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Abstract: An intruder configuration mixing scheme with 2n-particle and 2n-hole configurations
from n = 0 up to n → ∞ in the U(5) (vibrational) limit of the interacting boson model is proposed.
A simple Hamiltonian suitable to describe the intruder and normal configuration mixing turns to
be exactly solvable, of which the eigenstates can be expressed as the SU(1,1) coherent states built
on the U(5) basis vectors of the interacting boson model. It is shown that the configuration mixing
scheme keeps lower part of the vibrational spectrum unchanged and generates the intruder states
due to the mixing. Some low-lying level energies and experimentally known B(E2) ratios of 108,110Cd
are fitted and compared with the experimental results.

PACS numbers: 21.60.Fw, 03.65.Fd, 02.20.Qs, 02.30.Ik

1. Introduction: As shown in the past a few decades, there are clear evidence for the presence of multi-particle-
hole excitations in nuclei across the closed shells [2–4], in particular near closed-shell mass regions around proton
number Z ∼ 50 and Z ∼ 82. Multi-particle-hole excitations are not easy to be incorporated in large-scale shell-model
calculations due to the extremely large model space, which, however, can easily be handled within the Interacting
Boson Model (IBM) [5, 6]. Generally, the IBM-2 in distinguishing neutron- from proton-pairs is often adopted in
the configuration mixing schemes [5, 6], of which calculations including up to 6-particle and 6-hole excitations have
been carried out [7, 8]. There have been a lot of investigations made in this direction. For example, a shell model
interpretation of intruder states and the onset of deformation in even-even nuclei was provided in [9]; the microscopic
study of the configuration mixing in the IBM was shown in [10]; and shell-model particle-hole intruder excitations and
the collective bands built on them near closed shells were studied and classified in [11]. Generally, the configuration
mixing due to the multi-particle-hole excitations was considered in understanding shape coexistence phenomena by
taking different symmetry limits of the IBM for different configurations [12–18]. These IBM configuration mixing
calculations have been proven to be successful in describing intruder states and related phenomena in near closed
shell nuclei, in which, however, many parameters are involved.

Though most of the configuration mixing schemes were considered in the IBM-2 framework, the configuration
mixing can also be considered equivalently in the IBM-1 with no distinction between neutron-type and proton-type
bosons as shown in [13–16, 19, 20]. Furthermore, though configuration mixing schemes by taking different symmetry
limits of the IBM for different configurations are certainly very much helpful in understanding shape coexistence
phenomena, it will be shown in this paper that a reasonably simplified configuration mixing scheme based on the U(5)
limit of the IBM-1 is not only analytically solvable, but also probable to describe intruder states in vibrational nuclei
near the closed shells.

2. A solvable configuration mixing model: In the original IBM-1, a typical consistent-Q Hamiltonian may be
schematically written as [1]

ĤCQ = ǫd n̂d − κ Q̂(χ) · Q̂(χ), (1)

where ǫd, κ, and χ ∈ [−
√
7/2, 0] are real parameters of the model, n̂d =

∑

µ d
†
µdµ is the d-boson number operator,

and Q̂µ(χ) = d†µs + s†d̃µ + χ(d†d̃)
(2)
µ is the quadrupole operator, in which (d†d̃)

(l)
µ stands for the tensor coupling of

the d-boson creation and annihilation operators with d̃ = (−)µd−µ, and Q̂(χ) · Q̂(χ) =
∑

µ(−)µQ̂µ(χ)Q̂−µ(χ).

There are three standard IBM-1 dynamical symmetry limit cases: the U(5) limit for κ = 0, the SU(3) limit for ǫd = 0

and χ = −
√
7/2, and the O(6) limit for ǫd = 0 and χ = 0. In the U(5) limit, for example, the eigenstates of (1) denoted

as |N,nd, ν, ρ, L,M〉 are nothing but the basis vectors of the group chain U(6)⊃U(5)⊃O(5)⊃O(3)⊃O(2), where N is
the total number of bosons, nd is the number of d-bosons, ν is the d-boson seniority number, ρ is an additional quantum
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number needed for the branching reduction of O(5)⊃O(3), and L and M are the quantum number of the angular
momentum and that of its third projection, respectively. Actually, besides the terms included in (1), other O(5) and

O(3) invariants, such as the Casimir (invariant) operator of O(5), C2(O(5)) = 2(d†d̃)(3) · (d†d̃)(3) +2(d†d̃)(1) · (d†d̃)(1),
and L̂ · L̂, where L̂µ =

√
10(d†d̃)

(1)
µ (µ = +1, 0,−1) are the angular momentum operators, can also be considered in

the U(5)-limit case.

Thus, the Hamiltonian suitable to describe 2n-particle and 2n-hole configuration mixing from n = 0 up to n → ∞
in the U(5) limit of the interacting boson model may be written as

Ĥ = P̂
(

∆ n̂s +∆ n̂d + Ĥ0 + g(S+ + S−)
)

P̂ , (2)

where Ĥ0 = ǫdn̂d + cC2(O(5)) + f L̂ · L̂ is an U(5)-limit Hamiltonian, n̂s = s†s and n̂d = d† · d̃ are s- and d-boson
number operators, respectively, ǫd is the d-boson energy, c and f are real parameters needed to remove the degeneracy
in level energies for fixed number of d-bosons nd but with different ν and L, ∆ is the energy needed to excite two more
particles from the closed shell resulting in a configuration with two more particles and two more holes is taken to be
a constant for simplicity when 2n-particle and 2n-hole excitations with n = 0, 1, 2, · · · are considered, g is the mixing
parameter, of which the allowed range will be shown later on, S+ = S+

d + S+
s (S− = (S+)†), in which S+

d = 1
2d

† · d†
and S+

s = 1
2s

† 2 are the d-boson and s-boson pairing operators. It should be noted that the Casimir operator of O(5)

and the O(3) invarinat L̂ · L̂ in the U(5) Hamiltonian Ĥ0 are commutative with S±
s and S±

d . P̂ , satisfying P̂ 2 = P̂

and P̂ † = P̂ , is the projection operator defined by

P̂ |N ′, nd, ν, ρ, L,M〉 =
{

|N ′, nd, ν, ρ, L,M〉 if N ′ ≥ N,
0 otherwise,

(3)

which keeps the Hamiltonian (2) to be effective only within the subspace spanned by [N ]⊕ [N+2]⊕ [N+4]⊕· · · mixed
configurations, where N is the total boson number of the system without configuration mixing, |N ′, nd, ν, ρ, L,M〉 is
a basis vector of U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) with total number of bosons N ′ = N + 2n with n = 0, 1, 2, · · · . (3)

extends the projection introduced previously [5–8, 12–18]. With the projection (3), any operator Ô used in the model

may be replaced by P̂ ÔP̂ .

