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Hydro-kinetic theory of thermal fluctuations is applied to a non-conformal relativistic fluid. Solv-
ing the hydro-kinetic equations for an isotropically expanding background we find that hydrody-
namic fluctuations give ultraviolet divergent contributions to the energy-momentum tensor. After
shifting the temperature to account for the energy of non-equilibrium modes, the remaining diver-
gences are renormalized into local parameters, e.g. pressure and bulk viscosity. We also confirm that
the renormalization of the pressure and bulk viscosity is universal by computing them for a Bjorken
expansion. The fluctuation-induced bulk viscosity reflects the non-conformal nature of the equation
of state and is modestly enhanced near the QCD deconfinement temperature.

I. INTRODUCTION

Ultra-relativistic heavy-ion collisions are a major ex-
perimental tool to study nuclear matter in an extremely
hot environment. The energy density in heavy ion col-
lisions at the Relativistic Heavy Ion Collider (RHIC) at
BNL and the Large Hadron Collider (LHC) at CERN
is so high that partonic degrees of freedom are liber-
ated from nucleons and a deconfined quark-gluon plasma
(QGP) is formed. The QGP then expands hydrodynam-
ically as a fluid with very small shear viscosity over en-
tropy ratio η/s = (1–2)/(4π) [1, 2]. The hydrodynamic
paradigm for heavy-ion collisions has been very success-
ful in explaining the various collective flow observables
as dynamical response to event-by-event fluctuations of
the initial fireball shape [1–5].

Recently, attention has been paid to another source of
fluctuations in the hydrodynamic picture, namely, ther-
mal fluctuations [6–12]. Thermal fluctuations are theo-
retically required by the fluctuation-dissipation theorem.
Furthermore, thermal fluctuations play an important role
in systems with a small number of particles and are es-
sential near the critical point, which is the focus of the
ongoing beam energy scan program at RHIC [13].

A unique feature of hydrodynamic fluctuations in
heavy-ion collisions is the rapidly expanding background
flow along the beam direction, which at mid-rapidity is

∗ akamatsu@kern.phys.sci.osaka-u.ac.jp
† a.mazeliauskas@thphys.uni-heidelberg.de
‡ derek.teaney@stonybrook.edu

often modelled as one dimensional Bjorken flow [14]. The
distribution of fluctuations around such evolving back-
ground is characterized by a specific wave number scale
k∗, where the longitudinal expansion and (k-dependent)
relaxation rates balance, and the distribution function
approaches a non-equilibrium steady state. In the previ-
ous publication, we developed an effective kinetic descrip-
tion for conformal hydrodynamic fluctuations around the
characteristic scale k∗ and discussed how to deal with
ultra-violet divergences associated with short wavelength
fluctuations [15]. Using the hydro-kinetic theory we ob-
tained a universal renormalization of the pressure and
shear viscosity in agreement with previous diagrammatic
calculations around a non-expanding background [16, 17].
Furthermore, we applied the hydro-kinetic approach to
the Bjorken expansion, and found the precise coefficient
of the fractional-power-law tail arising due to the out-of-
equilibrium distribution of hydrodynamic fluctuations.

In this paper, we consider a relativistic non-conformal
fluid, for which the speed of sound c2s(T ) 6= 1/3 and the
bulk viscosity is finite. The bulk viscosity determines
the dissipative correction to the pressure in response to
an isotropic expansion or compression and is a measure
for scale symmetry breaking. For example, perturbative
calculations in a high-temperature QGP show that it is
proportional to the square of the scale symmetry break-
ing factors (the QCD running coupling and finite quark
mass) [18]. Also, lattice QCD simulations suggest a cor-
relation between the bulk viscosity and the scale symme-
try breaking realized in the equation of state [19]. Spec-
tral sum rules in the bulk channel also indicate some cor-
relation between the bulk viscosity and a non-conformal
nature of the equation of state [20–23]. Finally, near the
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critical point, the bulk viscosity diverges due to the crit-
ical slowing down [24].

In main part of the paper we apply our hydro-kinetic
theory to a static system perturbed by an isotropic ex-
pansion and compute the response function of the energy-
momentum tensor in the bulk channel. We discus the
case of Bjorken expansion in the Appendix A. In a non-
conformal fluid the two point correlation function of hy-
drodynamic fluctuations contributes to the trace of the
energy momentum tensor, which gives rise to a renormal-
ization of the bulk viscosity:

ζ(T ) = ζ0(T ; Λ) (1)

+
TΛ

18π2


(

1 +
3T

2

dc2s0
dT
− 3c2s0

)2
e0 + p0

ζ0 + 4
3η0

+ 4
(
1− 3c2s0

)2 e0 + p0

2η0

 .
Here, Λ is a UV cut-off for the hydrodynamic fluctuations
and ζ0(T ; Λ) is the bare bulk viscosity. The fluctuation
contribution to the bulk viscosity is positive and pro-
portional to the scale symmetry breaking factors in the
equation of state. It is noteworthy that in order to arrive
to eq. (1), the temperature of the background fluid must
be shifted depending on the cut-off so as to include the
energy of the non-equilibrium hydrodynamic modes (see
Sec. III B for details).

The fluctuation induced renormalization in eq. (1) can
be used to estimate a lower bound of the bulk viscos-
ity of QCD – see ref. [17] for a similar estimate of the
shear viscosity. Very recently the approach was also used
to estimate the bulk viscosity of a non-relativistic cold
Fermi gas, where the renormalization was obtained with
diagrammatic methods [25] (we performed the diagram-
matic calculation for the relativistic non-conformal fluid
in Appendix B). Using the lattice equation of state for
entropy density s(T ) and the speed of sound c2s(T ) [26]
in eq. (1), we calculate the magnitude of bulk viscosity
renormalization by setting ζ0 = 0, and choosing a repre-
sentative values of the kinematic viscosity, η/s = 1/4π,
and the temperature dependent UV cut-off Λ = 2T − 4T
(see Fig. 1). Due to small deviation from scale sym-
metry at high temperatures the bulk viscosity renor-
malization is vanishing small for T � Tc. However,
the degree of non-conformality (c2s − 1

3 )2 peaks around
the pseudo-critical temperature where the bulk viscosity
reaches ζ/s ∼ 0.03− 0.06 at Tc ∼ 150 MeV.

The logic of the estimate in Fig. 1 is the following. The
physical bulk viscosity ζ(T ) (which is independent of Λ)
arises from two contributions: the fluctuations above Λ,
which at weak coupling are dominated by single-particle
excitations, and the fluctuations below Λ, which are de-
scribed by hydrodynamics. We have only included the
hydrodynamic fluctuations here, and thus we expect the
physical bulk viscosity to be larger than the estimate
shown in Fig. 1.

