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Abstract

We study derivatives of the shift and penetration factors of collision theory with respect to

energy, angular momentum, and charge. Definitive results for the signs of these derivatives are

found for the repulsive Coulomb case. In particular, we find that the derivative of the shift factor

with respect to energy is positive for the repulsive Coulomb case, a long anticipated but heretofore

unproven result. These results are closely connected to the properties of the sum of squares of the

regular and irregular Coulomb functions; we also present investigations of this quantity.
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I. INTRODUCTION

The shift and penetration factors occur in the theoretical description of nuclear, atomic,

and molecular scattering and reactions, particularly in R-matrix descriptions of such pro-

cesses [1, 2]. These quantities are defined to be the real and imaginary parts of the log-

arithmic radial derivative of the outgoing Coulomb function, as given below by Eq. (5).

They play a central role in determining how physical quantities, such as cross sections and

resonance widths, depend upon energy, angular momentum, and charge.

This study is motivated by a desire to understand the sign of the energy derivative of the

shift factor for the repulsive Coulomb case, as is applicable to the study of nuclear reactions.

This sign has important implications for the relationship between the R-matrix parameters

describing a level and its observed width, as discussed by Lane and Thomas [1, Sec. XII.3,

pp. 327-328]. The sign is also important for establishing the uniqueness of the alternative

R-matrix parametrization given by Brune [3]. We will elaborate on these points further in

the Conclusions, Sec. VII. While this sign appears to be positive in practice, a general proof

for positive energies is lacking and several authors have commented on this point [1–3]. Lane

and Thomas did show that it is positive for negative energies [1, Eq. (A.29), p. 351], for

positive energies in the JWKB approximation [1, Eq. (A.19), p. 350], and they also gave a

heuristic argument that it should be positive below the Coulomb and/or angular momentum

barriers [1, Eq. (A.32), p. 352]. It is also straightforward to show that this sign is positive in

the limits of zero radius, infinite radius, zero energy, and infinite energy (see Appendices C

and D below).

We have succeeding in proving that the energy derivative of the shift factor is always

positive for the repulsive Coulomb case. We report results for the sign of the derivatives of

the shift and penetration factors, as well as the related amplitude and phase, with respect to

energy, angular momentum, and charge. The results are obtained using the phase-amplitude

parametrization of the Coulomb functions and a little-known Nicholson-type integral repre-

sentation for the sum of squares of the regular and irregular Coulomb functions. We also

find that almost none of the results are generally valid in the attractive Coulomb case.

This paper is organized as follows. We first review the relevant properties of the Coulomb

functions and then derive derive the monotonicity results, with discussion and conclusions

following. Appendices include information on the theory of monotonic functions, further
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properties of Coulomb functions, and additional integral relations for the energy derivative

of the shift factor.

II. OVERVIEW OF COULOMB FUNCTIONS

A. Definitions

In terms of physical parameters, a Coulomb function u satisfies

− ~2

2µ

d2u

dr2
+
Z1Z2q

2

r
u+

~2

2µ

`(`+ 1)

r2
u = Eu, (1)

where r ≥ 0 is the radial coordinate, E is the energy, ~2/µ is a positive constant, Z1Z2q
2/r is

the Coulomb potential, and ~2`(`+ 1)/(2µr2) is an effective potential corresponding to the

centrifugal or angular momentum barrier. The quantity ` is the angular momentum quantum

number and is a non-negative integer in physical applications, but unless otherwise indicated

we will consider it to be a non-negative continuous real parameter. The quantity Z1Z2q
2 is

the constant charge factor that is positive for a repulsive Coulomb field, zero in the neutral

case, and negative otherwise. We will also assume E > 0, unless otherwise indicated. In

terms of the dimensionless parameters ρ and η, we have u(`, η, ρ) and this equation becomes

u′′ +

[
1− 2η

ρ
− `(`+ 1)

ρ2

]
u = 0, (2)

where ρ = kr, k =
√

2µE/~2, ηk = Z1Z2q
2µ/~2, and ′ ≡ d/dρ. The outgoing u = H+

` and

incoming u = H−` solutions are given respectively by

H+
` = G` + iF` and (3a)

H−` = G` − iF`, (3b)

where G`(η, ρ) ≡ G` and F`(η, ρ) ≡ F` are the irregular and regular Coulomb functions.

The logarithmic derivative of the outgoing solution is given by

L` ≡
r

H+
`

dH+
`

dr
= ρ

H+′
`

H+
`

, (4)

with the real and imaginary parts defined to be

L` ≡ S` + iP`, (5)
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where S` and P` are the shift and penetration factors, respectively. Note that for for E ≤ 0

we have P` = 0. It is also customary to define the asymptotic phase

θ` = ρ− η log(2ρ)− 1

2
`π + σ`, (6)

where σ` is the Coulomb phase shift defined in Appendix B. We also define the energy

derivative ∂E which is understood to be taken at fixed radius (i.e., with the product ηρ

fixed):

∂

∂E
=

2µr2

~2

(
1

2ρ

∂

∂ρ
− η

2ρ2
∂

∂η

)
(7a)

=
ρ

2E

(
∂

∂ρ
− η

ρ

∂

∂η

)
. (7b)

B. Amplitude and Phase

It is possible to parametrize the Coulomb functions in terms of an amplitude (or modulus)

A` and phase φ` [1, 4–6]:

A` = (F 2
` +G2

`)
1/2, (8)

φ` = tan−1 F`/G`, (9)

H±` = A` exp(±iφ`), (10)

P` =
ρ

A2
`

, and (11)

S` =
ρA′`
A`

=
ρ(A2

`)
′

2A2
`

, (12)

where the Wronskian relation

H+
` H

−′
` −H

+′
` H

−
` = −2i (13)

ha been used to derive Eq. (11) from Eq. (5). The amplitude and phase obey the following

differential equations:

A′′` +

[
1− 2η

ρ
− `(`+ 1)

ρ2

]
A` − A−3` = 0 and (14)

φ′` = A−2` . (15)

In this work we make extensive use of square of A` and we will refer to A2
` as “the amplitude.”

