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In collisions of identical nuclei at a given impact parameter, the number of nucleons participat-
ing in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The
asymmetry due to the unequal number of participating nucleons, referred to as longitudinal asym-
metry, causes a shift in the center of mass rapidity of the participant zone. The information of the
event asymmetry allows us to isolate and study the effect of longitudinal asymmetry on rapidity
distribution of final state particles. In a Monte Carlo Glauber model the average rapidity-shift is
found to be almost linearly related to the asymmetry. Using toy models, as well as Monte Carlo
data for Pb—Pb collisions at 2.76 TeV generated with HIJING, two different versions of AMPT and
DPMJET models, we demonstrate that the effect of asymmetry on final state rapidity distribution
can be quantitatively related to the average rapidity shift via a third-order polynomial with a domi-
nantly linear term. The coefficients of the polynomial are proportional to the rapidity shift with the
dependence being sensitive to the details of the rapidity distribution. Experimental estimates of the
spectator asymmetry through the measurement of spectator nucleons in a Zero Degree Calorimeter
may hence be used to further constrain the initial conditions in ultra-relativistic heavy-ion collisions.

PACS numbers:

I. INTRODUCTION

In collisions of heavy ions the geometrically overlap-
ping region created by interacting nucleons from each
nucleus is called the participant zone. Even at fixed
impact parameter, the number of participating nucleons
from each nucleus fluctuates around the mean due to
fluctuations in the positions of the nucleons around the
mean nuclear density profile. Event-by-event, the partici-
pant zone therefore has a net non-zero momentum in the
nucleon-nucleon centre-of-mass (CM) frame, and hence
its rapidity is shifted with respect to the CM frame, and
is denoted by yo [I.

Experimental data and simulated data from different
event generators show that the total produced parti-
cle multiplicity, measured over a wide phase space re-
gion, scales approximately with the number of partic-
ipants [2, B]. The observed Npar¢ scaling indicates that
the number of participants or wounded nucleons is a rele-
vant parameter affecting the production and distribution
of produced particles even at LHC energies. Fluctua-
tions of the fireball shape in the longitudinal direction
are expected to create nontrivial rapidity correlations,
as explicitly demonstrated using the wounded nucleon
model [4]. The different components of the fluctuating
fireball shape suggested in [4], have been recently ex-
tracted from the measured two-particle rapidity correla-
tions [5].

The distribution of charged particles averaged over
a large number of events in collisions of identical nu-
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clei is observed to be symmetric about the rapidity of
the nucleon-nucleon CM frame. The observed forward
backward asymmetry in collisions of non-identical nuclei
d-Au [6] and p—Pb [7] has been argued to be due to shift
of the rapidity of the participant zone. Unequal number
of participants in a collision of two identical nuclei pro-
duces a shift of the participant zone. This shift can be
observed by measuring asymmetry in the energy of the
Zero Degree Calorimeters on either side of the interac-
tion vertex, even though its estimate in central collisions
is marred by large relative fluctuations; the measurement
of shift may facilitate to separate effect of fluctuations on
various observables [§]. Preliminary results of the ALICE
collaboration show a difference between pseudorapidity
distribution of charged particles in Pb—Pb collision events
of different asymmetries, as estimated from the measure-
ment of spectator neutrons in the neutron Zero Degree
Calorimeters [9]. Simulations based on a fluid dynamical
framework demonstrate the effect of longitudinal fluctu-
ations on the azimuthal anisotropy coeflicients and their
rapidity dependence; a significant decrease in the values
of v1(y), and a wide plateau like behaviour for wvs(y),
both near midrapidity, has been estimated due to the
event-by-event fluctuations affecting the rapidity of the
participant zone, the latter being a conserved quantity
[10]. The similar transverse-momentum dependence of
the rapidity-even directed flow and the corresponding es-
timate from two-particle correlations at mid-rapidity in-
dicate a weak correlation between fluctuating participant
and spectator symmetry planes and suggest the possibil-
ity of using the spectator nucleons to further determine
and constrain the effect of initial conditions [II]. This
possibility has recently been further explored by model
studies using AMPT [12].