The organization of this paper is as follows. In Sec. II,
we derive the kinetic equations for hydrodynamic fluctua-
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FIG. 1. A fluctuation induced bulk viscosity bound as a
function of temperature, eq. (1), for lattice parametrization
of QCD equation of state and shear viscosity over entropy
η/s = 1/(4π) [26]. The UV bound of hydrodynamic fluctua-
tions Λ is varied between 2T and 4T .

tions for an isotropically expanding non-conformal fluid.
Then in Sec. III, we compute the fluctuation contribu-
tions to the energy-momentum tensor, and discuss the
subtle temperature shift. After the temperature shift,
we renormalize the energy density, the pressure and the
bulk viscosity, and find the finite long time tails for the
weak isotropic expansion. The summary of the paper is
given in Sec. IV. Finally, in Appendix A we repeat the
computation of the temperature shift and the renormal-
ization of hydrodynamic fields for Bjorken expansion. In
Appendix B, we give a diagrammatic derivation for the
bulk viscosity renormalization, which is consistent with
our results by the hydro-kinetic theory.

II. KINETIC EQUATIONS FOR
HYDRODYNAMIC FLUCTUATIONS

In this section we apply the formalism developed in
ref. [15] to a non-conformal fluid under isotropic expan-
sion (or compression). We will follow the same procedure
to derive the relaxation type equations for the two point
correlation functions under the presence of background
perturbations.

The governing equations for non-conformal hydrody-
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namics with noise are given by [27–29]

dµT
µν = 0, Tµν = Tµνideal + Tµνvisc. + Sµν , (2a)

Tµνideal = (e+ p)uµuν + pgµν , (2b)

Tµνvisc. = −ησµν − ζ∆µν∆αβdαuβ , (2c)

σµν = ∆µρ∆νσ(dρuσ + dσuρ −
2

3
gρσdγu

γ), (2d)

∆µν = gµν + uµuν , (2e)

where dµ denotes a covariant derivative using the
“mostly-plus” metric convention. Below we notate the
divergence of the flow velocity as ∇ · u ≡ dµu

µ. The
variance of the stochastic noise is determined by the
fluctuation-dissipation theorem:

〈Sµν(x1)Sαβ(x2)〉

= 2T

η
(
∆µα∆νβ + ∆µβ∆να

)
+

(
ζ − 2

3
η

)
∆µν∆αβ

 δ(x1 − x2)√
− det gµν

. (3)

Differently from the conformal case, both shear η and
bulk ζ viscosities are now present in the equation of mo-
tion and noise correlator.

A. Background fluid

Dynamics of hydrodynamic fluctuations on a back-
ground fluid in a weak isotropic expansion (or compres-
sion) is conveniently studied in the reference frame of the
fluid. In the comoving frame for the isotropic expansion,
the metric is time dependent

ds2 = −dt2 + (1 + h(t))d~x2, (|h(t)| � 1) (4)

and the background fluid satisfies

0 = ė0(t) +
3ḣ

2
[e0(t) + p0(t)] +O(h2). (5)

The second term on the right hand side represents the
change of energy density due to the expansion and the as-
sociated work done by the pressure. Throughout this pa-
per, X0 denotes a quantity X of the background fluid in
a perturbed metric (h 6= 0). As discussed previously [15],
e0(t) and p0(t) denote the background energy density and
pressure from modes with wavenumbers greater than a
cut-off Λ. In Sec. III B we detail how e0 and p0 are re-
lated to the lattice equation of state.

Solving perturbatively in h, the energy density e0(t)
for the background fluid evolves as

e0(t) = ē0 −
3h(t)

2
(ē0 + p̄0) +O(h2), (6)

where ē0 denotes the energy density of the background
fluid in an unperturbed state (h = 0). Again, throughout
this paper X̄0 denotes a quantity X of the background
fluid in an unperturbed state (h = 0).

B. Evolution of hydrodynamic fluctuations

For the expanding background described by eq. (6),
the hydrodynamic fluctuations excited by thermal noise
δe(t,x) ≡ e(t,x) − e0(t) and ~g ≡ (e0(t) + p0(t))~v(t,x)
evolve according to the following equations in k-space:

0 = ∂tδe+ ikigi +
3ḣ

2
(1 + c2s0)δe, (7a)

0 = ∂tgi + ic2s0kiδe+
3ḣ

2
gi

+ γη0(klklδ
j
i − kikj)gj + γζ0kik

jgj + ξi, (7b)

with noise correlation given by

〈ξi(t,k)ξj(t
′,−k′)〉 =

2T0(e0 + p0)√
−det gµν

(2π)3δ(k − k′)δ(t− t′)

×
[
γη0(klklgij − kikj) + γζ0kikj

]
.

(8)

Here γη ≡ η/(e+ p) and γζ ≡ (ζ + 4
3η)/(e+ p) are kine-

matic viscosities. Analysis becomes simpler by utilizing
a vielbein formalism. We introduce new variables

Gî ≡
(

1 +
1

2
h(t)

)
gi, (9a)

Kî ≡
(

1− 1

2
h(t)

)
ki, (9b)

Ξî ≡
(

1 +
1

2
h(t)

)
ξi, (9c)

which give GîGî = gig
i, KîKî = kik

i, and GîKî =
giki = gik

i. We define a four component vector φa ≡
(cs0δe, ~G) of hydrodynamic fluctuations. The equation
of motion for φa is

−φ̇a(t,k) = iLabφb +Dabφb + Ξa + Pabφb, (10a)

L =

(
0 cs0 ~K

cs0 ~K 0

)
, (10b)

D =

(
0 0

0 γη0

(
K2δîĵ −KîKĵ

)
+ γζ0KîKĵ

)
, (10c)

P = ḣ


3
2

(
1 + c̄2s0 + T̄0

2
dc̄2s0
dT̄0

)
2

2
2

 , (10d)

with noise correlation given by

〈Ξa(t,k)Ξb(t
′,−k′)〉

=
2T0(e0 + p0)√
−det gµν

Dab(2π)3δ(k − k′)δ(t− t′). (11)

The matrices L and D originate from ideal and viscous
parts of the hydrodynamic equations respectively, while
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P arises from remaining interactions between the fluctu-
ations and the background fluid. Note that the term

∝ T̄0

2
dc̄2s0
dT0

in P derives from the time dependence of

cs0(T0(t))δe in φ1. In the kinetic regime, L drives the
evolution of φa so that it will be more convenient to an-
alyze eq. (10a) in terms of eigenmodes of L:

(e±)a =
1√
2

(
1

±K̂

)
, (eT1)a =

(
0
~T1

)
, (eT2)a =

(
0
~T2

)
.

(12)

Here K̂ ≡ ~K/|K|, ~T1, and ~T2 form an orthonormal basis.
The subscripts +,− stand for the two sound modes and
T1, T2 for the two transverse diffusive modes. The corre-
sponding eigenvalues are λ± = ±csK and λT1,T2

= 0.