A differential equation satasfied by A2
` is discussed below Subsec. VI C.
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R.G. Thomas derived an integral representation for A2
` that is useful for establishing its

monotonic properties [1, p. 350], [6]:

A2
` = 2ρ

∫ ∞
0

dz e−2ρz Q(z), where (16a)

Q(z) = exp(2η tan−1 z)(1 + z2)` (16b)

× 2F1(−`− iη,−`+ iη, 1;
z2

1 + z2
)

= exp(2η tan−1 z)(1 + z2)iη (16c)

× 2F1(`+ 1 + iη,−`+ iη, 1;−z2).

The equivalence of the two expressions for Q(z) results from Pfaff and Euler transformations

of the hypergeometric function. This formula is also given in Hull and Breit [7, Eq. (12.5),

p. 440], but one of the factors of −iη in their hypergeometric funtion must be reversed in

sign in order to agree with Eq. (16b).

Expressions such as Eq. (16) are known as Nicholson-type integrals; further discussion is

provided below in Subsec. VI C. This equation appears to have been overlooked for over half

a century, but it is very useful in the present context. The formula is based on a result given

by Erdélyi [8] that expresses the product of two Whittaker functions as a Laplace transform,

which is applicable since we also have

A2
` = H+

` H
−
`

= eπηW−iη,`+1/2(−2iρ)Wiη,`+1/2(2iρ),
(17)

where W is the Whittaker function.

The particular hypergeometric function in Eq. (16b) may be defined via

t =
z2

1 + z2
, (18a)

2F1(−`− iη,−`+ iη, 1; t) ≡ F (t) =
∞∑
n=0

dnt
n, (18b)

d0 = 1, and (18c)

dn+1 = dn
η2 + (n− `)2

(n+ 1)2
(18d)

which is absolutely convergent for |t| ≤ 1. We also note that F (t) is real, positive, and

monotonically increasing between F (0) = 1 and

F (1) =
22`e−πη

C2
` (η)(2`+ 1)2Γ(2`+ 1)

, (19)
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where C`(η) is defined in Appendix C. The function Q(z) is likewise positive for 0 ≤ z <

∞. The integral representation of Erdélyi and the positivity of the integrand in certain

circumstances are also remarked upon by Buchholz [9, p. 89, Eq. (10a)].

Equation (16a) may be integrated by parts to yield [1, 6]:

A2
` = 1 +

∫ ∞
0

dz e−2ρz
dQ

dz
. (20)

Further integrations by parts would yield an asymptotic expansion for A2
` in terms of inverse

powers of ρ. We also have

1

Q

dQ

dz
=

2(η + `z)

1 + z2
+

1

F (t)

dF (t)

dt

dt

dz
, (21a)

dF (t)

dt
=
∞∑
n=1

ndnt
n−1, and (21b)

dt

dz
=

2z

(1 + z2)2
. (21c)

Considering only the repulsive Coulomb case (η > 0), we clearly have dQ/dz > 0 hence

A2
` > 1. By differentiating Eq. (20) with respect to ρ, one can see that (A2

`)
′ < 0 and

consequently S` < 0 [1, 6]. Further differentiation shows that all derivatives of A2
` have

well-defined sign:

0 < (−1)n
(
d

dρ

)n
A2
` <∞ n = 1, 2, 3, . . . (22)

This result shows that A2
` is a Completely Monotonic (CM) function of ρ. Many of the

conclusions reached in this paper follow from this fact and are proven rather easily using the

machinery of CM functions. Some properties of CM functions are discussed in Subsec. A 2

of the Appendix; additional details are available in the review article of Miller and Samko

[10].

Using Eqs. (16a) and (16b), Prosser and Biedenharn [6] showed that ∂(A2
`)/∂η > 0;

noting that

∂P`
∂E

=
ρ

2E

A2
` − ρ(A2

`)
′ + η

∂A2
`

∂η

A4
`

 , (23)

it is clear that ∂P`/∂E > 0. These authors went on to show that ∂S`/∂η < 0. However, it

does not appear to be feasible to extend their approach to determine the sign of ∂S`/∂E.

Some additional properties of the Coulomb functions are discussed in Appendices B-D.

It should be noted that S` is not monotonic in ρ: from the formulas given in Appendix C it

is clear that S ′` is negative for ρ→ 0 and positive for ρ→∞.
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III. ENERGY DERIVATIVE OF L

Using the differential equation with two different solutions O1 and O2 with outgoing wave

boundary conditions (i.e., O ∝ H+) corresponding to energies E1 and E2 in Eq. (1), one

can show that

− ~2

2µ

d

dr

[
O1O2

r
(L2 − L1)

]
= (E2 − E1)O1O2. (24)

Note that the ` (angular momentum label) subscripts will be suppressed from this point

forward in this paper. Upon integrating from r = a to b with a < b this becomes

− ~2

2µ

[
O1O2

r
(L2 − L1)

]b
a

= (E2 − E1)

∫ b

a

O1O2 dr. (25)

In the limit that O2 → O1, this becomes

− ~2

2µ

[
O2

r

∂L

∂E

]b
a

=

∫ b

a

O2 dr, (26)

where ∂E is taken at fixed radius as discussed above. For bound states (E < 0), O is

proportional to the exponentially-decaying Whittaker function and one can take b → ∞

with the surface term at r = b in the left-hand side of Eq. (26) vanishing; see also Lane and

Thomas [1, Eq. (A.29), p. 351]:

~2

2µ

[
O2

r

∂L

∂E

]
a

=

∫ ∞
a

O2 dr. (27)

Since O(r)/O(a) is real it follows that ∂S/∂E is positive for E < 0 [1].