It has been argued that the vorticity arising due to ini-
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tial state angular momentum may survive the evolution
process in a low viscosity state of quark-gluon plasma
and may manifest in the rapidity dependence of directed
flow, v1(y), however its observability is affected by initial
state fluctuations necessitating the requirement to deter-
mine the event-by-event centre of mass [I3]. The need
for determination of the event-by-event centre of mass
rapidity is also highlighted by the possible observation of
A-polarisation in the CM frame, which may confirm at-
tainment of local thermodynamical equilibrium and per-
sistence of vorticity until freezeout of the expanding mat-
ter [14, [I5]. The observation of A-polarisation at the
Relativistic Heavy Ton Collider requires that the models
describing the evolution of a heavy-ion collisions incor-
porate the effect of large vorticity, thereby providing a
complete characterisation of the system necessary to un-
derstand the dynamics of quarks and gluons in extreme
conditions [16].

In the present work, we investigate the possible effect
of the net (non-zero) momentum of the participant zone
on experimentally measurable distributions of produced
particles by exploring possible correlations between the
participant asymmetry and the distribution of particles
in the kinematic phase space. Events of the same net-
momentum can be selected by classifying events on the
basis of measured asymmetry in spectators for any cen-
trality. The rapidity distribution of events of any asym-
metry class is studied relative to corresponding distri-
butions of another asymmetry class. The method has
the advantage that most experimental uncertainties and
corrections affecting the single particle distributions are
cancelled. All variables used to develop this analysis can
be estimated experimentally.

The paper is organized as follows. The rapidity-shift
of the participant zone due to asymmetry of the event
is discussed in Section [[I] The effect of a rapidity-shift
is estimated using a toy model on a Gaussian rapidity
distribution and is discussed in Section [Tl Section [[V]
discusses the effect on various charged particle rapidity
distributions for variable rapidity-shifts as calculated us-
ing Glauber model. The results of the present work are
summarized in Section [Vl

II. RAPIDITY SHIFT OF PARTICIPANT ZONE

If the number of nucleons participating from the two
colliding nuclei is A and B, respectively, then the partic-
ipant zone has a net momentum in the nucleon-nucleon
CM frame. The net momentum corresponds to a shift
in the rapidity of the participant zone, which can be ap-
proximated as

L1

A
Yo = s ln—

. 1
5% (1)
Assuming each of the A (B) nucleons has a fixed mo-

mentum p (—p), Eq. [1|is obtained using the sum of four-
momentum vectors (0,0, Ap, AE) and (0,0,—Bp, BE),

Centrality“bmin (fm)[bmax (fm)[<Npart>[ Yol

0-5% 0.0 3.61 383.9 |0.0144
5-10% 3.61 5.12 330.0 |0.0263
10-15% 5.12 6.27 280.2 |0.0352
15-20% 6.27 7.24 236.5 |0.0431
20-25% 7.24 8.09 198.5 [0.0512
25-30% 8.09 8.86 165.5 [0.0589
30-35% 8.86 9.57 136.5 [0.0678
35-40% 9.57 10.23 110.2 {0.0777
40-45% 10.23 10.85 88.6 |0.0887
45-50% 10.85 11.43 70.2 0.1012
50-55% 11.43 11.99 54.6 |0.1155
55-60% 11.99 12.52 41.6 10.1326
60-65% 12.52 13.03 31.0 |0.1528
65-70% 13.03 13.52 22.5 (0.1764

TABLE I: Centrality classes defined by impact parameter as
well as corresponding (Npart) and {|yo|) values.

with E? = mZ +p?, and neglecting my < p. Since at the
LHC in the TeV scale, mg/p < 1076, we replace the "=’
sign by the equality sign hitherto.

