV, and 10+2 at 2.917MeV, of which the values are underlined, are for reference only. As noted in [31, 32], the
10+ state at 2.438MeV seems to be a pair-broken state with major components of proton-holes in 1h11/2-orbit and
neutron-holes in i13/2-orbit, which can not be described in this simple model because the interactions between the
core described by the IBM and the holes are not considered. According to [23], the other two 10+ states at 2.849MeV
and 2.917MeV may be 10+1 and 10+2 of the model, respectively, of which the model results are shown in Table I. The
quality of the fitting is measured by

χ =

(

1

Nl −Npar

Nl
∑

i=1

(Ei,th − Ei,exp)
2

)1/2

, (48)
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where Nl is the total number of level energies fitted, Npar is the number of parameters used in (40), Ei,th and Ei,exp are
a level energy of the theory and that of the corresponding experimental value, respectively. The number of parameters
used in (2) and (40) for 194Pt is Npar = 5. Except the underlined level energies, there are 33 level energies listed in
Table I being fitted, with which we get χ = 166.4keV. The largest absolute deviation in level energies now occurs at
5+2 with |Eth(5

+
2 )− Eexp(5

+
2 )| =422keV, while absolute deviations of other level energies are all less than 200keV.

In order to check the validity of the theory, the reduced T (E2) matrix elements (32) and (33) are systematically
compared with those shown in [23]. We observe that there are a little differences of the experimental B(E2) values
provided in [24] from those extracted from the reduced matrix elements of T (E2) shown in [23]. The q2 parameter
is adjusted according to the experimental value of B(E2, 2+1 → 0+g ) in W. u. given in [24], from which we get

q2 = 1.3297
√
W.u. Since the reduced T (E2) matrix elements shown in [23] are in e·b, the standard unit conversion

with 1 W. u.= 1
4π (3/5)

2R4e2, where R = 1.3A1/3fm, is used. Hence, q2 = 1.3297
√
W.u is equivalent to q2 = 0.12747

e·b, which is used in this work. While the mixing parameter g and λ are mainly determined from the best fit to
B(E2, 0+4 → 2+1 ) and B(E2, 0+4 → 2+2 ) from which we get λ = 0.5, ∆ = 0.800MeV and g = 0.204MeV. The reduced
T (E2) matrix elements calculated in this work and those shown in [23], together with those in the O(6)-limit without
the third order term X3 are shown in Table II. Since there is always a freedom in choosing an overall phase for any
state, the overall phase of the 2+2 state in both this work and the original O(6)-limit should be set as −1 according to
the experimental result of 〈2+1 ‖T (E2)‖2+2 〉 which is positive as shown in [23]. With this assignment, the inconsistency
to the experimental results occurs in 〈0+g ‖T (E2)‖2+2 〉 in this work, while it is zero in the O(6)-limit due to the fact that

it is the selection rule forbidden. Because 〈2+2 ‖T (E2)‖0+4 〉 is related with 〈0+g ‖T (E2)‖2+2 〉, the sign of 〈2+2 ‖T (E2)‖0+4 〉
obtained in this work is also inconsistent to the corresponding experimental result. Moreover, 〈4+1 ‖T (E2)‖4+2 〉 and
〈4+2 ‖T (E2)‖6+2 〉 in the original O(6)-limit are also inconsistent to the sign determined in [23]. As pointed out in [25],
the inconsistency in the sign of the reduced T (E2) matrix elements is common in most collective models, which may
be corrected in the IBM-2 as shown in [25]. Except the two opposite signs in 〈L′‖T (E2)‖L〉 obtained in this work,
the overall data pattern of 〈L′‖T (E2)‖L〉 shown in Table II follows that of the experimental results. Especially, the
amplitudes and signs of all diagonal reduced matrix elements of T (E2) obtained in this work agree to the corresponding
experimental results.

Table III provides B(E2) values obtained from the reduced matrix elements of T (E2) of this work. Electric
quadrupole moments of some low-lying states are also calculated in comparing with those extracted from the di-
agonal reduced matrix element of T (E2) provided in [23]. The corresponding results obtained from the IBM-CM and
ECQF provided in [22] are also shown in Table III for comparison.