It is not immediately obvious how to extend this result to positive energies because

O(r)/O(a) is non-zero and oscillating for large r and it is also necessarily a complex quantity.

We attempted to find an integral expression with a positive-definite integrand, analogous to

Eq. (27). These efforts were not successful; some of the results found are given in Appendix E.

We show here a successful approach to proving ∂S/∂E > 0 for the repulsive Coulomb case,

using an integral expression with an integrand that oscillates in sign with properties that

allow a definitive sign for the integral to be deduced.

Adopting O = H+ = A exp(iφ) and changing the integration variable from r to ρ, we can

write Eq. (26) in terms of the amplitude and phase

− E
[
e2iφ

A2

ρ

∂L

∂E

]ρb
ρa

=

∫ ρb

ρa

A2 e2iφ dρ. (28)
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We next change the integration variable to ψ, noting that ψ is a monotonically-increasing

function of ρ:

ψ ≡ 2[φ(ρ)− φ(ρa)], (29)

ψ′ = 2A−2, (30)

ψb = 2[φ(ρb)− φ(ρa)], and (31)

−E
[
eiψ

A2

ρ

∂L

∂E

]ψb

0

=
1

2

∫ ψb

0

A4eiψ dψ, (32)

where Eq. (30) follows from Eq. (15). Using

d(A4)

dψ
=

2A2(A2)′

ψ′
= A4(A2)′, (33)

we can integrate by parts to find[
eiψ
(
−EA

2

ρ

∂L

∂E
+
i

2
A4

)]ψb

0

=
i

2

∫ ψb

0

A4(A2)′eiψ dψ.

(34)

Considering the large-ρ behavior of the Coulomb quantities given in Tables III and IV of

Appendix C, one can now take ψb → ∞ as A4(A2)′ ∼ −η/ρ2 and the integral is absolutely

convergent: [
E
A2

ρ

∂L

∂E
− i

2
A4

]
ρa

=
i

2

∫ ∞
0

A4(A2)′eiψ dψ. (35)

Taking the real part of this expression yields

E

[
A2

ρ

∂S

∂E

]
ρa

= −1

2

∫ ∞
0

A4(A2)′ sin(ψ) dψ. (36)

Our strategy will be to use the fact that A2 is a CM function of ρ (see Subsecs. II B

and A 2) to prove that certain integrals, such as the one appearing in Eq. (36), have definite

sign. Since A4 is the product of two CM functions (i.e., A2×A2) it is also CM. Furthermore,

we have (
− d

dψ

)n
A4 =

(
−A

2

2

d

dρ

)n
A4 > 0

n = 1, 2, 3, . . .

(37)

and thus A4 is also a CM when considered as a function of ψ. The quantity

− dA4

dψ
= −A4(A2)′ (38)
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appearing in the r.h.s of Eq. (36), which is the negative of Eq. (33), is thus a CM function of

ψ. In particular, the fact that this quantity is positive and monotonically decreasing allows

one to conclude that the r.h.s. of Eq. (36) is positive using reasoning given in Appendix A.

To summarize, the definite integral from zero to infinity of a CM function multiplied by the

sine or cosine function is positive, provided the integral converges. We thus finally have

E

[
A2

ρ

∂S

∂E

]
ρa

= −1

2

∫ ∞
0

A4(A2)′ sin(ψ) dψ > 0, (39)

and we can conclude that ∂S/∂E is indeed always positive for E > 0 and a repulsive

Coulomb field.

This method can also provide information about ∂P/∂E. Starting from Eq. (32) and

choosing b such that

ψb = ψn = 2πn n = 1, 2, 3, ... (40)

the range of integration becomes an integer multiple of the period of eiψ and the surface

terms are simplified since eiψn = 1:

− E
[
A2

ρ

∂L

∂E

]ψn

0

=
1

2

∫ ψn

0

A4eiψ dψ. (41)

Taking imaginary part, we have

E

[
A2

ρ

∂P

∂E

]
ρa

=
1

2

∫ ψn

0

A4 sin(ψ) dψ

+ E

[
A2

ρ

∂P

∂E

]
ρn

,

(42)

where ρn = ρb when ψb = ψn. We cannot take n→∞ in this case since A4 ∼ 1 for large ρ

(at least without employing a regularization procedure), but it is sufficient to consider n to

be very large such that the asymptotic expansions of the Coulomb functions are applicable

(see Tables III and IV in Appendix C):

E

[
A2

ρ

∂P

∂E

]
ρa

=
1

2

∫ ψn

0

A4 sin(ψ) dψ

+
1

2

(
1 +

2η

ρn
+ . . .

)
.

(43)

Since A4 is a CM function of ψ, we observe that both terms on the r.h.s. of Eq. (43) are

positive and we can conclude that ∂P/∂E > 0 (which has been derived previously using
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a different method [6]). In fact, we can do better because the surface term is non-zero as

ρn →∞:
∂P

∂E
>

ρ

2EA2
. (44)

It is also interesting to consider further integrations by parts. Since∫
eαxf dx =

m∑
k=0

(−1)k
eαx

αk+1

dkf

dxk

+ (−1)m+1

∫
eαx

αm+1

dm+1f

dxm+1
dx

(45)

for m = 0, 1, 2, . . ., Eq. (35) generalizes to[
2E

A2

ρ

∂L

∂E

]
ρa

=

[
m∑
k=0

ik+1

(
d

dψ

)k
A4

]
ρa

+ im+1

∫ ∞
0

eiψ
(
d

dψ

)m+1

A4 dψ.