Defining the asymmetry of participants for each event

as Qpart = ‘gjr—g, the rapidity-shift yy can be written as

1 1 + Opart

=—In ,
vo 2 1- Opart

(2)
and has a unique correspondence with apare. For small
Qrpart, the shift follows yo = apare. The unequal num-
ber of nucleons in the participant zone imply unequal
number of spectators of the two colliding nuclei, N — A
and N — B, respectively, where N is the total number
of nucleons in each nucleus. The spectator asymmetry

_ (N-A)—(N-B) __ B—A .
Qspec = (N—A)F(N—B) — IN-(A+B) 18 related to the par-
ticipant asymmetry via Qgpec = —Opart 5v—14 15 Nf(tﬁ B Fi-

nally, the rapidity shift yy is related to the spectator
asymmetry as

(A+ B)(1 + aspec) — 2N aigpec
(A+ B)(1 — agpec) + 2N agpec

1
Yo = 3 In (3)

which is accessible to experiment. Unlike the unique cor-
respondence between oap,art and g, the presence of the
(A 4+ B) term in Eq. |3|leads to a distribution of yg for a
given value of agpec, €ven at fixed impact parameter or
centrality.

The rapidity-shift yo (Eq. [I]) as well as its dependence
on opary (Eq. and agspec (Eq. can be calculated
within a Monte Carlo Glauber (MCG) framework [I7],
as implemented in Refs. [I8, [19] or in Ref. [20]. In the
present work, we have generated 1.2 million minimum
bias events of Pb—Pb collisions at /syn = 2.76 TeV us-
ing HIJING (v1.383) [20] with default settings. The gen-
erated impact parameter (b) is used to define the event
centrality. Limits on b used for 5%-wide centrality inter-
vals with corresponding (Npar) are provided in Tab.
The mean number of participants provide an estimate of
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FIG. 1: The distributions of the participant-zone rapidity shift yo (left panel), of the participant asymmetry copart (middle
panel) and of the spectator asymmetry aspec for 0-5%, 20-25% and 40-45% Pb-Pb centrality classes calculated with the

HIJING MCG.

the order of magnitude of the rapidity-shift. Assuming
that the number of nucleons from each of the two nuclei
fluctuate by their root mean square while retaining the
total number to be equal to Npar¢, the resulting value of
rapidity shift for the most central class of events would
be ~ 0.05. In practice, events in any centrality class will
have a distribution peaked at zero. The distributions of
Yo, Qpart and agpec calculated with the HIJING MCG
are shown in Fig. 1| for three centrality classes along with
a Gaussian fit for each. The width of the yy distribu-
tion increases with decreasing centrality, i.e. for larger
impact parameters the relative fluctuations increase since
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FIG. 2: Event-by-event distributions of yo versus apars (left
panel) and yo versus aspec (right panel) for the 20-25% Pb-Pb
centrality class calculated with the HIJING MCG.

Figure[2]displays event-by-event distributions of yo ver-
SUS Qpart and Qgpec, Tespectively, obtained for the 20—
25% Pb—Pb centrality class with the HIJING MCG. The
unique correspondence between 3o and apar is illustrated
in the left panel of Fig. 2l The lack of a unique relation

the number of participants decreases. Events can be clas-
sified according to their rapidity-shift: yo < 0 are events
of negative asymmetry (-asym) and yo > 0 are events of
positive asymmetry (+asym). For each centrality class,
the mean value of |yg| is also reported in Tab. [l The
increase of |yg| with decreasing collision centrality is in
agreement with results obtained earlier [I]. The apar
distributions are nearly identical to the yg distributions,
while the agpec distributions are different. The widths of
the agpec distributions increase with increasing central-
ity, i.e. the relative fluctuations increase with decreasing
number of spectator nucleons.

between yo and aspec due to the presence of the (A+ B)
term in Eq.[3]leads to a distribution of yq for a given value
of agpec, even at fixed impact parameter or centrality, as
illustrated in the right panel of Fig. |2l It can be regarded
as the response matrix to obtain the values of (yo) for a
given range of agpec. The mean values (yo) as a function
of the agpec asymmetry are shown in Fig. @ for three dif-
ferent centralities for 0-5%, 20-25% and 40-45% Pb-Pb
centrality classes calculated with the HIJING MCG.