As shown in Table III, the overall data pattern of the electric quadrupole moments follows that of the experimental
data, especially the sign is now correct, which indicates the third order term being indispensable in describing 194Pt.
As shown in (31), mixing of different O(5) seniority number ν occurs in L 6= 0 and L 6= 3 states with any possible
η when the parameter b 6= 0, which alters the selection rules of the reduced matrix elements of Q̂. Especially, the
diagonal reduced matrix elements of Q̂ become nonzero when b 6= 0. It is observed that the sign of b should be
negative according to the sign of the observed electric quadrupole moments of 194Pt. Furthermore, most B(E2) values
calculated in this work agree to the experimental values, of which each value is very close to the corresponding result
calculated from the IBM-CM. However, B(E2, 0+2 → 2+2 ) is 8 times larger, while B(E2, 10+2 → 8+1 ) is 17 times smaller
than the corresponding experimental value. Similar to the IBM-CM result, B(E2, 0+4 → 2+2 ) is still too small. The
ECQF with a similar third order term may be adopted to reduce these discrepancies, which is worthy to be considered
to describe even-even 172−196Pt systematically in our future work.

A detailed comparison of the most of the excited level energies up to 3MeV with known absolute B(E2) values
obtained in this work to the experimental results [23, 24] is presented in Fig. 3. It can be observed from Fig. 3 that
the description of the yrast band including B(E2) values is quite good. Not only the level positions in the quasi-γ
and the quasi-β bands, and even the 0+3 and 0+5 band heads, but also the level positions of the 5+1,2, 6

+
2,3, 7

+
1 , 8

+
1,2, and

10+1,2 are correctly reproduced, which indicates that the moment of inertia is effectively enhanced by the exponential
form of the quadrupole-quadrupole interaction. However, the even-odd staggering persists, which may be overcome
by using the extended-Q operator to replace the O(6) quadrupole operator.
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FIG. 3: (Color online) Detailed comparison of the most of the excited level energies up to 3MeV with known absolute B(E2)
values in W. u. obtained in this work to the experimental results [23, 24] for 194Pt.
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TABLE I: Most of the low-lying positive parity level energies (in MeV) of 194Pt fitted by the Hamiltonians (2) and (40), where
∗ indicates that the the model parameter ∆2p2h = 1.547 MeV is fixed according to the value of the 0+4 level energy, the first
column provides the spin ordered according to the value of the level energies for fix L with parity and the corresponding other
quantum numbers of the theory, the second column shows the spin and parity determined in experiments (Exp.) [24], the third
column gives the level energy calculated in this work, and the fourth column shows the corresponding level energy determined
in [24]. Further explanation is shown in the text.

Lπ
ζ,σ,η Exp.[24] This Work Exp. [24] Lπ

ζ,σ,η Exp. [24] This Work Exp. [24]