(46)

Setting m = 1 provides [
2E

A2

ρ

∂L

∂E

]
ρa

=

[
iA4 − d(A4)

dψ

]
ρa

−
∫ ∞
0

eiψ
d2(A4)

dψ2
dψ

(47)

and then taking the imaginary part gives[
2E

A2

ρ

∂P

∂E
− A4

]
ρa

= −
∫ ∞
0

sin(ψ)
d2(A4)

dψ2
dψ. (48)

Since the r.h.s. of this equation must be negative, it provides an upper-limit constraint on

∂P/∂E:
∂P

∂E
<

ρ

2E
A2, (49)

This result could also be deduced from the imaginary part of Eq. (35). Taking the real part

of Eq. (47) yields [
2E

A2

ρ

∂S

∂E
+
d(A4)

dψ

]
ρa

= −
∫ ∞
0

cos(ψ)
d2(A4)

dψ2
dψ. (50)

Since the r.h.s. of this equation must be negative, this implies

∂S

∂E
< − ρ

2EA2

[
d(A4)

dψ

]
ρa

= − ρ

2E
A2(A2)′. (51)

Further integrations by parts would develop a large-ρ asymptotic expansion for ∂L/∂E. The

results of this section are summarized in the first two lines of Table I.
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TABLE I. Summary of the result of Secs. III and IV for the variation of S and P with E, `, and

η. The second column is deduced from the first using Eqs. (11) and (12).

0 < ∂S
∂E < −ρA2(A2)′

2E 0 < ∂S
∂E < − ρ2S

EP 2

ρ
2EA2 <

∂P
∂E < ρA2

2E
P
2E < ∂P

∂E < ρ2

2EP

(2`+1)
A4

ρ2

[
ρ(A2)′

2A2 − 1
2

]
< ∂S

∂` < 0
2`+1
P 2

(
S − 1

2

)
< ∂S

∂` < 0

− (2`+1)A2

2ρ < ∂P
∂` < 0 −2`+1

2P < ∂P
∂` < 0

2A4

ρ

[
ρ(A2)′

2A2 − 1
4

]
< ∂S

∂η < 0
2ρ
P 2

(
S − 1

4

)
< ∂S

∂η < 0

−A2 < ∂P
∂η < 0 − ρ

P < ∂P
∂η < 0

IV. VARIATION OF L WITH ANGULAR MOMENTUM AND CHARGE

It is also interesting and feasible with the above approach to investigate the variation

of L with the angular momentum ` and charge. On page 414 of their article, Prosser

and Biedenharn [6] stated that ∂(A2)/∂` > 0 (and consequently also ∂P/∂` < 0) based

on Eqs. (16a) and (16b) of the present paper, but it is not clear how they arrived at that

conclusion. The other statements made by the authors in that paragraph follow simply from

the properties of Q(z), but this one does not. Assuming that Q(z) is defined by Eq. (16b),

∂(A2)/∂` > 0 is true provided that ∂F (t)/∂` > 0, where F (t) is the hypergeometric function

defined by Eq. (18). However, it is not always the case that ∂F (t)/∂` > 0. Ref. [6] was

unable to find a result for ∂S/∂`.

Using Eq. (2) with two different solutions O1 and O2 corresponding to angular momenta

l1 and l2 but with the same energy, one finds

d

dρ

[
O1O2

ρ
(L2 − L1)

]
= (`1 + `2 + 1)(`2 − `1)

O1O2

ρ2
. (52)

Integrating and taking O2 → O1 (considering ` to be a continuous parameter) leads to[
O2

ρ

∂L

∂`

]ρb
ρa

= (2`+ 1)

∫ ρb

ρa

O2

ρ2
dρ. (53)

One can now take ρb →∞ and proceed as before:

2

2`+ 1

[
A2

ρ

∂L

∂`

]
ρa

= −
∫ ∞
0

A4eiψ

ρ2
dψ. (54)
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Noting that ρ−2 is a CM function of ρ, and that hence A4/ρ2 is likewise CM, we have(
− d

dψ

)n
A4

ρ2
=

(
−A

2

2

d

dρ

)n
A4

ρ2
> 0

n = 1, 2, 3, . . .

(55)

and we can conclude immediately that

∂S

∂`
< 0 and

∂P

∂`
< 0, (56)

using the methods of Appendix E. Integrating Eq. (54) by parts twice yields

2

2`+ 1

[
A2

ρ

∂L

∂`

]
ρa

=

[
−iA

4

ρ2
+
A6

ρ3

(
ρ(A2)′

A2
− 1

)]
ρa

+

∫ ∞
0

d2

dψ2

(
A4

ρ2

)
eiψ dρ

(57)

which shows
∂S

∂`
> (2`+ 1)

A4

ρ2

[
ρ(A2)′

2A2
− 1

2

]
(58)

and
∂P

∂`
> −(2`+ 1)A2

2ρ
. (59)

The variation of L with charge can be studied using this procedure via the Coulomb

parameter η. This results in

d

dρ

[
O1O2

ρ
(L2 − L1)

]
= 2(η2 − η1)

O1O2

ρ
. (60)

and upon integrating and taking O2 → O1[
O2

ρ

∂L

∂η

]ρb
ρa

= 2

∫ ρb

ρa

O2

ρ
dρ. (61)

Proceeding as above, we have [
A2

ρ

∂L

∂η

]
ρa

= −
∫ ∞
0

A4eiψ

ρ
dψ. (62)

Noting that ρ−1 is a CM function of ρ and thus(
− d

dψ

)n
A4

ρ
=

(
−A

2

2

d

dρ

)n
A4

ρ
> 0,

n = 1, 2, 3, . . .