The configuration mixing scheme of the IBM [5–8, 12–18], such as the U(5) limit one shown in (2) is aimed at
accommodating core-excited intruder configurations. The “normal” configuration is described in a basis of N bosons
with angular momenta 0+ or 2+ and interacting via the usual IBM Hamiltonian. Here and in Eq. (3), N is half
the number of valence nucleons or half the number of valence holes, which is always fixed for a given nucleus though
the total boson number in the scheme is not a conserved quantity due to the configuration mixing. The “intruder”
configurations, which we will assume throughout, involves 2n-particle and 2n-hole excitation, is described by states
with N + 2n bosons with n = 0, 1, · · · again restricted to angular momenta 0+ or 2+ and interacting via a specific
IBM Hamiltonian. Basis vectors of the [N +2n] and those of the [N +2n+2] configurations are mixed by the mixing

term, such as gP̂ (S+ + S−) P̂ used in (2). These essential assumptions of the model were outlined, for example,
in [10, 17]. Furthermore, in previous configuration mixing schemes, the gap ∆ > 0 was taken to be configuration
dependent, while, for simplicity, it is taken to be the same for any n in (2), with which the configuration of the core
with N bosons is lowest in energy, while the configuration with N + 2 bosons is the next lowest in energy, and so on,
where there is a constant energy gap ∼ 2∆ between [N+2n+2] and [N +2n] configurations for any n. It is clear that
the configuration mixing scheme described above is similar to the shell model calculations in taking 2nh̄ω excitations
with n = 0, 1, · · · into account [21, 22]. However, other possible excitations, for example, broken pair excitations
with explicit valence nucleon degrees of freedom, are not considered in this scheme.

As shown in the following, the first set of eigenstates (called normal states in the following) labeled with an additional
quantum number ζ = 1, which is similar to those provided by the U(5)-limit of the IBM without configuration mixing,
up to a normalization factor, are given by

|ζ = 1, ω〉 = eαS̃
+
s +βS̃+

d |ω〉, (4)

where ω ≡ {N,nd, ν, ρ, L,M}, in which N = ns + nd, S̃
+
d = P̂ S+

d P̂ , S̃+
s = P̂ S+

s P̂ , and α and β are parameters to be
determined by the corresponding eigen-equation. It should be understood that nd, ns, and N are used to label the
basis vectors {|ω〉} of U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) in the original U(5) limit of the IBM shown in (4), in which ω is
a set of good quantum numbers, while neither the number of s-bosons nor that of d-bosons is good quantum number
of |ζ = 1, ω〉 given in (4) for given ω when g 6= 0, which applies to other excited states as well.
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Actually, {S+
d , S

−
d , S0

d = 1
2 n̂d +

5
4} and {S+

s , S
−
s , S0

s = 1
2 n̂s +

1
4} are two sets of SU(1, 1) generators, satisfying

[S0
ξ , S

±
ξ′ ] = ±δξξ′S

±
ξ , [S+

ξ , S−
ξ′ ] = −2δξξ′S

0
ξ (5)

for ξ, ξ′ = s or d, from which one also has

[S−
ξ′ , S

+k
ξ ] = δξ′ξ k S

+k−1
ξ (2S0

ξ + k − 1). (6)

Since the s-boson part and the d-boson part of the Hamiltonian (2) are separated, only the s-boson part of the solution
will be presented in the following. The same procedure obviously applies to the d-boson part as well. The s-boson
part of (2) is

Ĥs = P̂

(

2∆S0
s + g(S+

s + S−
s )− 1

2
∆

)

P̂ . (7)

For a given eigenstate |N,nd, ν, ρ, L,M〉 of the original U(5) limit, the eigenstate of (7) can be written as

|ζ = 1, ω〉 ≡ |ζ = 1, N, nd, ν, ρ, L,M〉 = eαS̃
+
s |N,nd, ν, ρ, L,M〉, (8)

where the number of s-bosons in |N,nd, ν, ρ, L,M〉 is fixed with ns = N − nd representing the number of s-bosons in
|N,nd, ν, ρ, L,M〉 of the original U(5) limit. It is obvious that the number of s-bosons and that of d-bosons are not
good quantum numbers of |ζ = 1, ω〉 ≡ |ζ = 1, N, nd, ν, ρ, L,M〉 shown in (8).

Using the Hausdorff-Campbell relation

ÂeB̂ = eB̂
(

Â+
1

1!
[Â, B̂] +

1

2!
[[Â, B̂], B̂] + · · ·

)

, (9)

we have

Ĥs|ζ = 1, ω〉 = eαS̃
+
s

(

2∆Λs −
1

2
∆ + 2α∆S̃+

s + gS̃+
s + 2gαΛs + gα2S̃+

s

)

|N,nd, ν, ρ, L,M〉, (10)

where Λs =
1
2 (N − nd +

1
2 ). Thus, we get the corresponding eigen-energy

E
(ζ=1)
N,nd

= 2∆Λs −
1

2
∆+ 2gαΛs, (11)

while the term proportional to S̃+
s e

αS̃+
s in (10) must be zero, which leads to

g + 2α∆+ gα2 = 0 (12)

with two possible solutions

α± =
1

g
(−∆±

√

∆2 − g2), (13)

where g 6= 0 should be assumed. As shown in (12), when g = 0, α = 0 is the only solution corresponding to the

original U(5) limit Hamiltonian without configuration mixing. Since Ĥs is Hermitian, α± must be real, which requires
|g| ≤ ∆. It is obvious that the sign of g does not affect the eigen-energy (11).