C. Kinetic equations for hydrodynamic fluctuations

The two-point correlation functions of φA ≡ φa (eA)a
with A = +,−, T1, T2 are defined as

〈φA(t,k)φB(t,−k′)〉 ≡ NAB(t,k)(2π)3δ(k − k′). (13)

We will determine the equations of motion for NAB(t,k)
using the formalism of ref. [15]. In the rotating wave ap-
proximation, the off-diagonal part of the density matrix
NAB can be neglected because of its rapid phase rota-
tion1, while the diagonal part evolves according to

ṄAA = −2DAA
[
NAA −

T0(e0 + p0)√
−det gµν

]
+ 2PAANAA,

(14)

where we have defined DAA ≡ (eA)aDab(eA)b and simi-
larly PAA. The isotropic system does not distinguish the
two transverse modes T1 and T2, and thus we only have
two independent kinetic equations: one for the sound
modes (L = ++,−−), and one for the transverse modes
(T = T1T1, T2T2). Using the matrices and eigenvectors
of the previous section, eq. (14) evaluates to

ṄL = −γζ0K2

[
NL −

T0(e0 + p0)√
− det gµν

]

− ḣ

2

(
3c̄2s0 +

3T̄0

2

dc̄2s0
dT̄0

+ 7

)
NL, (15a)

ṄT = −2γη0K
2

[
NT −

T0(e0 + p0)√
−det gµν

]
− 4ḣNT . (15b)

The kinetic equations (15a) and (15b) describe how the
distribution of fluctuations φA evolves on the isotropi-
cally expanding background. Perturbative solutions of

1 NT1T2
has a stationary phase but vanishes due to the rotational

symmetry.

the kinetic equations for |h| � 1 take the form

NL/T (t,k) = Neq(t) + δNL/T (t,k) +O(h2), (16)

where the equilibrium contribution is

Neq(t) =
T0(e0 + p0)√
−det gµν

'
[
1− (3 + 3c̄2s0)h(t)

]
T̄0(ē0 + p̄0), (17)

and the non-equilibrium correction δNL/T is

δNL(ω,k) =
1
2 iωh(ω)

−iω + γ̄ζ0K2
C̄ζ0T̄0(ē0 + p̄0), (18a)

δNT (ω,k) =
iωh(ω)

−iω + 2γ̄η0K2
C̄η0T̄0(ē0 + p̄0). (18b)

Here and below we have defined

Cζ(T ) ≡ 1 +
3T

2

dc2s
dT
− 3c2s, (19a)

Cη(T ) ≡ 1− 3c2s. (19b)

Note that when the background fluid is scale invariant
e0 = 3p0, the corrections δNL/T vanish. Therefore in
conformal case, the isotropic expansion or compression
does not drive the hydrodynamic fluctuations from the
equilibrium distribution Neq(t) given by eq. (17).

For k ∼ k∗ the distribution of fluctuations in eq. (18)
is not well characterized by the time derivatives of h(t).
However, at large k by the distribution approaches equi-
librium with calculable first derivative corrections2

δNL(t,k) ' −3C̄ζ0T̄0(ē0 + p̄0)

γ̄ζ0K2
∇ · u, (20a)

δNT (t,k) ' −3C̄η0T̄0(ē0 + p̄0)

2γ̄η0K2
∇ · u. (20b)

It is these corrections ∝ ∇ · u/K2 which are responsi-
ble for the renormalization of the bulk viscosity and the
temperature shift described in Sect. III.

III. ENERGY-MOMENTUM TENSOR WITH
NONLINEAR FLUCTUATIONS

In this section we compute the non-linear contribu-
tions of hydrodynamic fluctuations to the statistically
averaged energy momentum tensor 〈Tµν〉. The main dif-
ference from the conformal case [15] is additional con-
tributions to the averaged energy density 〈T tt〉, which
are absorbed by a shift in the background temperature
T0(t,Λ).

2 In the current setup ∇ · u = 3
2
ḣ.
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A. Averaged energy-momentum tensor

The averaged stress tensor consists of contributions
from the background fluid and from the two-point func-
tions of the hydrodynamic fluctuations:

〈T ij〉 = [1− h(t)] p0δ
ij − 3

2
ḣ(t)ζ0δ

ij + T ijfluct, (21a)

T ijfluct '
1− h(t)

e0 + p0

〈Gî(t,x)Gĵ(t,x)〉

+ δij
T0

2

dc2s0
dT0
〈(cs0δe(t,x))2〉

 .
(21b)

The energy density fluctuations ∝ 〈(cs0δe(t,x))2〉 origi-

nate from the second order derivative d2p0
de20

, which is finite

for a non-conformal equation of state. The trace of the
stress tensor from the fluctuations is determined by the
two-point functions NL/T :

T iifluct =
1− h(t)

e0 + p0

∫
d3k

(2π)3
(22)

×
[(

1 +
3T0

2

dc2s0
dT0

)
NL(t,k) + 2NT (t,k)

]
.

This integral is divergent and is regularized by introduc-
ing a cut off Λ for K (not k). Substituting the solution
(16), we write the fluctuating contribution as a sum of
two terms

T iifluct(t,Λ) = T iiNeq
(t; Λ) + T iiδN (t; Λ). (23)

The first term arises from equilibrium fluctuations Neq(t)
(eq. (17))

T iiNeq
(t; Λ) ≡ [1− h(t)]

(
1 +

T0

2

dc2s0
dT0

)
T0Λ3

2π2
, (24)

while the second term arises from the non-equilibrium
distribution functions, δNL/T in eq. (18). In frequency
space this non-equilibrium contribution reads

T iiδN (ω; Λ) ≡h(ω)T̄0

4π2

(
1 +

3T̄0

2

dc̄2s0
dT̄0

)
C̄ζ0f(ω, γ̄ζ0,Λ)

+
h(ω)T̄0

π2
C̄η0f(ω, 2γ̄η0,Λ). (25)

Here we have defined a function

f(ω, γ,Λ) ≡
∫ Λ→∞

0

p2dp
iω

−iω + γp2
(26)

=
iω

γ
Λ−

( |ω|
γ

)3/2
π

2
√

2
(1 + isgn(ω)).

Next, we calculate the averaged energy density in a
similar manner. It also consists of contributions from
the background fluid and from the two-point functions of

the fluctuations:

〈T tt〉 = e0 + T ttfluct, (27a)

T ttfluct =
〈~G2〉
e0 + p0

(27b)

=
1

e0 + p0

∫
d3k

(2π)3
[NL(t,k) + 2NT (t,k)] ,

The contribution from the fluctuations is again divergent
and we regularize with the same cut-off Λ on K. Substi-
tuting the perturbative solutions (16), we find

T ttfluct(t; Λ) =T ttNeq
(t; Λ) + T ttδN (t; Λ), (28)

where the first term arises from the equilibrium distribu-
tion Neq (eq. (17))

T ttNeq
(t; Λ) ≡ T0Λ3

2π2
, (29)

while the second term (in frequency space) arises from
δNL/T

T ttδN (ω; Λ) ≡h(ω)T̄0

4π2
C̄ζ0f(ω, γ̄ζ0,Λ)

+
h(ω)T̄0

π2
C̄η0f(ω, 2γ̄η0,Λ). (30)

As will be described in the next section, the diver-
gences in T iifluct and T ttfluct are absorbed by renormalizing
the background fields, e.g. p0 and ζ0. This renormal-
ization procedure requires a clearer understanding how
these bare parameters are defined, and how they depend
on the cut-off Λ.

B. Temperature shift

The bare parameters e0, p0, T0, ζ0, . . . are deter-
mined by modes (such as particle-like excitations) with
wavenumbers above the cut-off, k > Λ, which are not ex-
plicitly propagated by the statistical hydrodynamic sys-
tem. The goal of this section is to carefully explain how
these parameters are defined and related to the physical
equation of state e(T ), p(T ) (from lattice QCD) and the
cut-off Λ.