If the experiments could measure the number of nucle-
ons in the participant zone, A and B, the participant-
zone rapidity shift yo could be determined for each col-
lision. However, neither A and B, nor apar is directly
amenable to experimental measurement. The asymme-
try ogpec can be estimated by measuring the number of
spectator nucleons through their energy deposited in the
zero degree calorimeters on either side of the interaction
vertex in collider experiments [8]. Using unfolding meth-
ods and the estimated values of agpec, one can obtain an
estimate of (yo), e.g. by using the response matrix in the
right panel of Fig. Almost all estimates of yy based
on Glauber like models will show similar results even if
there are differences in details. The ALICE experiment
has determined a response matrix using information on
the number of neutrons in the spectator and also us-
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FIG. 3: The mean participant-zone rapidity shift (yo) versus
Qspec for 0-5%, 20-25% and 40-45% Pb-Pb centrality classes
calculated with the HIJING MCG.

ing the energy deposited in the Zero Degree Calorimeter,
where a Glauber Monte Carlo model has been tuned to
reproduce the energy distributions in neutron Zero De-
gree Calorimeters [21]

III. CONSTANT RAPIDITY SHIFT AND
GAUSSIAN CHARGED PARTICLE RAPIDITY
DISTRIBUTION

The measured rapidity distribution of charged parti-
cles produced in collisions of identical nuclei can be de-
scribed by distributions which are symmetric about the
CM rapidity [2LB]. A Gaussian form is amongst the more
common distributions used to describe data. We assume
that the particles produced in asymmetric collisions of
identical nuclei are also distributed symmetrically in the
CM frame of the participant zone. Considering that the
rapidity of the participant zone is shifted by yg from the
rapidity of the nucleon-nucleon CM system, a symmet-
ric distribution in the participant zone will appear as
a shifted distribution in the nucleon-nucleon CM frame,
which is also the laboratory frame for most collider ex-
periments. For fixed yg, the rapidity distributions of pro-
duced particles can be written as a Gaussian distribution
of width o.

dN —yo)?
=Ny exp(—i(y 2(7%0)

i ). (@)

For symmetric collisions yo = 0, while for longitudinally
asymmetric collisions yq is finite. The positive and neg-
ative values of yy correspond to the net momentum of
the participant zone in the positive and negative direc-
tion, respectively, causing positive and negative partici-
pant (apart) asymmetries, respectively. Taking the ra-

tio of single particle rapidity distributions of different
asymmetry classes will eliminate the uncertainties arising
due to experimental corrections and fluctuations affect-
ing event-by-event distribution. The ratio of the rapidity
distribution of particles in collisions with positive asym-
metry to the distribution in collisions of negative asym-

metry yields
(%)
+asym 4yy0)
2

dy
(M) = exp(=;
) _asym (5)

o
= Z C%(y07 U)yn )
n=0

o9

where c& = (4yo/0?)"/n! are the coefficients of the Tay-
lor expansion of the exponential function, and the super-
script g of the coefficients stands for the Gaussian shape
of the parent rapidity distribution. The coefficients de-
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FIG. 4: Gaussian % distributions for o = 3.6 shifted by
yo £ 0.1 obtained by the toy model (top panel). Ratio of the
‘(ii—];’ distributions fitted to a third-order polynomial (bottom
panel). The coefficients are 0.015, 1.1 x 107% and 2.2 x 1077,
respectively with x?/dof = 125/117.

pend upon the parameters of the parent rapidity distri-
bution and on the rapidity shift yo. These parameters
are effectively fixed by selecting events on the basis of
centrality and asymmetry. For typical values of yy equal