Using a similar procedure, one can also get excited states of the first set of (7):

|ζ = 2, ks = 1;N,nd, ν, ρ, L,M〉 = (1 + and
S̃+
s )eαS̃

+
s |N,nd, ν, ρ, L,M〉 (14)
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with fixed quantum numbers N,nd, ν, ρ, L,M , which implies g 6= 0. As shown in (2) and (7), when g = 0 there is no
excited state similar to that shown in (14) built on |N,nd, ν, ρ, L,M〉. Namely, excited states with ζ > 1 become null
when g = 0. The corresponding eigen-energy of (7) under (14) is

E
(ks=1)
N,nd

= E
(ζ=1)
N,nd

+ 2g and
Λs (15)

with

and
=

2∆+ 2gα±

2gΛs
= ±

√

∆2 − g2

gΛs
(16)

when g 6= 0. Substituting (16) into (15), we get

E
(ks=1)
N,nd

= E
(ζ=1)
N,nd

± 2
√

∆2 − g2 (17)

for g 6= 0. Since physical spectrum should be lower-bound, only α+ shown in (13) is possible, which corresponds
to and

given in (16) and the eigen-energy provided in (17) with positive sign. Otherwise, the spectrum will become

upper-bound. In (17), 2
√

∆2 − g2 is the energy of the collective 2p-2h excitation. In the following, g 6= 0 is always
assumed.

Moreover, one can prove that the eigenstate with ζ = 1 is orthogonal to that with ζ = 2. Since α is real,

〈eαS̃−

s S̃+
s e

αS̃+
s 〉 = 〈eαS̃−

s S̃−
s eαS̃

+
s 〉 = 〈eαS̃−

s eαS̃
+
s (2αΛs + α2S̃+

s )〉, (18)

where 〈Ô〉 ≡ 〈ω|Ô|ω〉 stands for the expectation value of Ô under an eigenstate in the original U(5) limit, and the
Hausdorff-Campbell relation is used to get the final result. (18) leads to

〈eαS̃−

s S̃+
s eαS̃

+
s 〉 = 2αΛs

1− α2
〈eαS̃−

s eαS̃
+
s 〉. (19)

Thus, we have

〈eαS̃−

s (1 + and
S̃+
s )e

αS̃+
s 〉 = 〈eαS̃−

s eαS̃
+
s 〉(1 + 2and

αΛs

1− α2
). (20)

Since 〈eαS̃−

s eαS̃
+
s 〉 is always nonzero, substituting (16) into (20) and using (12), one can easily verify that 1+

2a αnd
Λs

1−α2

in (20) is obviously zero with

〈eαS̃−

s (1 + and
S̃+
s )e

αS̃+
s 〉 = 0, (21)

which leads to the orthogonality relation:

〈ζ = 1, N ′, n′
d, ν

′, ρ′, L′,M ′|ζ = 2, ks = 1, N, nd, ν, ρ, L,M〉 = 0. (22)

According to the procedure for the s-boson part of (2) shown above, the unknowns α and β shown in (4) are given
by

α =
1

g

(

−∆+
√

∆2 − g2
)

,

β =
1

g

(

−∆− ǫd +
√

(∆ + ǫd)2 − g2
)

. (23)

The eigen-energy corresponding to (4) is given by

E
(ζ=1)
N,nd,ν,L

= ∆N +
(

√

∆2 − g2 −∆
)

(N − nd) +
(

√

(∆ + ǫd)2 − g2 −∆
)

nd + c ν(ν + 3) + f L(L+ 1). (24)
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It is clearly shown that the modified single d-boson energy after the configuration mixing becomes

ǫ̃d =
√

(∆ + ǫd)2 − g2 −
√

∆2 − g2, (25)

which requires that ∆ > |g| should be satisfied. In the following, we assume ∆ > g > 0. Moreover, the solution for
both α and β with negative sign in front of the square root corresponding to a system with upper-bound in energy,
which is non-physical and discarded. Only the solution shown in (23) corresponding to a lower-bound system is
acceptable.

Other sets of excited eigenstates (called intruder states) labeled with ζ ≥ 2, which is not possible in the U(5)-limit
of the IBM without configuration mixing (g = 0), also emerge due to the configuration mixing (g 6= 0). For example,
by using a similar procedure shown above, one can prove that the first a few sets of excited eigenstates labeled with
ζ = 2 (ks = 1 and kd = 0), ζ = 3 (ks = 0 and kd = 1), or ζ = 4 (ks = 1 and kd = 1), up to a normalization factor,
are given by

|ks, kd, ω〉 = (1 + and
S̃+
s )ks(1 + bnd

S̃+
d )kdeαS̃

+
s +βS̃+

d |ω〉, (26)

where

and
=

4
√

∆2 − g2

g(2N − 2nd + 1)
, bnd

=
4

√

(∆ + ǫd)
2 − g2

g(2nd + 5)
. (27)

The corresponding eigen-energy is

E
(ks,kd)
N,nd,ν,L

= E
(ζ=1)
N,nd,ν,L

+ 2kd
√

(∆ + ǫd)2 − g2 + 2ks
√

∆2 − g2. (28)

It is obvious that there are additional collective 2-particle and 2-hole excitations of both s- and d-type with energy

∆s = 2
√

∆2 − g2 and ∆d = 2
√

(∆ + ǫd)2 − g2, respectively, which are absent in the original U(5) limit (g = 0)
description. Since the energy needed to excite two more particles from below the closed shell resulting in a configuration
with two more particles and two more holes is relatively large, the excited levels with ζ > 3 lie comparatively higher
in energy, which are not considered in the following. It is clear that the spectrum generated from (2) with the
configuration mixing is still vibrational, of which some low-lying levels of the model with c = f = 0 are shown in Fig.
1. In Fig. 1, the first set of levels with ζ = 1 are the same as those generated from the model without configuration
mixing, the second set of levels with ζ = 2 are built on the 0+1 (i) level with the gap ∆s to the ground level, and the
third set of levels with ζ = 3 are built on the 0+3 (i) level with the gap ∆d to the ground level, and so on. Each set
of the levels with ζ ≥ 2 is a replica of those with ζ = 1 generated from the original U(5) limit without configuration
mixing, but there are energy gaps among different sets.