First consider the density matrix for non-
hydrodynamic modes with wavenumbers above the
cut-off k > Λ. When the system is driven slightly
out of equilibrium by the periodic compression and
expansion, the density matrix for these modes ρ(Λ)
can be decomposed as an equilibrium density matrix
ρeq(T0; Λ) and a non-equilibrium correction which is well
characterized by a single gradient δρneq(Λ) ∝ ∇ · u

ρ(Λ) = ρeq(T0; Λ) + δρneq(Λ) . (31)

The temperature parameter T0 (which will depend on
time and Λ) is chosen so that the average energy density
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above the cut-off e0(t,Λ) ≡ 〈T tt(t)〉k>Λ equals the energy
from the equilibrium density matrix ρeq(T0; Λ) alone

e0(t,Λ) ≡
〈
T tt(t)

〉
k>Λ

= eeq,0(T0(t; Λ); Λ) , (32)

i.e. T0(t; Λ) is adjusted so that the energy moment asso-
ciated with δρneq(Λ) is zero δeneq(t; Λ) = 0. (Otherwise
the rhs of eq. (32) would have a correction proportional
to ∇ · u). Because of the constraint in eq. (32) we can
drop the “eq” label below, i.e.

e0(t,Λ) = eeq,0(T0(t; Λ); Λ) = e0(T0(t; Λ); Λ). (33)

In kinetic theory a similar constraint is imposed by re-
quiring that the viscous correction to the distribution
function δfbulk(p) does not change the energy in the
system [18, 22]. Once this prescription for T0(t; Λ) is
adopted, the stress computed with the density matrix
ρ(Λ) is given by3〈

T ij
〉
k>Λ

= (1− h) p0(T0; Λ) δij − ζ0(T0; Λ)∇ · u δij ,
(34)

where the partial pressure p0(T0; Λ) from modes above
Λ is determined by the equilibrium density matrix,
ρeq(T0; Λ), while the bulk term comes from the viscous
correction, δρneq(Λ). This is the parameterization of the
stress tensor (for k > Λ) that was used in eq. (2). The
spatial stress tensor determines the bulk viscous correc-
tion ζ0∇ · u only after the parameter T0(t; Λ) is defined
according to the Landau constraint in eq. (32) [18, 22].

Later in this section we will define a temperature T (t)
by imposing the Landau constraint on the whole system
(including the energy of hydrodynamic fluctuations be-
low the cut-off), and this will lead to a difference between
T0(t; Λ) and the cutoff independent temperature T (t).

Now we will relate the partial energy density and pres-
sure, e0(T0; Λ) and p0(T0; Λ), to the equilibrium energy
density and pressure, e(T0) and p(T0), as measured by
lattice QCD. Indeed, e0 and p0 are cut-off dependent
quantities and are determined by an equilibrium den-
sity matrix ρeq(T0; Λ) which excludes equilibrium hydro-
dynamic fluctuations below the scale Λ. The contribu-
tion of such equilibrium hydrodynamic fluctuations to
the energy density and pressure are given by eq. (29)
and eq. (24) respectively, and thus the physical energy
density and pressure are:

e(T0) =e0(T0; Λ) +
T0Λ3

2π2
, (35a)

p(T0) =p0(T0; Λ) +

(
1 +

T0

2

dc2s
dT0

)
T0Λ3

6π2
. (35b)

At a practical level these equations serve to define the
e0 and p0 parameters that should be used in a stochastic
hydro-code with a given cut-off Λ and physical equation
of state e(T0), p(T0).

3 In the current setup ∇ · u = 3
2
ḣ.

As discussed above, the temperature T (t) for the com-
plete system (background+fluctuations) is adjusted so
that the energy density calculated from the lattice equa-
tion of state e(T (t)) matches the energy of the partially
equilibrated system 〈T tt(t)〉〈

T tt(t)
〉

= e(T (t)) . (36)

After imposing this constraint, the time dependent stress〈
T ii(t)

〉
of the driven system will deviate from its equi-

librium expectation, 3 p(T (t)) (1− h(t)), and these devi-
ations are described (up to long-time tails) by the bulk
viscosity. Combining eqs. (27a),(28),(29), and (35a), the
energy of the background+fluctuations is

e(T (t)) = e(T0(t; Λ)) + T ttδN (t; Λ). (37)

where T ttδN (t; Λ) was defined in eq. (30). Thus, the tem-
perature for the whole system T (t) (which is independent
of the cut-off) is related to the temperature parameter of
the subsystem T0(t; Λ) by a small shift ∆T

T0(t; Λ) = T (t) + ∆T (t; Λ) , (38)

so that eq. (37) is satisfied. The temperature shift is
given in frequency space by

− de
dT

∆T (ω; Λ) =
h(ω)T̄

4π2
C̄ζ0f(ω, γ̄ζ0,Λ) (39)

+
h(ω)T̄

π2
C̄η0f(ω, 2γ̄η0,Λ).

and clearly depends on the cut-off since the T0(t; Λ) was
defined with respect to a specific subsystem labelled by
Λ. The temperature shift in the time domain takes the
form

− de

dT
∆T (t; Λ) = − T̄Λ

6π2

[
C̄ζ0
γ̄ζ0

+ 4
C̄η0

2γ̄η0

]
∇ · u

+ finite , (40)

where ∇ · u = 3
2 ḣ for this example. The divergent piece

of the temperature shift is universal, but the finite cor-
rections are not. This is verified by explicit calculation
of the temperature shift for the Bjorken background in
Appendix A. From practical perspective, eqs. (38) and
(40) define how T0 must be chosen for a stochastic hydro
code (with a specified cut-off Λ) to reproduce the correct
physical bulk viscosity for long wavelength hydrodynamic
modes and a physical equation of state. This is detailed
in the next section4.

4 In defining T0 from T , Λ, and ∇ · u, the finite remainder in
eq. (40) can be chosen in any convenient way.
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C. Renormalized background and long time tails

Once the temperature shift ∆T (t; Λ) is obtained,
the remaining divergences in T iifluct can be absorbed
by pressure and bulk viscosity renormalization. Using
eqs. (21a),(23), (24), and (35b), the statistically averaged
spatial stress tensor trace reads

〈T ii〉(t) = 3 [1− h(t)] p(T0(t; Λ))

− 9

2
ḣ(t)ζ0 + T iiδN (t; Λ). (41)

where T iiδN is given in eq. (25).
Now we will shift the temperature parameter T0 in the

pressure to the physical temperature T (t) determined by
Landau matching (37), p(T0) = p(T ) + p′(T )∆T . The
fluctuation contribution T iiδN (t; Λ) and the temperature
parameter ∆T (t; Λ) both diverge as −iωh(ω)Λ. These
two terms gracefully combine to produce a positive def-
inite renormalization of bulk viscosity ζ0 in the term
− 9

2 ḣ(t)ζ

ζ(T ) = ζ0(T ; Λ) +
TΛ

18π2

[
C2
ζ0

γζ0
+ 4

C2
η0

2γη0

]
. (42)

In this step the coefficients in front of the linear diver-
gences in ∆T and T iiδN have neatly come together to com-
plete the squares of Cζ0 and Cη0 defined by eq. (19). Thus
the renormalization of the bulk viscosity is positive and
only necessary in a system with broken scale symmetry.
We have confirmed that the bulk viscosity renormaliza-
tion is universal by computing it for a Bjorken expanding
background (see Appendix A).