to 0.1 and o equal to 3.6, the ratio g% ~ 0.015 and the
1

ratio j—% ~ 0.00015 with subsequent terms having negligi-

ble coﬁtribution to the values of the function describing
the ratio of the two rapidity distributions. Hence, for
a Gaussian rapidity distribution, where the relation be-
tween the shift of the participant-zone rapidity and the
coefficients ¢,, are analytically known, the dominant con-
tribution can be expected for the linear term. The linear
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These results have been validated using a toy model
simulation by generating Gaussian rapidity distributions
which are shifted by a constant magnitude. The top
panel of Fig. [f] shows two rapidity distributions for o =
3.6 shifted by yo +0.1. The unshifted distribution would
obviously lie in between the two distributions and is not
drawn. The bottom panel of Fig. [4] shows the ratio of
% distributions for events with yy = +0.1 to those with
yo = —0.1, and the ratio is fitted to a third-order polyno-
mial. The coefficient of the linear term is dominant with
the other coefficients smaller by 2 and 4 orders of mag-
nitude, respectively, as expected from Eq. The same
calculation is repeated for different values of the shift yq
to obtain the coefficients of the third-order polynomial
fit as function of yq, as shown in Fig. |5 The dependence
of the coefficients on the rapidity-shift known from Eq.
is indicated with dashed lines, and agrees very well with
the numerical calculation. The figure demonstrates that
the dominant contribution to the fé—N ratio arises from the
first coefficient, which is linearly related to the rapidity
shift yo.

IV. VARIABLE SHIFT AND VARIOUS
CHARGED PARTICLE RAPIDITY
DISTRIBUTIONS

In the previous section we discussed the relation of co-
efficients of the third-order polynomial fit to the ratio
of dN distributions, assuming that the ﬂ distributions
are Gaussuam in nature, and that all events have the same
value of yg. In the following, the values of yg for different
events are chosen according to the distribution of yq from
the HIJING MCG, as shown for a few centrality classes in

the left panel of Fig. [Il As before, the rapidity distribu-
tion of particles % are generated using a toy simulation
taking into account event-by-event the rapidity-shift yo.

In addition to a Gaussian shape for the rapidity dis-
tribution, inspired by the possibility of a double Woods-
Saxon distirbution [22], or a Woods-Saxon-like distribu-
tion [2], we also consider that the rapidities of produced
particles can be described by a Woods-Saxon distribu-
tion.

N 1
W _ No (6)
dy 1+exp(|(y yo)|— a)

where yg = 0 for symmetric events, positive for events
with positive asymmetry, and negative for events with
negative asymmetry. Taking the ratio of the 94 d for
events of opposite asymmetry, and making a Taylor ex-
pansion about y = 0 yields a polynomial in y, which can
be written as

(%)
“+asym
( dy >7asym

The coeflicients ¢)® depend on the shift in rapidity and
the parameters of the Woods-Saxon distribution in a non-
trivial way. For a given set of parameters, however, the
dependence on the rapidity-shift ¢y can be computed nu-
merically.

We investigate the systematic effect of the rapidity-
shift on the coefficients charecterising the ratio of Gaus-
sian and Woods-Saxon rapidity distributions for different
asymmetry classes. Using the parameterized form of ex-
perimental 7 and pr distributions in conjunction with
the relative yield of pions, kaons and protons [3, 23],
toy-model simulations provide the rapidity distribution.
This resulting < dN distribution is fitted once to a Gaus-
sian form and then to a Woods-Saxon form to obtain the
values of the parameters. Using these values of the pa-
rameters and the yg distribution obtained from HIJING
events (Fig. , the rapidity distributions are obtained
separately for positive and negative values of yg corre-
sponding to different centrality classes. The ratio of the
two distributions is fitted to a third order polynomial as
shown in Fig. [f] for four centrality classes. In each case,
the x2/dof are the smallest in the most central class and
are about 0.64 and 0.83 for Gaussian and Woods-Saxon
rapidity distribution.

To investigate the possible contribution originating
from the dynamics of the particle production mecha-
nism, or in general, of any final state effects, the charged-
particle rapidity distribution obtained from some com-
monly used event generators have also been used. We
have generated about 1.2 million events of HIJING and
about 1 million events each of both versions of AMPT
(Default and String Melting) [24], and of DPMJET [25]
for Pb-Pb collisions at /snny = 2.76 TeV. The rapid-
ity shift yo is determined for each generated event from

Zc (yo,a,c)y (7)
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FIG. 6: The ratio of % distributions for events with positive (yo > 0) and with negative (yo < 0) asymmetry. The different
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HIJING (d) AMPT (Default) (e) AMPT (String Melting) and (f) DPMJET (default). The ratios, along with fits to third order

polynomials, are shown for four centrality classes.

the number of participating nucleons from each of the
two colliding nuclei. The average rapidity distributions
corresponding to positive and negative values of yq are
obtained. The ratio of these two rapidity distributions
is fitted to a third order polynomial to obtain the values
of the coefficients. The ratios and the fits are shown in
Fig. [6] along with the results for toy model simulations
for parametrised rapidity distributions. The differences
in the parent rapidity distributions manifest themselves
in the ratios and the values of the coefficients in the poly-
nomial.