FIG. 1: (Color online) Low-lying level pattern of the solvable configuration mixing U(5) model with the Hamiltonian given by
(2) with c = f = 0, where the lower left 10 levels belong to ζ = 1 family, which are the same as those generated from the U(5)

limit Hamiltonian of the IBM Ĥ0 only, but with the modified single d-boson energy ǫ̃d, the levels labeled with (i) are intruder

levels of the model with ∆s = 2
√

∆2 − g2 or ∆d = 2
√

(∆ + ǫd)2 − g2, 0+1 (i), 2
+
1 (i), 0

+
2 (i), 2

+
2 (i), 4

+
2 (i) belong to ζ = 2 family,

and 0+3 (i) belongs to ζ = 3 family.

The main feature of the model lies in the fact that the eigenstates (4), (26), etc are SU(1,1) coherent states built
on the U(5) limit state of the IBM due to the projection (3). A similar bosonic Hamiltonian with 2nh̄ω excitations
built on 0h̄ω states of a unitary group was discussed in [23]. A comprehensive review on the theory of coherent states
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is provided, for example, in [24]. As a consequence, matrix elements of any operator in the model can be derived
analytically. For example, one can prove that the norm

Fζ=1,ω = 〈ω|eα1S̃
−

s +β1S̃
−

d eαS̃
+
s +βS̃+

d |ω〉 =
(1 − α1α)

−N+nd−
1
2 (1− β1β)

−nd−
5
2 , (29)

which only depends on nd for fixed N . It is obvious that the normalization factor Nζ=1,ω ≡ Nnd
= (Fζ=1,ω)

−1/2 with
α1 = α and β1 = β of the normal states provided by (29) satisfies Nk1

Nk2
= Nk3

Nk4
if k1 + k2 = k3 + k4. One can

also derive

〈ζ = 1, ω|S±
s |ζ = 1, ω〉 = ∂

∂αFζ=1,ω

∣

∣

α1=α,β1=β
,

〈ζ = 1, ω|S±
d |ζ = 1, ω〉 = ∂

∂βFζ=1,ω

∣

∣

∣

α1=α,β1=β
. (30)

Thus, the normalization factor of (26) with kd = 0 can be expressed as

Nζ=2,nd
=

√

α(α2 − 1)

and

Nnd
. (31)

Similarly, one can prove

〈ζ′, ω′|ζ, ω〉 = δζ′,ζ δω′,ω (Nζ,ω)
−2. (32)

FIG. 2: (Color online) The ground-state expectation value of total number of bosons N̄ζ=1 (solid curve) and that of the first
excited intruder 0+1 (i) state N̄ζ=2 (dashed curve) defined by (34) and (35), respectively, as functions of the mixing parameter
ḡ = g/ǫd, where N = 10 and ∆̄ = ∆/ǫd = 1 is taken in the plot.

Due to the configuration mixing, the number operator of total bosons N̂ = n̂s + n̂d is not a conserved quantity.
Actually, neither n̂s nor n̂d is conserved when g 6= 0. The degree of the configuration mixing may be measured by the
expectation value and fluctuation of N̂ at the ground state defined as

N̄ζ=1 = 1
N (ζ = 1|N̂ |ζ = 1),

δNζ=1 = 1
N

(

(ζ = 1|N̂2|ζ = 1)− N̄2
)

1
2

(33)

with nd = ν = L = 0 and N 6= 0, where |ζ = 1) ≡ |ζ = 1, ω) is the normalized ground state. By using (29) and (30),
(33) can be expressed as

N̄ζ=1 = 1− 2α
a0N

− 2β
b0N

= 1− 5(
√

(1+∆̄)2−ḡ2−∆̄−1)

2N
√

(1+∆̄)2−ḡ2
− (2N+1)(

√
∆̄2−ḡ2−∆̄)

2N
√

∆̄2−ḡ2
,

δNζ=1 = 2
N

√

α
a0(α2−1) +

β
b0(β2−1) . (34)
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It can be expected that the mixing is mainly driven by the mixing term in the Hamiltonian (2). When g = 0,
N̄ζ=1 = 1 and δNζ=1 = 0 indicating that the ground state of the system is in the U(5) limit without configuration
mixing. With the increasing of g > 0, the mixing occurs with N̄ζ=1 > 1 and δNζ=1 > 0. We observe that both N̄ζ=1

and δNζ=1 increase with the increasing of g, but the increasing in N̄ζ=1 with the increasing of g is more noticeable. The
expectation value of the total number of bosons of the first excited intruder state with nd = ν = L = 0 corresponding
to 0+1 (i) state with ζ = 2 shown in the caption of Fig. 1 can be derived similarly, which is given by

N̄ζ=2 = 1
N (ζ = 2|N̂ |ζ = 2) =

N+2
N − 2β

Nb0
+ 2α2(α2−1)

Na0

(

1
α(α2−1) +

1
a0

+ α
α2−1 − (α + 2a0

α2−1 )(
1

αa0
+ 1

α2−1 )
)

. (35)

In this case g 6= 0 should be assumed. When g → 0, N̄ζ=2 → 1 + 2/N indicating that the collective 2p-2h excitation
component is dominating in the 0+1 (i) state. With the increasing of g > 0, the mixing of [N +2n] configurations with
n ≥ 2 in this intruder state occurs with N̄ζ=2 > 1 + 2/N . Since the increasing in N̄ζ with the increasing of g is more
noticeable, only N̄ζ with ζ = 1 and ζ = 2 are shown in Fig. 2. As shown in Fig. 2, the ground state with ζ = 1 is
dominated by the [N ] configuration, while 0+1 (i) state with ζ = 2 is dominated by the [N + 2] configuration, as long

as the mixing parameter is small with g ∼ 0. In addition, the O(5) and O(3) invariants C2(O(5)) and L̂ · L̂ added in

Ĥ0 only affect the level energies, but do not alter the eigenstates of the model. Thus, these quantities do not affect
expectation values of N̂ under any eigenstates and matrix elements of other operators in the model.