Once all divergences are absorbed by renormalization,
the stress tensor becomes finite and cut-off independent.
In the presence of background expansion, there are re-
maining finite corrections from the fluctuations in T iiδN .
The total stress tensor is

〈T ii〉(t) = 3 [1− h(t)] p(T (t))− 9

2
ḣ(t)ζ(T (t))

−
∫
dω

2π
e−iωth(ω)|ω|3/2 π

2
√

2
(1 + isgn(ω))

× T̄

4π2

[
C̄2
ζ0

(
1

γ̄ζ0

)3/2

+ 4C̄2
η0

(
1

2γ̄η0

)3/2
]
,

and has a term with |ω|3/2, which cannot be expressed by
local time derivatives. This term is not analytic at ω = 0
and derives from the out-of-equilibrium fluctuations in
the kinetic regime k ∼ k∗.

With 〈T tt〉 and 〈T ii〉 known, we can write down the
hydrodynamic equations for statistically averaged hydro-
dynamics with noise

0 =
d

dt
〈T tt〉+

3

2
ḣ〈T tt〉+

1

2
ḣ〈T ii〉. (43)

Since the non-analytic term in 〈T ii〉 is of O(h), the rest
frame energy density e(t) evolves according to

0 = ė(t) +
3ḣ

2
[e(t) + p(t)] , (44)

and we obtain the solution:

e(t) = ē− 3h(t)

2
(ē+ p̄), (45)

which will be used to calculate the response function in
the next section.

D. Response function in the bulk channel

The non-analytic behavior in ω is also present in the
response function in the bulk channel. In the frequency
space, the linear response of stress tensor to the external
gravitational field h(ω) is given by

〈T ii〉(ω) = Gii,jjR (ω,k = 0)
1

2
h(ω). (46)

The response function Gii,jjR is defined by

Gii,jjR (t,x) ≡ iθ(t)
〈[
T̂ ii(t,x), T̂ jj(0,0)

]〉
, (47a)

Gii,jjR (ω,k) =

∫
d4xGii,jjR (t,x)eiωt−ik·x. (47b)

Then from our results, the response function Gii,jjR (ω) ≡
Gii,jjR (ω,k = 0) is obtained as

Gii,jjR (ω) =
δ

δh(ω)

[
2〈T ii〉(ω)

] ∣∣∣
h=0

= −6

(
p̄+

3

2
c̄2s(ē+ p̄)

)
+ 9iωζ̄ − 1 + isgn(ω)

4
√

2π
|ω|3/2T̄

×
[
C̄2
ζ

(
1

γ̄ζ

)3/2

+ 4C̄2
η

(
1

2γ̄η

)3/2
]
, (48)

and the spectral function as

ρii,jj(ω) = 2ImGii,jjR (ω) (49)

= 18ωζ̄ − ω|ω|1/2T̄
2
√

2π

[
C̄2
ζ

(
1

γ̄ζ

)3/2

+ 4C̄2
η

(
1

2γ̄η

)3/2
]
.

This spectral function is consistent with a previous dia-
grammatic computation of the symmetrized correlation
function Cii,jj (see the Appendix of ref. [16]) using the
fluctuation-dissipation relation:5

ρii,jj(ω) =
ω

T
Cii,jj(ω,k = 0), (50a)

Cii,jj(t,x) ≡ 1

2

〈{
T̂ ii(t,x), T̂ jj(0,0)

}〉
conn

. (50b)

5 The term 18ωζ̄ in ρii,jj(ω) corresponds to a correlation of ther-
mal noise in the stress tensor, which is not explicitly written in
the calculation of Cii,jj [16].
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We also computed Gii,jjR (ω) diagrammatically in Ap-
pendix B and found identical results to eqs. (48) and (42)
up to a contact term6.

IV. SUMMARY

In this paper we applied the kinetic theory of hydro-
dynamic fluctuations developed in ref. [15] to a relativis-
tic non-conformal fluid. We calculated the contribution
of out-of-equilibrium hydrodynamic fluctuations to the
energy momentum tensor, which renormalize the back-
ground hydrodynamic fields and the bulk viscosity ζ.
The bulk viscosity renormalization is proportional to the
scaling symmetry breaking in the equation of state and
can be used to estimate the minimal bulk viscosity value
in a hot QCD medium.

In the main body of the paper, we considered a non-
conformal charge-neutral fluid, which is driven out of
equilibrium by a weak isotropic expansion (or compres-
sion). Analogous calculations for a Bjorken expanding
system is summarized in the appendix. The relaxation
of hydrodynamic fluctuations to equilibrium is disturbed
by the expansion and the deviation of two-point corre-
lations from equilibrium becomes appreciable for wave-
lengths k <∼ k∗ ∼

√
ω/γη,ζ , where ω is the frequency

of the background expansion and k∗ defines the hydro-
kinetic regime.

We derive the hydro-kinetic equations for the two-point
correlation functionsNAA(t,k), eq. (13), of energy δe and
momentum ~g density fluctuations in the presence of the
expansion. The non-linear fluctuations NAA(t,k) con-
tribute to the statistically averaged energy-momentum
tensor 〈Tµν〉. The divergent part of the fluctuation con-
tributions is regulated by an ultraviolet cut-off Λ. The
cut-off dependences of Tµνfluct is (partially) absorbed by a
universal renormalization of the background energy den-
sity e0, the pressure p0 and the bulk viscosity ζ0 (the same
terms are found for the far-from-equilibrium Bjorken ex-

6 Deviation by a contact term is permitted due to different defi-
nitions of the two-point functions [23]

pansion7, see Appendix A):

e(T ) = e0(T ; Λ) +
TΛ3

2π2
, (51a)

p(T ) = p0(T ; Λ) +

(
1 +

T

2

dc2s0
dT

)
TΛ3

6π2
, (51b)

ζ(T ) = ζ0(T ; Λ) (51c)

+
TΛ

18π2


(

1 +
3T

2

dc2s0
dT
− 3c2s0

)2
e0 + p0

ζ0 + 4
3η0

+ 4
(
1− 3c2s0

)2 e0 + p0

2η0

 .
The bare unrenormalized background quantities reflect
the physical properties of the modes above the cut-off
Λ. The hydrodynamic fluctuations below the cut-off are
dynamical in the hydrodynamics with noise and make
an evolving contribution to the energy momentum ten-
sor. We find that the renormalization of the bulk vis-
cosity is proportional to the non-conformality of the
equation of state, e.g. (1 − 3c2s0)2, in agreement with
other estimates [18–23]. Using the parametrization of
the equation of state from the lattice QCD simulations,
we find that the fluctuation induced bulk viscosity is
modestly enhanced around the QCD pseudo-critical tem-
perature Tc ∼ 150 MeV, where deviations from the con-
formality are the largest (see Fig. 1) [26]. A diagram-
matic derivation of similar bound for bulk viscosity for
a non-relativistic cold Fermi gas was recently presented
in ref. [25] and we performed the calculation for the rel-
ativistic non-conformal fluid in Appendix B confirming
the bulk viscosity renormalization, eq. (51c).