(63)
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we conclude
∂S

∂η
< 0 and

∂P

∂η
< 0, (64)

confirming the findings of Ref. [6]. Integrating Eq. (62 by parts twice yields[
A2

ρ

∂L

∂η

]
ρa

=

[
−iA

4

ρ
+
A6

2ρ2

(
2ρ(A2)′

A2
− 1

)]
ρa

+

∫ ∞
0

d2

dψ2

(
A4

ρ

)
eiψ dρ

(65)

which shows
∂S

∂η
>

2A4

ρ

[
ρ(A2)′

2A2
− 1

4

]
(66)

and
∂P

∂η
> −A2. (67)

The results of this section are summarized in Table I.

V. VARIATION OF THE AMPLITUDE AND PHASE WITH E, `, AND η

It is also expected that the amplitude and phase depend monotonically on E, `, and η.

Noting P = ρ/A2, the variations of squared amplitude A2 with ` and η are easily found to

be opposite of those already derived for P : ∂A2/∂` > 0 and ∂A2/∂η > 0. The latter result

can also be shown by differentiating Eq. (16a) with Q(z) given by Eq. (16b) [6]. For the

energy variation of the amplitude, we have using Eq. (7)

∂A2

∂E
=

ρ

2E

[
(A2)′ − η

ρ

∂A2

∂η

]
. (68)

Since (A2)′ < 0 and ∂A2/∂η > 0, we can also conclude that ∂A2/∂E < 0.

The variation of the phase φ with these parameters can also be related to those for P .

Noting that
dφ

dr
=
P

r
and hence [φ]a =

∫ a

0

P

r
dr, (69)

we have [
∂φ

∂X

]
a

=

∫ a

0

∂P

∂X

dr

r
, (70)

where X = E, `, or η, and the variation of φ with these parameters is seen to be in the

same direction as it is for P . Note that in the case of ` = 0 for ∂φ/∂` the integrand has

a logarithmic singularity as r → 0, but the integral is still convergent. The results of this

section are summarized in Table II.
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TABLE II. Summary of the result of Sec. V.

∂A2

∂E < 0 ∂A2

∂` > 0 ∂A2

∂η > 0

∂φ
∂E > 0 ∂φ

∂` < 0 ∂φ
∂η < 0

VI. DISCUSSION

We have limited our consideration to the repulsive Coulomb field (η > 0) in this work. In

this section we will briefly consider the attractive Coulomb field and then in more detail the

neutral case. We next provide further discussion of the amplitude A2, followed by a brief

review of negative energies. In Fig. 1 we show shift factor S(E) for the repulsive, neutral,

and attractive cases (Z1Z2 = 1, 0, and -1, respectively). We have also assumed ` = 0, q to

be the fundamental charge, µ to be the nucleon-nucleon reduced mass, and a radius of 2 fm.

The repulsive case shows the expected results: S < 0 and ∂S/∂E > 0 for all energies.

A. The Attractive Coulomb Case

In the case of an attractive Coulomb field, the amplitude A2 is no longer guaranteed

to be a CM function of ρ because according to Eq. (21) dQ/dz is not necessarily positive.

Consequently, very few of the results from the repulsive case are generally valid for η < 0.

We can conclude that A2 > 0 and hence P > 0 from Eqs. (16a) and (16b). For the particular

case with ` = 0 plotted in Fig. 1, it can be seen that ∂S/∂E < 0 for E > 0.

B. The Neutral Case

In the neutral or uncharged case, we have η = 0 and the amplitude is given by

A2 =
π

2
ρ
[
J2
`+1/2(ρ) + Y 2

`+1/2(ρ)
]
, (71)

where J and Y are the regular and irregular Bessel functions. It is convenient in this case

to use form of Q(z) given by Eq. (16c), which becomes

Q(z) = 2F1(−`, `+ 1, 1;−z2). (72)

Following Prosser and Biedenharn [6], Eq. (16a) may then be integrated termwise to yield

A2 = 3F0(−`, `+ 1,
1

2
;−ρ−2), (73)
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FIG. 1. (Color online) The ` = 0 shift factor versus energy for the repulsive (blue dashed curve),

uncharged (black solid curve), and attractive (red dot-dashed curve) cases. Additional details are

provided in the text.

where 3F0 is a generalized hypergeometric function and it is assumed that both hypergeo-

metric functions may be represented by their canonical power series. If ` is a non-negative

integer (the case for physical problems), then the hypergemeotric functions in Eqs. (72)

and (73) are represented by series which terminate and there are no questions of conver-

gence. Otherwise, the 2F1 in Eq. (72) cannot be represented by its series when z > 1

and the series for 3F0 in Eq. (73) is a non-convergent asymptotic expansion, equivalent to

Eq. 13.75(1) of Watson [11, p. 449].

Alternatively, one may utilize the fact that Eq. (72) is a representation of the Legendre

function P̃` (a polynomial if ` is a non-negative integer) [12, Eq. 15.4.16, p. 562]

2F1(−`, `+ 1, 1;−z2) = P̃`(1 + 2z2), (74)
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to write

A2 = 2ρ

∫ ∞
0

dz e−2ρzP̃`(1 + 2z2). (75)

This is a known integral representation for Eq. (71) deduced by Hartman [13, Eq. (11.6),

p. 588] using a different approach.

In the neutral case, the monotonicity results are essentially unchanged from the repulsive

charge case, since dQ/dz ≥ 0 [see Eq. (21)]. Note that dQ/dz = 0 only occurs when ` = 0,

in which case we have Q = 1 and A2 = 1, which leads to P = ρ, S = 0, and φ = ρ for

E > 0. This shift factor is plotted in Fig. 1. In this case, the monotonicity properties are

trivial may be deduced by inspection. In particular, we note that ∂S/∂E = 0 for ` = 0 and

positive energy.