As shown in [5–8, 12–18], effective boson charge needs to be taken with different values for different multi-particle-
hole configurations. The E2 operator used in this work is simply chosen as

Tµ(E2) = q2P̂N

(

d†µs+ s†d̃µ

)

P̂N + q′2P̂
(

d†µs+ s†d̃µ

)

P̂ , (36)

where P̂N is a projection onto the configuration without multi-particle-hole excitations, with which the B(E2) values
are given by

B(E2;ωi, Li → ωf , Lf) =
2Lf + 1

2Li + 1
(Nωf

Nωi
)2|〈ωf , Lf‖T (E2)‖ωi, Li〉|2, (37)

where the reduced matrix element is defined as 〈ωf , Lf ||Î||ωi, Li〉 = δωf ,ωi
δLf ,Li

with unit identity operator Î. The
selection rules of the E2 transition are still those in the U(5) limit of the IBM with δnd = nd,f − nd,i = ±1,
δν = νf − νi = ±1.

The SU(1,1) coherent state formulism shown above is also helpful to evaluate reduced matrix elements of T (E2).
For example, the reduced matrix element of the second part of T (E2) between normal states can be expressed as

〈ζ = 1, ω′||P̂ (s†d̃+ d†s)P̂ ||ζ = 1, ω〉 =
〈N,n′

d, ν
′, ρ′, L′||eαS̃−

s +βS̃−

d (s†d̃+ d†s)eαS̃
+
s +βS̃+

d ||N,nd, ν, ρ, L〉 =
〈N,n′

d, ν
′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d (s†d̃+ d†s+ (α+ β)d†s†)||N,nd, ν, ρ, L〉, (38)

where the Hausdorff-Campbell relation is applied. In the following, we only provide an example of (38) with n′
d =

nd − 1. In this case,

〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d (s†d̃+ d†s)eαS̃
+
s +βS̃+

d ||N,nd, ν, ρ, L〉 =
〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d ||N,nd − 1, ν′, ρ′, L′〉〈N,nd − 1, ν′, L′||s†d̃||N,nd, ν, ρ, L〉+
(α + β)〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d ||N + 2, nd + 1, ν′, ρ′, L′〉 ×
〈N + 2, nd + 1, ν′, L′||d†s†||N,nd, ν, ρ, L〉. (39)

Using the identity

|N + 2, nd + 1, ν, ρ, L,M〉 =
√

4

(nd − ν + 1)(nd + ν + 4)
S+
d |N,nd − 1, ν, ρ, L,M〉, (40)
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we have

〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d ||N + 2, nd + 1, ν′, ρ′, L′〉 =
√

4
(nd−ν′+1)(nd+ν′+4) 〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d S+
d ||N,nd − 1, ν′, ρ′, L′〉. (41)

By using (30), (41) can be simplified as

〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d ||N + 2, nd + 1, ν′, ρ′, L′〉 =
− 1

bnd−1

√

4
(nd−ν′+1)(nd+ν′+4)〈N,nd − 1, ν′, ρ′, L′||eαS̃−

s +βS̃−

d eαS̃
+
s +βS̃+

d ||N,nd − 1, ν′, ρ′, L′〉. (42)

Hence, (39) can be rewritten as

〈ζ = 1, N, nd − 1, ν′, ρ′, L′||P̂ (s†d̃+ d†s)P̂ ||ζ = 1, N, nd, ν, ρ, L〉 = 1

(N ζ=1

N,nd−1
)2

×
(

〈N,nd − 1, ν′, ρ′, L′||s†d̃||N,nd, ν, ρ, L〉 − (43)

2(α+β)/bnd−1√
(nd−ν′+1)(nd+ν′+4)

〈N + 2, nd + 1, ν′, ρ′, L′||d†s†||N,nd, ν, ρ, L〉
)

.

On the right-hand-side of (43), the first term within the parentheses is the reduced matrix element of T (E2) in the
original U(5) limit of the IBM, while the second term is due to the intruder configuration mixing, which is always on
even only [N ] ⊕ [N + 2] configuration mixing is considered. Therefore, the only difference of a configuration mixing
scheme with finite number of configurations from that with different or infinite number of configurations is in the
normalization factors shown in (37) and those in matrix elements similar to (43).

By using the results of Winger-Racah calculus for the U(5) limit of the IBM, the reduced matrix elements shown
in (43) can further be expressed as

〈ζ, ks, kd = 0, N, nd − 1, ν − 1, ρ′, L′||P̂ (s†d̃+ d†s)P̂ ||ζ, ks, kd = 0, N, nd, ν, ρ, L〉 =
(−1)L

′
−L

(N ζ,ks
N,nd−1,ν−1

)2

(

(N−nd+1)ν(2L+1)
(nd+ν+3)(2ν+3)(2L′+1)

)
1
2
(

nd + ν + 3− 2(α+β)
bnd−1

)

〈ν − 1, ρ′, L′; 1, 2‖ν, ρ, L〉 , (44)

〈ζ, ks, kd = 0, N, nd − 1, ν + 1, ρ′, L′||P̂ (s†d̃+ d†s)P̂ ||ζ, ks, kd = 0, N, nd, ν, ρ, L〉 =
1

(N ζ,ks
N,nd−1,ν+1

)2

(

(N−nd+1)(ν+1)
(nd−ν)(2ν+5)

)
1
2
(

nd − ν − 2(α+β)
bnd−1

)

〈ν, ρ, L; 1, 2‖ν + 1, ρ′, L′〉 , (45)

for ζ = 1, ks = 0 or ζ = 2, ks = 1, where 〈ν, ρ, L; 1, 2‖ν + 1, ρ′, L′〉 is the elementary Wigner coefficient (isoscalar
factor) of O(5) ⊃ O(3), which was shown, for example, in [25].

However, due to the projection P̂N , the reduced matrix elements of the first part of T (E2) is simply given by

〈ζ′, N, n′
d, ν

′, ρ′, L′||P̂N (s†d̃+ d†s)P̂N ||ζ,N, nd, ν, ρ, L〉 =
〈N,n′

d, ν
′, ρ′, L′||(s†d̃+ d†s)||N,nd, ν, ρ, L〉, (46)

which is independent of ζ′ and ζ, and equal to the reduced matrix element of T (E2) in the original U(5) limit.