In a non-conformal system, the contribution to the en-
ergy density from the hydrodynamic fluctuations T ttfluct
is not completely accounted for by the equilibrium en-
ergy density of hydrodynamic modes (the cubic term in
eq. (51a)). The additional cut-off dependent contribu-
tions are proportional to the divergence of the flow ve-
locity ∇ · u and are removed by a universal shift in the
background temperature T0 = T (Λ) + ∆T (Λ), eq. (40).
Once the cut-off dependence in Tµνfluct is completely ab-
sorbed, the remaining finite contribution has a fractional
power in the gradient expansion (∝ ω3/2) and makes
an essential difference from hydrodynamics without noise
(see eq. (43)). In the symmetrized correlation function of
the energy-momentum tensor Cii,jj , these terms become
proportional to ω1/2 and in coordinate space only decay
with a power law tail ∝ t−3/2, and therefore are called the

7 Since Bjorken expansion is anisotropic, there is an additional
linear divergence which renormalizes the background shear vis-
cosity (A14d):

η(T ) = η0(T ; Λ) +
TΛ

30π2

[
e0 + p0

ζ0 + 4
3
η0

+
7(e0 + p0)

2η0

]
.

This is a generalization from the conformal case [15, 17].
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long-time tails. Comparing the spectral functions ρii,jj ,
we find that our computation using the hydro-kinetic the-
ory is consistent with the previous diagrammatic calcu-
lations [16].

In this publication we extended our previous work on
hydro-kinetic theory to non-conformal systems close to
equilibrium and undergoing a Bjorken expansion. A nat-
ural next step is to consider more general background
evolution and systems with the net baryon number. It
would be particularly rewarding to extend the hydro-
kinetic theory to critical fluctuations around the critical
point, which is the focus of the beam energy scan pro-
gram at RHIC.
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Appendix A: Bjorken background

In this section we generalize the hydro-kinetic equa-
tions for Bjorken expansion [15] to a non-conformal fluid.
In the case of a Bjorken expansion, the space-time metric
of a comoving frame is given by

ds2 = −dτ2 + dx2 + dy2 + τ2dη2, (A1)

on which a background solution satisfies

de0

dτ
= −e0 + p0

τ

[
1− γζ0

τ
+ · · ·

]
, (A2)

where on the right hand side we keep only the first-order
term in the hydrodynamic gradient expansion. The evo-
lution of the fluctuations e = e0 + δe, ~g ≡ (e0 + p0)~v is
concisely expressed by introducing the vielbein variables,

~G = (Gx̂, Gŷ, Gẑ) ≡ (gx, gy, τgη), (A3a)

~K = (Kx̂,Kŷ,Kẑ) ≡ (kx, ky, kη/τ), (A3b)

~Ξ = (Ξx̂,Ξŷ,Ξẑ) ≡ (ξx, ξy, τξη), (A3c)

with which we define φa ≡ (cs0δe, ~G). The evolution
equation for φa is of the same form with the weak metric
perturbation eq. (10a):

− φ̇a(τ,k) = iLabφb +Dabφb + Ξa + Pabφb, (A4a)

〈Ξa(τ,k)Ξb(τ
′,−k′)〉 = 2Dab

T0(e0 + p0)

τ

× (2π)3δ(k − k′)δ(τ − τ ′), (A4b)

with L and D given by eqs. (10b) and (10c). The coupling
to the background P takes a form specific to the Bjorken
flow:

P =
1

τ


1 + c2s0 + T0

2
dc2s0
dT0

1
1

2

 . (A5)

The four modes of the fluctuations φA ≡ φa(eA)a (A =
+,−, T1, T2) are defined using eA’s in eq. (12), the eigen-
vectors of L. They are given in the polar coordinates by
the following real orthonormal vectors:

K̂ ≡ (sin θK cosϕK , sin θK sinϕK , cos θK), (A6a)

~T1 ≡ (− sinϕK , cosϕK , 0), (A6b)

~T2 ≡ (cos θK cosϕK , cos θK sinϕK ,− sin θK). (A6c)

The evolution of the two-point functions eq. (14) is given
by

∂

∂τ
N±± =− γζ0K2

[
N±± −

T0(e0 + p0)

τ

]
(A7a)

− 1

τ

[
2 + c2s0 +

T0

2

dc2s0
dT0

+ cos2 θK

]
N±±,

∂

∂τ
NT1T1

=− 2γη0K
2

[
NT1T1

− T0(e0 + p0)

τ

]
(A7b)

− 2

τ
NT1T1 ,

∂

∂τ
NT2T2 =− 2γη0K

2

[
NT2T2 −

T0(e0 + p0)

τ

]
(A7c)

− 2

τ

[
1 + sin2 θK

]
NT2T2 .

The only difference from a conformal case [15] is a term
∝ dc2s0/dT0 in eq. (A7a). The solutions at large K behave
asymptotically as

N±±
T0(e0 + p0)/τ

= 1 +
c2s0 − T0

2
dc2s0
dT0
− cos2 θK

γζ0K2τ
+ · · · ,

(A8a)

NT1T1

T0(e0 + p0)/τ
= 1 +

c2s0
γη0K2τ

+ · · · , (A8b)

NT2T2

T0(e0 + p0)/τ
= 1 +

c2s0 − sin2 θK
γη0K2τ

+ · · · . (A8c)

The total energy-momentum tensor is calculated from
two contributions: the background part and the fluctua-
tion part:

〈T ττ 〉 = e0 + T ττfluct, (A9a)

〈T xx〉 = p0 −
1

τ

(
ζ0 −

2η0

3

)
+ T xxfluct, (A9b)

〈T yy〉 = p0 −
1

τ

(
ζ0 −

2η0

3

)
+ T yyfluct, (A9c)

〈τ2T ηη〉 = p0 −
1

τ

(
ζ0 +

4η0

3

)
+ τ2T ηηfluct, (A9d)
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with

T ττfluct =
〈~G2〉
e0 + p0

, (A10a)

T xxfluct =
〈(Gx̂)2〉+ T0

2
dc2s0
dT0
〈(cs0δe)2〉

e0 + p0
, (A10b)

T yyfluct =
〈(Gŷ)2〉+ T0

2
dc2s0
dT0
〈(cs0δe)2〉

e0 + p0
, (A10c)

τ2T ηηfluct =
〈(Gẑ)2〉+ T0

2
dc2s0
dT0
〈(cs0δe)2〉

e0 + p0
. (A10d)

The K-space integrals are ultraviolet divergent and they
are regularized by a cut-off at |K| = Λ. The result is

T ττfluct =
T0Λ3

2π2
− T0Λ

6π2τ


(

1 +
3T0

2

dc2s0
dT0

− 3c2s0

)
1

γζ0

+ 4
(
1− 3c2s0

) 1

2γη0


+O(Λ0), (A11a)

T xxfluct = T yyfluct

=

(
1 +

T0

2

dc2s0
dT0

)
T0Λ3

6π2

− T0Λ

6π2τ



T0

2

dc2s0
dT0

1

γζ0

(
1 +

3T0

2

dc2s0
dT0

− 3c2s0

)
+

1

γζ0

(
1

5
+
T0

2

dc2s0
dT0

− c2s0
)

+
1

2γη0

(
2

5
− 4c2s0

)


+O(Λ0), (A11b)

τ2T ηηfluct =

(
1 +

T0

2

dc2s0
dT0

)
T0Λ3

6π2

− T0Λ

6π2τ



T0

2

dc2s0
dT0

1

γζ0

(
1 +

3T0

2

dc2s0
dT0

− 3c2s0

)
1

γζ0

(
3

5
+
T0

2

dc2s0
dT0

− c2s0
)

+
1

2γη0

(
16

5
− 4c2s0

)


+O(Λ0). (A11c)

The linear divergence in T ττfluct is absorbed by shifting
the background temperature T0(Λ) = T + ∆T (Λ):

de0

dT0
∆T =

TΛ

6π2τ


(

1 +
3T0

2

dc2s0
dT0

− 3c2s0

)
1

γζ0

+ 4
(
1− 3c2s0

) 1

2γη0

+O(Λ0).