C. Further Discussion of the Amplitude A2

Our finding that A2 = F 2
` + G2

` is CM for the case of a repulsive Coulomb field is a

generalization of the result that ρ[J2
ν (ρ) + Y 2

ν (ρ)] is CM [14]. The key to proving that A2 is

CM is the Laplace transform representation given by Eq. (16). Integral representations for

the sum of squares of linearly-independent solutions to an ordinary second-order differential

equation, such as Eq. (16), are known as Nicholson-type integrals and may considered to be

generalizations of sin2 ρ+ cos2 ρ = 1. These representations are often useful for establishing

monotonicity properties of special functions [14–16], as has been the case in the present

work.

Hartman [13, 17] has studied the differential equation

u′′ + [c+ s(ρ)]u = 0, (76)

where c is a positive constant and s → 0 as ρ → ∞. He has shown that there are always

solutions x and y to Eq. (76) with unit Wronskian such that the generalized amplitude

A2 = x2 + y2 → 1 as ρ → ∞ and, if −s(ρ) is CM, the generalized amplitude A2 is CM.

Since Eq. (2) is of this form with both the repulsive Coulomb potential and the centrifugal

barrier making CM contributions to −s(ρ), this provides an alternate proof that A2 is CM

for the repulsive Coulomb case. It is also clear from this perspective that we are unable

to draw general conclusions regarding the monotonicity of A2 for an attractive Coulomb

potential.
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We finish the discussion of the amplitude by deriving its asymptotic expansion for large ρ.

Leading asymptotic expansions for A have been given by Hull and Breit [7] that lack general

formulas for the coefficients. The asymptotic expansion for A2 turns out to be considerably

simpler. If u and v are solutions of Eq. (2), their product w = uv satisfies the Appell

equation, a third-order homogeneous differential equation [13, p. 560, Eq. (2.23)] which in

our case reads

w′′′+4

[
1− 2η

ρ
− `(`+ 1)

ρ2

]
w′

+ 2

[
2η

ρ2
+

2`(`+ 1)

ρ3

]
w = 0.

(77)

Any linear combinations of such solutions, including A2 = F 2
` +G2

` , is likewise a solution of

Eq. (77). Assuming an expansion of the form

A2 ∼
∞∑
k=0

ak
ρk

(78a)

with a0 = 1 and substituting into Eq. (77) leads to the following result for the coefficients:

a0 = 1, (78b)

a1 = η, and for k ≥ 1 (78c)

ak+1 = η
2k + 1

k + 1
ak (78d)

+
k(2`+ k + 1)(2`− k + 1)

4(k + 1)
ak−1.

Considering that any solution of Eq. (77) must be a linear combination of F 2
` , G2

` , and F`G`

and the leading asymptotic expansions of these possibilities, it is clear that Eq. (78) is in

fact the asymptotic expansion of A2. If η = 0 (i.e., the neutral case), the expansion only

contains even terms and is equivalent to Eq. (73). If ` is also a non-negative integer (the

case for physical problems), the series terminates. Equation (78) is the generalization to

the Coulomb case of the asymptotic series for J2
ν + Y 2

ν given by Eq. 13.75(1) of Watson [11,

p. 449].

D. Negative Energies

In the case of negative energies, the Coulomb functions satisfy

u′′ +

[
−1− 2η

ρ
− `(`+ 1)

ρ2

]
u = 0, (79)
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where ρ = kr, k =
√
−2µE/~2, ηk = Z1Z2q

2µ/~2, and ′ ≡ d/dρ. We will consider the

solution given by the exponentially-decaying Whittaker function W−η,`+1/2(2ρ) ≡ W and

the shift factor that is given for negative energies by

S = ρ
W ′

W
. (80)

Adapting Eqs. (27), (53), and (61) to negative energies, we have[
W 2

ρ

∂S

∂E

]
ρa

= − 1

E

∫ ∞
ρa

W 2 dρ, (81)[
W 2

ρ

∂S

∂`

]
ρa

= −(2`+ 1)

∫ ∞
ρa

W 2

ρ2
dρ, and (82)[

W 2

ρ

∂S

∂η

]
ρa

= −2

∫ ∞
ρa

W 2

ρ
dρ. (83)

These equations show ∂S/∂E > 0, ∂S/∂` < 0, and ∂S/∂η < 0 for negative energies,

regardless of whether the Coulomb potential is repulsive, attractive, or zero. These results

have been noted previously – see the discussion of Eq. (27) above regarding ∂S/∂E and

Prosser and Biedenharn [6, Sec. IV]. One should be aware that, for the attractive Coulomb

case, the shift factor has singularities for slightly negative energies due to zeros of the

Whittaker function.

In the absence of the Coulomb potential, the negative-energy solutions are modified Bessel

functions. Goldstein and Thaler [18] showed that an amplitude and phase parameterization

can be implemented in this situation. Here, the solutions depend exponentially on the

“phase,” as opposed to the sinusoidal dependence used for positive energies. Presumably,

this description could be extened to include the Coulomb potential and describe the negative-

energy Whittaker function solutions.

VII. CONCLUSIONS

We have studied the derivatives of the shift and penetration factors, as well as the related

amplitude and phase, with respect to energy, angular momentum, and charge. For the

cases of neutral or repulsive Coulomb fields, we find definitive results for the signs of these

quantities, as summarized in Tables I and II. In particularly, we have succeeded in proving

∂S/∂E > 0, a result that has been long thought to be true, but for which a general proof

was lacking.
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The fact that ∂S/∂E > 0 for positive energies and a repulsive or neutral Coulomb field

has implications for the R-matrix description of nuclear reactions. When relating R-matrix

reduced width amplitudes to physical quantities, one is presented with the factor

N−1 = 1 +
∑
c

γ2λc
∂Sc
∂E

, (84)

where c is the channel label and γλc are the reduced width amplitudes. For an unbound state

in the one-level approximation, the observed partial width is given by Lane and Thomas [1,

Eqs. (3.5) and (3.6), p. 327]

Γλc = 2NPcγ
2
λc. (85)

The Thomas approximation [19] has been employed here, which assumes that Sc(E) may be

replaced by its first-order Taylor series. Knowledge that ∂S/∂E > 0 ensures that N > 0 and

that the observed partial width is non-negative, a requirement for a physically-reasonable

partial width. In the case of a bound level, the factor N defined by Eq. (84) also arises.