According to (37) and the evaluation procedure of the reduced matrix elements of T (E2) shown above, B(E2) values
can be expressed as

B(E2; ζ = 1, nd, ν, ρ, Li → ζ = 1, nd − 1, ν − 1, ρ′, Lf) =

(q′2)
2 (N−nd+1)(nd+ν+3)ν

2ν+3 (
Nnd

Nnd−1
)2(1− 2(α+β)

(nd+ν+3) bnd−1
+ λN 2

nd−1)
2〈ν − 1, ρ′, Lf ; 1, 2‖ν, ρ, Li〉2, (47)

B(E2; ζ = 1, nd, ν, ρ, Li → ζ = 1, nd − 1, ν + 1, ρ′, Lf) =

(q′2)
2 (N−nd+1)(nd−ν)(ν+1)(2Lf+1)

(2ν+5)(2Li+1) (
Nnd

Nnd−1
)2(1− 2(α+β)

(nd−ν) bnd−1
+ λN 2

nd−1)
2〈ν, ρ, Li; 1, 2‖ν + 1, ρ′, Lf〉2, (48)
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B(E2; ζ = 2, nd, ν, ρ, Li → ζ = 2, nd − 1, ν − 1, ρ′, Lf )

= (q′2)
2 (N−nd+1)(nd+ν+3)ν

2ν+3 (
Nnd

Nnd−1
)2

and

and−1
×

(1− 2(α+β)
(nd+ν+3) bnd−1

+ λN 2
nd−1

α(α2−1)
and

)2〈ν − 1, ρ′, Lf ; 1, 2‖ν, ρ, Li〉2, (49)

B(E2; ζ = 2, nd, ν, ρ, Li → ζ = 2, nd − 1, ν + 1, ρ′, Lf) =

(q′2)
2 (N−nd+1)(nd−ν)(ν+1)(2Lf+1)

(2ν+5)(2Li+1) (
Nnd

Nnd−1
)2 ×

and

and−1
(1 − 2(α+β)

(nd−ν) bnd−1
+ λN 2

nd−1
α(α2−1)

and

)2〈ν, ρ, Li; 1, 2‖ν + 1, ρ′, Lf 〉2, (50)

B(E2; ζ = 2, nd + 1, ν + 1, ρ, Li → ζ = 1, nd, ν, ρ
′, Lf) =

(q′2)
2 α(α2−1)

and+1

(N−nd)(nd+ν+5)(ν+1)
2ν+5 (

Nnd

Nnd+1
)2 ×

(1− and

and+1
− 2(α+β)

(N−nd)α and+1
(1− α

2and

) + λN 2
nd+1)

2〈ν, ρ′, Lf ; 1, 2‖ν + 1, ρ, Li〉2, (51)

where λ = q2/q
′
2. Some nonzero B(E2) values for the transitions among low-lying states of the model are shown in

Table I. It can be verified that the transitions among both normal and intruder states are similar to those in the
U(5) limit without configuration mixing, of which the relative strength depends on the mixing parameter g and the
effective charge ratio λ = q2/q

′
2.

TABLE I: Some nonzero B(E2;Li → Lf ) values for the transitions among low-lying states of the model, where λ = q2/q
′
2.

Transition B(E2;Li → Lf )/(q
′
2)

2

2+1 → 0+g N(N1

N0
)2(1− 2(α+β)

5b0
+ λN 2

0 )
2

4+1 → 2+1 2(N − 1)(N2

N1
)2(1− 2(α+β)

7b1
+ λN 2

1 )
2

2+1 (i) → 0+1 (i) N(N1

N0
)2 a1

a0
(1− 2(α+β)

5b0
+N 2

0α(α
2 − 1) λ

a1
)2

4+1 (i) → 2+1 (i) 2(N − 1)(N2

N1
)2 a2

a1
(1− 2(α+β)

7b1
+N 2

1 α(α
2 − 1) λ

a2
)2

0+1 (i) → 2+1 5N α(α2−1)
a0

(N1

N0
(1− 2(α+β)

5b0
)(1− a1

a0
) + λN0N1)

2

2+1 (i) → 0+g N α(α2
−1)

a1
(N0

N1
(1− a0

a1
−

1+β/α
a1N

(1− α
2a0

)) + λN0N1)
2

4+1 (i) → 2+1 2(N − 1)α(α2
−1)

a2
(N1

N2
(1− a1

a2
−

1+β/α
a2(N−1)

(1− α
2a1

)) + λN1N2)
2

It can now be understood that the differences of the mixing scheme with infinite number of configurations considered
in this work from those with finite number of configurations studied previously are in two aspects. Firstly, the eigen-
energies and eigen-states of the two schemes are quite the same, but the quantum numbers ks and kd shown in (26)
should be terminated in the latter. For example, when m+1 configurations [N ]⊕ [N+2]⊕ [N+4]⊕· · ·⊕ [N+2m] are

adopted, the projection P̂ should be restricted by another additional condition with P̂ |N ′, ω〉 = 0 for N ′ > N + 2m.
Hence, the term exp[αS+

s + βS+
d ] in (4) and (26) in this case is equivalent to its Taylor expansion in terms of α and

β with m + 1 terms due to the projection, resulting in a system with finite number of s- and d-type of collective
2-particle and 2-hole excitations. Secondly, the Taylor expansion in terms of α and β for the norm N with m + 1
terms in the current scheme is equivalent to that in the mixing scheme with finite number of configurations if the
same form of the eigenstates is adopted. Since physical quantities, such as B(E2) values, are related to the norms
involved, the results of the Taylor expansion for the norms involved with m+ 1 terms are equivalent to those of the
mixing scheme with m + 1 configurations, though the results may be a little different due to the finite-term cutoff.
Since g/∆ < 1 is always satisfied, there is no much difference of the exact results provided in this work from those
with the finite-term Taylor expansions because α ∼ −g/(2∆) and β ∼ −g/(2(∆ + ǫd)) are small quantities, which
justifies that the configuration mixing scheme with infinite number of configurations is an acceptable approximation.