(A12)

Noting that ∇ · u = 1/τ for a Bjorken expansion, we see
that this result agrees with eq. (40), confirming that the
divergent piece of the temperature shift is universal.

With this temperature shift, the energy-momentum
tensor is

〈T ττ 〉 = e0(T ; Λ) +
TΛ3

2π2
, (A13a)

1

3
〈T xx + T yy + τ2T ηη〉 (A13b)

= p0(T ; Λ) +

(
1 +

T

2

dc2s0
dT

)
TΛ3

6π2

− ζ0(T ; Λ)

τ
− TΛ

18π2τ

[
C2
ζ0

γζ0
+ 4

C2
η0

2γη0

]
+O(Λ0),

1

4
〈T xx + T yy − 2T ηη〉 (A13c)

=
η0(T ; Λ)

τ
+

TΛ

30π2τ

[
1

γζ0
+

7

2γη0

]
+O(Λ0),

and energy density, pressure, and viscosities are renor-
malized as

e(T ) = e0(T ; Λ) +
TΛ3

2π2
, (A14a)

p(T ) = p0(T ; Λ) +

(
1 +

T

2

dc2s0
dT

)
TΛ3

6π2
, (A14b)

ζ(T ) = ζ0(T ; Λ) (A14c)

+
TΛ

18π2


(

1 +
3T

2

dc2s0
dT
− 3c2s0

)2
e0 + p0

ζ0 + 4
3η0

+ 4
(
1− 3c2s0

)2 e0 + p0

2η0

 ,
η(T ) = η0(T ; Λ) +

TΛ

30π2

[
e0 + p0

ζ0 + 4
3η0

+
7(e0 + p0)

2η0

]
.

(A14d)

By comparing with the renormalization in a weak metric
perturbation eq. (51), we can conclude that background
field renormalization is also independent of background
expansion.

Appendix B: Long-time tails in diagrammatic
approach

In this section we re-derive the retarded Green func-
tion for the trace of energy momentum tensor, eq. (48),
which was discussed in Sec. III D, using a diagramatic
one-loop calculation. This approach was pioneered in
ref. [16] for the symmetric stress-stress correlations and
applied to conformal and non-relativistic fluids respec-
tively in ref. [17] and ref. [25].

First we find the symmetrized Green functions for hy-
drodynamic fields using the equations of motion coupled
to thermal noise. For a static fluid, the linearized equa-
tions of motion can be Fourier transformed in frequency
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space from eq. (7) to

− iωδw + icsk
ivi = 0, (B1a)

− iωvi + icsk
iδw

+ γηk
2(δij − k̂ik̂j)vj + γζk

2k̂ik̂jv
j + ξ̃i = 0, (B1b)〈

ξ̃i(ω,k)ξ̃j(−ω′,−k′)
〉

=
2T

e+ p
(2π)4δ(ω − ω′)δ(k − k′)

× [γηk
2(δij − k̂ik̂j) + γζk

2k̂ik̂j ], (B1c)

where for simplicity we normalize perturbations and
noise by enthalpy:

δw(ω,k) =
csδe(ω,k)

e+ p
, vi(ω,k) =

gi(ω,k)

e+ p
,

ξ̃i(ω,k) =
ξi(ω,k)

e+ p
. (B2)

The symmetrized correlation function, i.e. the sym-
metrized Green function, is then defined as

Gδw,δwS (ω,k) =

∫
dω′

2π

d3k′

(2π)3

〈
1

2
{δw(ω,k), δw(−ω′,−k′)}

〉
.

(B3)

Using the equations of motion for perturbations and the
variance of noise, eqs. B1, one easily obtains the sym-
metrized correlator between different combinations of hy-
drodynamic fields:

Gδw,δwS (ω,k) =
2T

e+ p
c2sk

2Dsound
S , (B4a)

Gv
i,vj

S (ω,k) =
2T

e+ p
ω2
[
(δij − k̂ik̂j)Dshear

S + k̂ik̂jDsound
S

]
,

(B4b)

Gv
i,δw
S (ω,k) = Gδw,v

i

S (ω,k) =
2T

e+ p
csk

iωDsound
S ,

(B4c)

where common terms are given by

Dshear
S =

γηk
2

ω4 + (γηk2ω)2
, (B5a)

Dsound
S =

γζk
2

(ω2 − c2sk2)2 + (γζk2ω)2
. (B5b)

The retarded and symmetrized Green functions satisfies
the classical dissipation-fluctuation theorem [27]

GS(ω,k) =
2T

ω
ImGR(ω,k) (B6)

and we find the retarded Green functions by contour in-
tegration according to Kramers–Kronig relations [27]8

GR(ω,k) =

∫
dω′

2π

2 ImGR(ω′,k)

ω′ − ω − iε . (B7)

8 In general the Kramers-Kronig relation holds only up to sub-
tractions of the ultraviolet contribution from the spectral func-
tion. Therefore, strictly speaking, the real part of of the retarded
Green function GR cannot be fixed within hydrodynamic theory.

The retarded Green functions for hydrodynamic fields δw
and ~v are

Gδw,δwR (ω,k) =
−c2sk2

e+ p
Dsound
R , (B8a)

Gv
i,vj

R (ω,k) =
1

e+ p

[
(δij − k̂ik̂j)Dshear

R (γηk
2)

+k̂ik̂jDsound
R (−c2sk2 + iγζk

2ω)
]
, (B8b)

Gv
i,δw
R (ω,k) = Gδw,v

i

R (ω,k) =
−cskiω
e+ p

Dsound
R , (B8c)

with

Dshear
R =

1

−iω + γηk2
, (B9a)

Dsound
R =

1

ω2 − c2sk2 + iγζk2ω
. (B9b)

Similarly to the procedure in ref. [16], we expand the
energy momentum tensor to quadratic order in pertur-
bations (but neglect the charge density fluctuations)

c2sT
00

e+ p
=

c2se

e+ p
+ csδw + c2s~v

2, (B10a)

T ij

e+ p
= δij

[
p

e+ p
+ csδw +

1

2
T
dc2s
dT

(δw)2

]
+ vivj +

Sij

e+ p
,

(B10b)

where Sij denotes the thermal noise in eq. (2) 9. We
compute correlation function for

T̃ ii

e+ p
≡ T ii − 3c2sT

00

e+ p
(B11)

= 3

[
p− c2se
e+ p

+
1

2
T
dc2s
dT

(δw)2

]
+ (1− 3c2s)~v

2 +
Sii

e+ p
,

where 3c2sT
00 term is subtracted to get rid of the sound

peak singularity. Since T 00 is a conserved density, the
subtraction does not modify the correlation function of
T ii at k → 0 so that hereafter we refer to T̃ ii as T ii.