In this situation, N changes the normalization volume of the wavefunction from inside the

channel surfaces to all space [1, Sec. IV.7, p. 280; Eqs. (A.29) and (A.30), p. 351]. For this

case, N was already known to be positive. The description of the physical properties of

bound and unbound levels may be unified by considering the complex poles of the scattering

matrix [20]. In this approach, a simlar normalization factor containing ∂L/∂E naturally

appears in the residues of the scattering matrix poles. If the level is narrow such that the

pole is near the real energy axis, this normalizaton factor becomes equivalent to Eq. (84) in

the one-level approximation. Although less fundamental than partial widths defined via the

residues of the poles of the scattering matrix, Eqs. (84) and (85) may serve as a practical

definition of the observed partial width in R-matrix theory.

Brune [3] has given an alternative parametrization of R-matrix theory that utilizes level

energies and reduced width amplitudes that are more closely connected to the observed

resonance energies and partial widths than in the standard parametrization [1]. The present

result that ∂S/∂E > 0 is sufficient to prove that the alternative parameters have a one-to-one

relationship to the standard parameters and ensures that the alternative parametrization is

well defined and fully equivalent to the standard parametrization. Further information on

this point is provided by Eq. (45) of Ref. [3] and that equation’s surrounding discussion.

The results given in this paper follow from the Nicholson-type integral representation of

the amplitude A2 given by Eq. (16). When the Coulomb field is repulsive or absent, we
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find that A2 is a CM function of ρ which leads to definitive monotonicity properties for

the shift and penetration factors. Considering the work of Hartman [13, 17] on the theory

of differential equations, it is apparent that any central potential that is a CM function of

radius will give analogous results. To be explicit, a CM potential is necessarily repulsive

and monotonically decreasing with radius, with the signs of higher derivatives prescribed

according to Eq. (A5). An attractive potential cannot be CM and almost none of the

conclusions of this paper apply in this case.

ACKNOWLEDGMENTS

This work was carried out under the auspices of the U.S. Department of Energy, under

grant Nos. DE-FG02-88ER40387 and DE-NA0002905 at Ohio University and grant No. DE-

AC52-06NA25396 at Los Alamos National Laboratory.

Appendix A: Some Results Concerning Monotonic Functions

TABLE III. Limiting forms of various Coulomb quantities for small and large ρ. The complete

asymptotic expansion of A2
` for large ρ is given in the text by Eq. (78). A refined small-ρ expansion

for S` is given in the text by Eq. (C2).

quantity ρ→ 0 ρ→∞

H+
` [ρ`(2`+ 1)C`(η)]−1 + . . .+ i

[
ρ`+1C`(η) + . . .

]
exp(iθ`)

[
1 + η

2ρ + iη
2+`(`+1)

2ρ + . . .
]

A2
` [ρ`(2`+ 1)C`(η)]−2 +. . . 1 + η

ρ + 3η2+`(`+1)
2ρ2

+ . . .

φ` ρ2`+1(2`+ 1)C2
` (η) +. . . θ` + η2+`(`+1)

2ρ + . . .

P` ρ2`+1[(2`+ 1)C`(η)]2 +. . . ρ− η − η2+`(`+1)
2ρ + . . .

S` −` +. . . − η
2ρ −

2η2+`(`+1)
2ρ2

+ . . .

We summarize here some aspects of monotonic functions that are of use in this paper.
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1. Integrals of the Type
∫∫∫ 2πm
0 f(x) sin (x)dx

Consider the the integral

I =

∫ 2π

0

f(x) sin(x) dx (A1)

where f(x) > 0 and f ′(x) < 0 for x > 0. The integral can be split and rewritten as an

integral from 0 to π:

I =

∫ π

0

f(x) sin(x) dx+

∫ 2π

π

f(x) sin(x) dx (A2)

=

∫ π

0

[f(x)− f(x+ π)] sin(x) dx. (A3)

Since the conditions on f(x) imply f(x) − f(x + π) > 0 and sin(x) > 0 for 0 < x < π we

can conclude that I > 0. The same result holds if the integration range is extended by an

integer multiple m of 2π:∫ 2πm

0

f(x) sin(x) dx > 0 m = 1, 2, 3, . . . , (A4)

including for m → ∞, provided the integral converges. Note that an analogous conclusion

cannot in general be drawn for
∫ 2π

0
f(x) cos(x) dx, but in may be possible to draw conclusions

using integration by parts – depending the sign of f ′′(x) (see Subsec. A 2 below).

2. Completely Monotonic Functions

A function f(x) is said to be Completely Monotonic (CM) if

0 ≤ (−1)n
(
d

dx

)n
f(x) <∞ (A5)

for all x > 0 and n = 0, 1, 2, . . . The properties of CM functions are reviewed in Ref. [10].