Though the above SU(1,1) coherent state technique is applied to the U(5) limit case in this paper, it can also be

applied to more general cases, for example, by replacing Ĥ0 used in (2) with configuration dependent consistent-Q IBM
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Hamiltonian (1) in the same configuration mixing scheme because, for fixed N , the basis vectors {|N,nd, ν, ρ, L,M〉}
of the U(5) limit form a complete set. Then, the Hamiltonian may be diagonalized under the SU(1,1) coherent states

{exp[αS̃+
s + βS̃+

d ]|N,nd, ν, ρ, L,M〉}, where the parameters α and β may be determined according to the first and
second intruder band heads of the model similarly. With such extension, the model, however, can only be solved
numerically.

3. Model applications to 108,110Cd: Even-even Cd isotopes are generally regarded as good examples of U(5)-limit
nuclei. However, there are additional 0+ and 2+ levels near the two-phonon triplet, which can not be described by
the IBM without configuration mixing. These intruder states have been interpreted as arising from proton excitations
across the Z = 50 shell leading to 2p-4h configurations [12, 26], in which the configuration mixing based on the IBM
was adopted to describe 112,114,118Cd. Similar configuration mixing schemes for even-even Cd isotopes, especially
for 112,114Cd, were also considered in [13, 27–29]. In fact, in order to describe the shape evolution in even-even Cd
isotopes, a consistent-Q Hamiltonian mainly along the U(5)-O(6) transitional leg of the Casten triangle should be
adopted [13, 27–29], because the γ-soft configurations are inevitable in most vibrational nuclei, especially with the
increasing of the boson number N . Since the present model can only be used to describe U(5) limit nuclei, 108,110Cd
seem to be the suitable candidates. As shown in [30], 108Cd was considered as a good U(5) limit candidate though
E2 decay rates from its normal three-phonon states have not been determined experimentally.

The level energies of the intrude states 0+1 (i), 2
+
1 (i), and 4+1 (i) of

108Cd deduced in [30] are used, while the other
level energies of the intrude states are predicted in this model. The model parameters are determined from a best
global fit to the experimental level energies and B(E2) values concerned, from which we get ∆ = 0.8635MeV, g =
0.0782MeV, ǫd = 0.6305MeV, c = 0.0200MeV, f = 0.0010MeV, and λ = q2/q

′
2 = 0.89. Some low-lying level

energies and B(E2) ratios of 108Cd are shown in Table II, where level energies of the normal four-phonon states
and above are not shown, and only experimentally determined B(E2) values are provided except B(E2; 0+1 (i) → 2+1 ),
which demonstrates that both low-lying level energies and B(E2) ratios of 108Cd are fitted by this simple model
approximately. Particularly, the E2 decays out of the intruder band are indeed very week [30] as predicted by the
model, and the transitions among intruder states are weaker than those among the normal states. In addition, the
B(E2) ratio R4,2 = B(E2, 4+1 → 2+1 )/B(E2, 2

+
1 → 0+g ) of the normal (ζ = 1) band keeps almost the same as that in

the U(5) limit without configuration mixing. As shown In Table II, R4,2 = 1.6688 in this work, while R4,2 = 1.6667
in the U(5) limit without configuration mixing. It is also shown that the transitions with δν = ±2 or 0 are also
experimentally allowed, while they are forbidden in this simple model, which indicates that the O(5)-symmetry is a
little broken in 108Cd. Moreover, the assignments of relatively higher-lying intruder states 0+2 (i), 0

+
3 (i), and 2+2 (i)

need to be confirmed because their E2 decay rates were not determined experimentally. It should be noted that B(E2)
values of the transitions among intruder states and those from intruder states to the normal states are taken from
[30], while those among normal states are taken from [31].

Though there are inevitable γ-soft configurations, this simple model is also applied to describe low-lying level energies
up to the three phonon states and related known B(E2) ratios of 110Cd. From the best global fit to the experimental
level energies and B(E2) values for 110Cd concerned, we get ∆ = 0.7850MeV, g = 0.5493MeV, ǫd = 0.5800MeV,
c = −0.0080MeV, f = 0.0096MeV, and λ = q2/q

′
2 = 1.99 for 110Cd. The fitting results are shown in Table III, in

which the related B(E2) ratios calculated from the IBM-2 with configuration mixing [33] are also provided. Actually,
there are two schemes with or without strong mixing between the phonon and intruder configurations adopted in
the IBM-2 calculations [33]. Since there is no much difference in the fitting quality of the mixed scheme form that
of the unmixed one as concluded in [33], only the results of the mixed scheme are provided in Table III. Relative
B(E2) ratios of transitions from the three-phonon 0+3 state shown in [33] are not included. It can be observed from
Table III that the fitting quality of the IBM-2 with configuration mixing [33] for the B(E2) ratios of 110Cd is a
little better than that of this simple model. It can be seen that there are obvious discrepancies in the B(E2) ratios
calculated from this model. Firstly, the increasing in the B(E2) value along the normal yrast states is a little larger
than the corresponding experimental data. Secondly, the B(E2) value for the transition 0+2 → 2+1 is at least 9.25
times too large, while that for 4+1 (i) → 2+1 (i) is about 1.93 times smaller than the corresponding experimental value.
Discrepancies in some other B(E2) values are also noticeable. It can be expected that the O(6) content in both normal
and intruder bands are not negligible in 110Cd as noted in [33]. Moreover, the value of the mixing parameter adopted
indicates that the configuration mixing in 110Cd is stronger. Taking the parameter ∆ and the T (E2) operator to be
configuration-dependent in the model as previously did [5–8, 12–18] is also possible. To implement an additional O(6)
term in (2) would certainly improve the quality of fits, of which the solution, however, will be complicated.
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TABLE II: Some low-lying level energies (the upper part) and B(E2) ratios B(E2;Li → Lf )/B(E2; 2+1 → 0+g ) (the lower part) of
108Cd, where ∗ indicates that the corresponding spin assignment is not fully confirmed, and – denotes undetermined experimental
value. The spin of both 0+2 (i) and 0+3 (i) states was assigned with (0+, 1+, 2+) as shown in [31]. The model parameters are
taken as ∆ = 0.8635MeV, g = 0.0782MeV, ǫd = 0.6305MeV, c = 0.0200MeV, f = 0.0010MeV, and λ = q2/q

′
2 = 0.89.