For all rapidity distributions, the coefficients for the
quadratic and cubic terms in the ploynomial fitting of
the ratio are much smaller than those of the linear term.
The dependence of the first three coefficients ¢, on the
mean rapidity shift (|yo|) is shown in Fig. [7] The six
different rapidity distributions yield different dependence
of the coefficients on (|yg|), indicating a possibility of
determining the details of the rapidity distribution from
the knowledge of the behaviour of the coefficients.

V. SUMMARY

In collisions of identical nuclei at a given impact pa-
rameter, the number of nucleons participating in the
overlap region of each nucleus, estimated with a Monte
Carlo Glauber model, can be unequal due to nuclear den-
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FIG. 7: The coefficients c1, c2, and c3 of the third-order poly-
nomial fit to the ratio of % distributions versus (|yo|) for
the six forms of rapidity distributions. Polynomial fits are
to guide the eye. The coefficients ¢, demonstrate a depen-
dence on (|yo|). The rapidity distributions are obtained in 14
centrality intervals up to 70% centrality with corresponding
(lyo|) as given in Tab.[l]



sity fluctuations (Fig. . The asymmetry due to the un-
equal number of participating nucleons causes a rapidity-
shift of the participant zone (Fig. [2)), which may be ex-
perimentally accessible by measuring the energy of the
spectator nucleons, as was also argued in [§]. The aver-
age rapidity-shift has been found to be almost linearly
related to the asymmetry (Fig. [3). The effect of the
small rapidity-shift in the rapidity distributions was es-
timated by taking the ratio of the distributions of events
of positive and negative asymmetries. The success of the
method was demonstrated by using a toy model to illus-
trate that such a ratio can effectively be described by a
third-order polynomial (Fig.[4), where the coefficients are
related to the rapidity-shift and are shown for Gaussian
rapidity distributions for constant rapidity-shift (Fig. .
The effect on the ratio of rapidity distributions for pos-
itive and negative asymmetry has been systematically
studied for Gaussian and Woods-Saxon particle rapidity
distributions, using a toy model simulation and taking
the distribution of yy from Fig. The ratios and the
polynomial fits are shown in Fig. [6] (a) and (b). The
possible effect of dynamics of particle production is in-
vestigated using the ratio of rapidity distributions for
positive and negative asymmetries from different event
generators. The ratios and the fitted polynomials for ra-
pidity distributions obtained from HIJING, AMPT and
DPMJET are shown in Fig. [f] (c) to (f) for four cen-
trality classes. The ratios are sensitive to the detailed
shape of the parent rapidity distribution (Fig. @, and
can be quantitatively described by a third-order polyno-
mial with a dominantly linear term (Fig. (7). The relation
between coefficients and the rapidity shift confirm that
the effect of initial state longitudinal asymmetry survives

through the particle production process and the subse-
quent evolution to the observed final state. Experimen-
tally, estimates of the longitudinal asymmetry via mea-
surements of the spectator asymmetry can be used to sys-
tematically investigate the influence of the longitudinal
asymmetry on various observables, and hence may fur-
ther constrain the initial conditions in ultra-relativistic
heavy ion collisions. Recent results from the ALICE col-
laboration confirm that the longitudinal fluctuations af-
fect the pseudorapidity distributions; the effect finds a
simple explanation in terms of the rapidity shift of the
participant zone, and shows a sensitivity to the shape of
the rapidity distribution [2I]. As indicated in Sec. [l de-
termination of an event-by-event CM may be necessary
for a complete description of the evolution of heavy-ion
collisions, to separate the effects of initial state fluctu-
ations from the dynamical evolution. Further attempts
to devise methods for the determination of the CM of
the participant zone in each event, using experimentally
measurable quantities, is under investigation.
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