Then the retarded Green functions for energy momen-
tum tensor eq. (47) is

GT
ii,T jj

R (ω,k = 0)

9(e+ p)2
=

iωζ

(e+ p)2
+

(
1

3
− c2s

)2

G~v
2,~v2

R (ω,0)

+

(
1

2
T
dc2s
dT

)2

Gδw
2,δw2

R (ω,0)

+ 2

(
1

3
− c2s

)(
1

2
T
dc2s
dT

)
Gδw

2,~v2

R (ω,0). (B12)

9 By taking averages over eq. (B10), we can easily find the renor-
malization of energy density and pressure eq. (51).
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To evaluate eq. (B12), we need to express the Green
function of composite fields

Ga
iaj ,akal

R (t,x) = iθ(t)
〈[
aiaj(t,x), akal(0, 0)

]〉
, (B13)

in terms of two point functions of individual fields

Ga
iaj ,akal

R (ω,k = 0) =

∫
dω

2π

∫
d3k

(2π)3[
Ga

iak

S (ω′,k)Ga
jal

R (ω − ω′,−k)

+Ga
ial

S (ω′,k)Ga
jak

R (ω − ω′,−k)

+Ga
iak

R (ω′,k)Ga
jal

S (ω − ω′,−k)

+Ga
ial

R (ω′,k)Ga
jak

S (ω − ω′,−k)
]
. (B14)

Substituting appropriate symmetric and retarded
Green functions to eq. (B14) and exploiting the reflec-
tion and translational symmetries k↔ −k, ω′ ↔ ω−ω′,
we write down the integrals for the Green functions nec-
essary for the computation of eq. (B12) 10

G~v
2,~v2

R (ω,0) =
8T

(e+ p)2

∫
dω′d3k

(2π)4
2ω′2Dshear

S (ω′,k)(γηk
2)Dshear

R (ω − ω′,−k)

+ω′2Dsound
S (ω′,k)(−c2sk2 + iγζk

2(ω − ω′))Dsound
R (ω − ω′,−k), (B15a)

Gδw
2,δw2

R (ω,0) =
8T

(e+ p)2

∫
dω′d3k

(2π)4
c2sk

2Dsound
S (ω′,k)(−c2sk2)Dsound

R (ω − ω′,−k), (B15b)

Gδw
2,~v2

R (ω,0) =
8T

(e+ p)2

∫
dω′d3k

(2π)4
cskω

′Dsound
S (ω′,k)(csk(ω − ω′))Dsound

R (ω − ω′,−k). (B15c)

Note that by causality a retarded Green function
GR(ω,k) can have poles only in the lower ω-complex
plane, so GR(ω−ω′,k) is analytic in the lower ω′-complex
plane. Therefore we will close the ω′ integral in the lower
complex plane of ω′, where only poles from the symmetric
Green functions contribute.

For the shear-shear term in eq. (B15a), the symmetric
Green function part can be expanded into

ω′2Dshear
S (ω′,k) =

i/2

ω′ + iγηk2
− i/2

ω′ − iγηk2
, (B16)

where the second term does not contribute to the con-
tour integral in the lower complex plane. Evaluating the
residue at ω′ = −iγηk2 pole we get the shear-shear con-
tribution[

G~v
2,~v2

R

]shear-shear

(ω,0)

=
8T

(e+ p)2

∫
d3k

(2π)3

1

2

2γηk
2

−iω + 2γηk2
. (B17)

10 Note the factor of two in front of shear-shear term coming from
the trace of δij− k̂ik̂j and an additional minus sign in eq. (B15c)
from k · (−k).

and the UV regulated k < Λ integral can be straight-
forwardly expressed in a cubic divergent piece Λ3 and
f(ω, 2γη,Λ) defined in eq. (26).

The symmetric sound propagator in G~v
2,~v2

R can be also
written as a sum of two terms

ω′2Dsound
S (ω′,k) (B18)

=
iω′/2

ω′2 − c2sk2 + iγζk2ω′
− iω′/2

ω′2 − c2sk2 − iγζk2ω′
,

where the second term vanish under contour integration.
The remainder can be further expanded as

iω′/2

ω′2 − c2sk2 + iγζk2ω′

=
i/2

ω+ − ω−
ω+

ω′ − ω+
− i/2

ω+ − ω−
ω−

ω′ − ω−
. (B19)

Here ω± are the positions of poles satisfying

ω+ + ω− = −iγζk2, ω−ω+ = −c2sk2. (B20)

For the ease of computation, retarded function part in
the sound-sound contribution in eq. (B15a) can be also
expressed in terms of ω± as follows(
−c2sk2 + iγζk

2(ω − ω′)
)
Dsound
R (ω − ω′,−k) (B21)

=
−ω2

+

ω+ − ω−
1

ω − ω′ − ω+
− −ω2

−
ω+ − ω−

1

ω − ω′ − ω−
.
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Evaluating the ω′ residues at ω′ = ω±, we obtain for the
sound-sound piece of eq. (B15a)[

G~v
2,~v2

R

]sound-sound

(ω,0)

=
8T

(e+ p)2

∫
d3k

(2π)3

1

2

ω+ω−
(ω+ − ω−)2

ω+ + ω−
ω − ω+ − ω−

− 1

2

1

(ω+ − ω−)2

[
ω3

+

ω − 2ω+
+

ω3
−

ω − 2ω−

]
. (B22)

In the kinetic approximation csk � γk2, ω this reduces
to[
G~v

2,~v2

R

]sound-sound

(ω,0) (B23)

=
8T

(e+ p)2

∫
d3k

(2π)3

1

4
+

1

8

iω

−iω + γζk2
+O

(
ω2, (γk2)2

(csk)2

)
.

Calculations for eq. (B15b) and eq. (B15c) proceeds
analogously. The result is

Gδw
2,δw2

R (ω,0) =
8T

(e+ p)2

∫
d3k

(2π)3

1

4
+

1

8

iω

−iω + γζk2
,

(B24a)

Gδw
2,~v2

R (ω,0) =
8T

(e+ p)2

∫
d3k

(2π)3
0 +

1

8

iω

−iω + γζk2
.

(B24b)

The final combined result for the retarded Green func-
tions, eq. (B12), is

GT
ii,T jj

R (ω,0) = 9iωζ +
TΛ3

2π2

[
2(1− c2s)2 +

2

3

(
3

2
T
dc2s
dT

)2
]

+
T

2π2

[
4C2

η f(ω, 2γη,Λ) + C2
ζ f(ω, γζ ,Λ)

]
. (B25)

To assure that imaginary part of GT
ii,T jj

R is independent
of the cutoff, the background bulk viscosity is renormal-
ized as in eq. (51). The cubic divergence in the real part

of GT
ii,T jj

R does not have a corresponding counter term,
but it is also not physical. The ambiguity in the real
part of the retarded propagators GR is due to the fact
that in flat spacetime the retarded Green functions can-
not be measured directly and only the imaginary part is
determined through the symmetric correlation functions
GS .
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