Level energy (MeV) This work Exp. [30, 31]

E(2+1 ) 0.718 0.632

E(4+1 ) 1.484 1.508

E(2+2 ) 1.470 1.601

E(0+2 ) 1.264 1.913

E(3+1 ) 2.268 2.146

E(4+2 ) 2.276 2.239

E(0+3 ) 1.896 2.375

E(2+3 ) 1.982 2.486

E(6+1 ) 2.298 2.541

E(0+1 (i)) 1.720 1.720

E(2+1 (i)) 2.438 2.163

E(4+1 (i)) 3.084 2.739

E(2+2 (i)) 3.070 2.366

E(0+2 (i)) 2.984 2.740∗

E(0+3 (i)) 2.984 2.936∗

Transition This work Exp. [30, 31]

4+1 → 2+1 1.6688 1.5639

2+2 → 2+1 1.6688 0.6579

2+2 → 0+g 0 0.0676

2+1 (i) → 0+1 (i) 0.3428 ≥ 0.338

4+1 (i) → 2+1 (i) 0.5901 ≥ 0.226

0+1 (i) → 2+1 0.0091 –

2+1 (i) → 0+g 0.0029 ≥ 0.002

4+1 (i) → 2+1 0.0043 ≥ 0.005

2+1 (i) → 2+1 0 ≥ 0.015

4+1 (i) → 4+1 0 ≥ 0.015
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TABLE III: Some low-lying level energies (the upper part) and B(E2) ratios B(E2;Li → Lf )/B(E2; 2+1 → 0+g ) (the lower part)

of 110Cd, where ♯ indicates the corresponding level energy being chosen to be fitted, and ∗ indicates that the corresponding spin
assignment is not fully confirmed, and – indicates that the quantity was not provided in [33]. The spin of the 0+3 (i) state was
assigned with (0+, 2−) as shown in [32]. The model parameters are taken as ∆ = 0.7850MeV, g = 0.5493MeV, ǫd = 0.5800MeV,
c = −0.0080MeV, f = 0.0096MeV, and λ = q2/q

′
2 = 1.99.

Level energy (MeV) This work Exp. [32, 33]

E(2+1 ) 0.726 0.658

E(2+2 ) 1.378 1.476

E(4+1 ) 1.512 1.542

E(0+2 ) 1.400 1.731

E(0+3 ) 1.956 2.079

E(3+1 ) 2.071 2.163

E(4+2 ) 2.148 2.220

E(2+3 ) 2.126 2.355

E(6+1 ) 2.359 2.479

E(0+1 (i)) 1.081 1.473

E(2+1 (i)) 1.807 1.783

E(4+1 (i)) 2.641 2.251

E(2+2 (i)) 2.507 2.288

E(0+2 (i)) 2.481 2.332

E(0+3 (i)) 2.481 2.405∗

Transition This work IBM-2 [33] Exp. [33]

4+1 → 2+1 1.861 1.593 1.549

2+2 → 2+1 1.861 1.333 0.701

2+2 → 0+g 0 0.007 0.025

0+2 → 2+2 0 2.037 < 62

0+2 → 2+1 2.703 0.041 < 0.292

3+1 → 2+1 (i) 0 0.016 0.185

3+1 → 4+1 0.727 0.481 0.089, 1.440

3+1 → 2+2 1.818 1.370 0.838

3+1 → 2+1 0 0.008 0.031

4+2 → 4+1 1.212 0.815 0.395

4+2 → 2+2 1.333 1.296 0.812

4+2 → 2+1 0 0.007 0.005

4+2 → 2+1 (i) 0 1.630 0.018

6+1 → 4+1 (i) 1.061 0.244 1.328

6+1 → 4+2 0 0.096 0.185

6+1 → 4+1 2.546 2.000 2.288

2+3 → 0+2 1.242 0.593 0.893

2+3 → 4+1 1.418 0.167 < 0.185

2+3 → 2+2 0.788 0.031 0.026

2+3 → 2+1 0 0.001 0.118, 0.0003

2+3 → 0+1 (i) 0 0.032 < 0.070

2+3 → 2+1 (i) 0 0.852 < 0.185

2+1 (i) → 0+1 (i) 1.209 2.185 1.070

0+1 (i) → 2+1 0.192 1.148 <1.476

2+1 (i) → 0+g 0.099 – 0.010

2+1 (i) → 2+1 0 0.0002 0.247, 0.012

2+1 (i) → 2+2 1.388 0.370 < 0.295

4+1 (i) → 2+1 (i) 2.193 3.963 4.244

4+1 (i) → 2+1 0.065 0.008 0.005

4+1 (i) → 4+1 0 0.044 0.066

4+1 (i) → 2+2 0 0.002 0.044
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4. Summary: An intruder configuration mixing scheme with 2n-particle and 2n-hole configurations from n = 0
up to n → ∞ in the U(5) (vibrational) limit of the interacting boson model is proposed. A simple Hamiltonian
suitable to describe the configuration mixing turns to be exactly solvable, which may be helpful in the analysis of
experimental data of vibrational nuclei near the closed shells, because physical quantities in the model can be expressed
analytically. As examples of the model application, low-lying level energies and experimentally known B(E2) ratios
of 108,110Cd are fitted. As far as the lower energy region is concerned, the fitting results show that the U(5) based
SU(1,1) symmetry seems dominating in 108,110Cd, especially in the low-lying intruder states. Since this simple model
is only suitable to describe U(5) limit nuclei, the fitting quality for 108Cd is better than that for 110Cd, because
O(6) configuration mixing, especially in the intruder bands, becomes stronger with the increasing of the total boson
number N . Therefore, the model may also be applicable to other vibrational nuclei near closed shells, such as those
among Ru and Pd isotopes. Finally, the SU(1,1) coherent state technique proposed in this work may also be useful
in diagonalizing a more general configuration dependent consistent-Q IBM Hamiltonian in the same configuration
mixing scheme though only numerical solution is possible in such a case, which will be considered in our future work.
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