2+1 = 2+1,7,1 2+ 0.314 0.328 0+3 = 0+1,5,1 0+ 1.481 1.479

2+2 = 2+1,7,2 2+ 0.665 0.622 2+5 = 2+1,5,1 2+ 1.754 1.622

4+1 = 4+1,7,1 4+ 0.778 0.811 2+6 = 2+1,5,2 2+ 1.806 1.671

0+2 = 0+1,7,2 0+ 0.982 1.267 4+4 = 4+1,5,1 (2+, 3+, 4+) 1.878 1.870

3+1 = 3+1,7,1 3+ 1.102 0.923 0+5 = 0+1,5,2 (0+) 1.895 1.893

4+2 = 4+1,7,2 4+ 1.183 1.229 3+2 = 3+1,5,1 (0+, 1, 2, 3+) 2.014 2.052

6+1 = 6+1,7,1 6+ 1.339 1.412 4+6 = 4+1,5,2 (4+) 2.095 2.126

2+3 = 2+1,7,3 2+ 1.415 1.512 2+9 = 2+1,5,3 (2+) 2.099 1.930

4+3 = 4+1,7,3 (3+, 4+) 1.575 1.422 0+7 = 0+1,3,1 (0+, 1, 2) 1.991 2.141

5+1 = 5+1,7,1 (5+) 1.634 1.498 2+8 = 2+1,3,1 1+, 2+ 2.089 1.816

6+2 = 6+1,7,2 (6+) 1.766 1.926 2+10 = 2+1,3,2 1+, 2+ 2.192 2.064

8+1 = 8+1,7,1 (8+) 1.954 2.099 0+8 = 0+1,1,1 0+ 2.173 2.164

2+4 = 2+1,7,4 (0+, 1+, 2+) 1.642 1.584 2+12 = 2+1,1,1 1+, 2+ 2.266 2.134

4+5 = 4+1,7,4 (4+) 1.888 1.911

5+2 = 5+1,7,2 (5+) 2.015 1.593 0+4 = 0+2,7,1 0+ 1.547∗ 1.547

6+3 = 6+1,7,3 (6, 7, 8+) 2.167 1.984 2+7 = 2+2,7,1 1+, 2+ 1.861 1.803

7+1 = 7+1,7,1 (6+, 7, 8+) 2.191 2.423 2+11 = 2+2,7,2 (1+, 2+) 2.212 2.109

8+2 = 8+1,7,2 (8+) 2.387 2.689

0+6 = 0+1,7,3 0+ 1.961 2.085

3+3 = 3+1,7,2 (2+, 3+, 4+) 2.080 2.275

10+1 = 10+1,7,1 (10+) 2.609 2.849

10+2 = 10+1,7,2 (10+) 3.049 2.917
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TABLE II: T (E2) matrix elements (in e·b), in which the q2 parameter in this work is adjusted according to the experimental
value of B(E2, 2+1 → 0+g ) given in [24] with q2 = 0.12747 e·b (see text), while the q2 parameter for the original O(6)-limit without

the third order term X3 is fixed according to the experimental value of 〈0+g ‖T (E2〉‖2+1 〉 indicated with *, where † indicates the
corresponding sign is opposite to that determined in [23], and the mixing parameter g and λ are mainly determined from the
best fit to B(E2, 0+4 → 2+1 ) and B(E2, 0+4 → 2+2 ) from which we get λ = 0.5, ∆ = 0.800MeV and g = 0.204MeV.

L → L′ 〈L′‖T (E2〉‖L〉
Experiment [23] This Work O(6) Limit

2+1 → 0+g (+) 1.208+49

−17 1.504 1.208*

4+1 → 2+1 (+) 1.935+21

−13 2.288 1.874

6+1 → 4+1 (+) 2.90+10

−4 2.801 2.310

8+1 → 6+1 (+) 3.08+10

−16 3.039 2.560

10+1 → 8+1 2.20+25

−27 2.976 2.626

2+2 → 0+g +0.0888(12) (−)0.167† 0

2+2 → 2+1 (+) 1.517+11

−18 1.707 1.395

2+2 → 4+1 + 0.25+14

−6 0.153 0

4+2 → 2+1 + 0.220(9) 0.091 0

4+2 → 4+1 + 1.51+6

−5 1.521 (−) 1.327†

4+2 → 6+1 + 0.16+6

−16 0.148 0

4+2 → 2+2 (+) 1.784+45

−29 1.781 1.391

6+2 → 4+1 ± 0.224+17

−19 −0.553 0

6+2 → 6+1 + 1.14+11

−24 1.430 1.271

6+2 → 4+2 (+) 2.09+11

−7 2.177 (−)1.860†

8+2 → 6+2 (+) 2.44+28

−15 2.284 2.071

10+2 → 8+1 2.43+32

−41 0.698 0

0+2 → 2+1 ± 0.070+9

−15 0.088 0

0+2 → 2+2 (+) 0.231+30

−21 0.798 0.6446

2+1 → 2+1 + 0.54+8

−6 0.382 0

4+1 → 4+1 + 1.00+12

−14 0.775 0

6+1 → 6+1 + 0.28+12

−27 1.549 0

8+1 → 8+1 − 0.10, 0.43 1.452 0

2+2 → 2+2 − 0.40+12

−5 −0.382 0

4+2 → 4+2 − 0.07(14) −0.046 0

6+2 → 6+2 + 0.41+26

−22 0.180 0

0+4 → 2+1 + 0.309+9

−10 0.360 0.2907

0+4 → 2+2 (+) 0.304+11

−9 (−)0.040† 0
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TABLE III: Some absolute (the first part) and relative (the second part for the transitions from the 3+1 state) B(E2) values (in
W. u) and electric quadrupole moments (in e ·b) (the third part) of 194Pt fitted by this model and compared with experimental
data and the fitting results of the IBM-CM and ECQF shown in [22], where * indicates the q2 parameter is adjusted according

to the corresponding experimental value with q2 = 1.3297
√
W.u or equivalently with q2 = 0.12747 e·b used in Table II, –

indicates that the corresponding value was not calculated.

L → L′ Experiments [23, 24] This Work IBM-CM [22] ECQF [22]

2+1 → 0+g 49.2(8) 49.2* 49.6 49

4+1 → 2+1 85(5) 63.3 66 67

6+1 → 4+1 67(21) 65.6 67 72

8+1 → 6+1 50(14) 59.1 – –

10+1 → 8+1 34(9) 45.9 – –

2+2 → 0+g 0.29(4) 0.6 0 0.21

2+2 → 2+1 89(11) 63.3 66 63

4+2 → 4+1 14 28 32 33

4+2 → 2+1 0.36(7) 0.1 0 0

4+2 → 2+2 21(4) 38.4 35 37

8+2 → 6+2 53(10) 33.4 – –

10+2 → 8+1 42(12) 2.5 – –

0+2 → 2+1 0.63(14) 0.85 0.91 4.5

0+2 → 2+2 8.4(19) 69 9.2 39

0+4 → 2+1 14.1(12) 14.1 14 0.02

0+4 → 2+2 14.3(14) 0.17 0 0

3+1 → 4+1 < 75 35.1 40 39

3+1 → 2+2 100 100 100 100

3+1 → 2+1 < 0.64 1.2 0.0 0.6

Q(2+1 ) + 0.409
(

+62

−43

)

0.2895 0 −0.288

Q(4+1 ) + 0.752
(

+92

−105

)

0.5841 0 −0.308

Q(6+1 ) + 0.195
(

+85

−188

)

1.0798 0 −0.284

Q(8+1 ) − 0.06, 0.28 0.9357 0 −0.26

Q(2+2 ) − 0.303
(

+93

−37

)

−0.2897 0 0.259

Q(4+2 ) − 0.06 (11) −0.0350 0 0.09

Q(6+2 ) + 0.286
(

+181

−153

)

0.1258 – –

4. Conclusions

In this paper, in order to describe obvious intruder states and nonzero quadrupole moments of γ-soft nuclei such as
194Pt, a rotor extension plus intruder configuration mixing with 2n-particle and 2n-hole configurations from n = 0 up
to n → ∞ in the O(6) (γ-unstable) limit of the interacting boson model is proposed. The configuration mixing scheme
keeps lower part of the γ-unstable spectrum unchanged and generates the intruder states due to the mixing. The main
feature of this exactly solvable configuration mixing scheme lies in the fact that the O(6) pairing operator is used in the
configuration mixing term, which greatly simplifies the calculation in the O(6)-limit of the IBM and keeps the nature
of the 2n-particle and 2n-hole excitations unchanged. As a result, the eigenstates of the model Hamiltonian are the
SU(1,1) coherent states built on the O(6)-limit states of the IBM. Hence, matrix elements of physical quantities can
be derived analytically. Furthermore, we observe the exponential form of the O(6) quadrupole-quadrupole interaction
is important to enhance the moment of inertia, with which level energies with high d-boson seniority quantum number
can be correctly reproduced. In order to reproduce nonzero quadrupole moments of 194Pt with the correct sign, the
third order term needed for a rotor realization in the IBM seems indispensable. A detailed analysis of low energy
spectrum of 194Pt up to 2.17MeV shows that the γ-soft rotor model with configuration mixing proposed in this paper
are better in reproducing correct positions of the level energies, B(E2) values, and electric quadrupole moments,
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especially the sign of the quadrupole moments becomes correct. Though there are a few discrepancies, such as
incorrect amplitude of a few B(E2) values, level energy staggering in the quasi-γ band, and opposite sign in a few
reduced T (E2) matrix elements, the model description of 194Pt is greatly improved. It can be expected that these
discrepancies may be overcome by using the extended consistent-Q formalism with the configuration mixing, which
is worthy to be considered to describe even-even 172−196Pt systematically in our future work.
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