Besides the definition, the feature of CM functions that is particularly useful for this work

the fact that the product of two CM functions is also a CM function. A consequence of this

property that we will utilize is that

h(x) =

[
−g(x)

d

dx

]n
f(x) n = 0, 1, 2, . . . (A6)

is a CM function if f(x) and g(x) are CM.
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We now consider a CM f(x) and integrals over 0 < x < 2πm where m = 1, 2, 3, . . . Using

the results of Subsec. A 1, we can immediately conclude that∫ 2πm

0

f(x) sin(x) dx > 0. (A7)

We now also have an analogous result for the cosine integral:∫ 2πm

0

f(x) cos(x) dx = [f(x) sin(x)]2πm0 (A8)

−
∫ 2πm

0

df

dx
sin(x) dx

=−
∫ 2πm

0

df

dx
sin(x) dx (A9)

>0, (A10)

where the assumption that the original integral is convergent allows one to conclude the

surface term vanishes and we have used the fact that −df/dx is a CM function. Similar

reasoning has been used in Ref. [21] to derive sufficient conditions for a Fourier sine or cosine

transform to be positive.

Appendix B: Coulomb Phase Shift and h(η)

The Coulomb phase shift σ` is defined by

e2iσ` =
Γ(1 + `+ iη)

Γ(1 + `− iη)
=

(`+ iη) . . . (1 + iη)

(`− iη) . . . (1− iη)
e2iσ0 , (B1)

with the derivative of σ` is given by

dσ`
dη

=
1

2
[Ψ(1 + `+ iη) + Ψ(1 + `− iη)] , (B2)

dσ`>0

dη
=
dσ0
dη

+
∑̀
m=1

m

m2 + η2
, (B3)

dσ0
dη

=
1

2
[Ψ(1 + iη) + Ψ(1− iη)] , and (B4)

≡ h(η) + log(η), (B5)

where Ψ is the digamma function. Note that the final part of Eq. (B1) and Eq. (B3) are only

applicable when ` is a non-negative integer. Equation (B5) serves to define, for a repulsive

Coulomb field, the auxiliary function h(η) that also arises in the series expansion of the
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irregular Coulomb functions and in effective range theory [22–24]. Note that h(η) is real

when η is real and positive and that it is also given by [22, 23]

h(η) = − log η − γ + η2
∞∑
k=1

1

k(k2 + η2)
, (B6)

where γ = 0.57721566 . . . is Euler’s constant.

It appears that h(η) is a completely monotonic function of η, but we have been unable

to prove this. Using Eq. 6.3.21 of Abramowitz and Stegun [12, p. 259] and the properties of

the digamma function, we have found the following representation for h(η):

h(η) = I1(η) + I2(η) + e−πηI3(η), where (B7a)

I1(η) =

∫ π

0

[
1

t
− 1

2 tan(t/2)

]
e−ηt dt, (B7b)

I2(η) =

∫ ∞
π

e−ηt

t
dt, and (B7c)

I3(η) =

∫ π

0

1

2 tan(t/2)

sinh(ηt)

sinh(ηπ)
dt (B7d)

that is sufficient to demonstrate that

h(η) > 0 and
dh

dη
< 0 (B8)

for the repulsive Coulomb field. These results are useful for determining the sign of the

energy derivative of σ` and/or h(η) in this work. To the best of our knowledge, these results

regarding the monotonic properties of σ` and h(η) have not been noted previously. Finally,

we note that for η →∞ we have asymptotically [12, Eq. 6.3.19, p. 259]

h(η) ∼ 1

12η2
+

1

120η4
+ . . . , (B9)

which is consistent with the Eq. (B8).

Appendix C: Limiting Forms for Small and Large ρ

We present in Table III the leading behavior of the various Coulomb quantities used in

this work for ρ → 0 and ρ → ∞, considering η to be constant. The small-ρ forms are

deduced starting from Eqs. 14.1.3-14.1.23 of Abramowitz and Stegun [12, pp. 539-540], with

the Gamow factor defined to be

C`(η) =
2`e−πη/2 [Γ(`+ 1 + iη)Γ(`+ 1− iη)]1/2

Γ(2`+ 2)
. (C1)
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In order to extract ∂S`/∂E as ρ (or the radius) goes to zero, it is necessary to consider the

expansion of S` beyond the leading term given in Table III. For ` a non-negative integer,

this results in

S` =

 2ηρ [log(2ηρ) + 2γ + h(η)] + . . . ` = 0

−`− ηρ

`
+

1 + (η/`)2

2`− 1
ρ2 + . . . ` > 0

, (C2)

where γ and h(η) are defined in Appendix B. The resulting expressions for the energy

dependence of the shift factor in the ρ→ 0 limit (with η fixed) are

∂S`
∂E

=


−η

2ρ

E

dh

dη
+ . . . ` = 0

2µr2

~2(2`− 1)
+ . . . ` > 0

. (C3)

As discussed in Appendix B, dh/dη < 0, and consequently ∂S`/∂E > 0 in this limit. It is

also interesting to note that for ` > 0 the quantity ∂S`/∂E is independent of the energy and

Coulomb field for sufficiently small radii.

The large-ρ forms are deduced from asymptotic expansions given by Eqs. 14.5.1-14.5.9 of

Ref. [12, pp. 539-540]. Energy derivatives of some the Coulomb quantities were determined

for the large-ρ limit and are given in Table IV. They are useful for evaluating the surface

terms of integrals that arise in this work. In addition, one can see that ∂S`/∂E > 0 in the

large-ρ limit.

TABLE IV. Energy derivatives of some Coulomb quantities for large ρ.

∂A2
`

∂E ∼
ρ
2E

[
−2η
ρ2
− 6η2+`(`+1)

ρ3
+ . . .

]
∂φ`
∂E ∼

ρ
2E

[
1 + η

ρ log(2ρ)− η
ρ −

3η2+`(`+1)
2ρ2

+ . . .
]

+ ∂σ`
∂E

∂P`
∂E ∼

ρ
2E

[
1 + η

ρ + 3η2+`(`+1)
2ρ2

+ . . .
]

∂S`
∂E ∼

ρ
2E

[
η
ρ2

+ 4η2+`(`+1)
ρ3

+ . . .
]

Appendix D: Limiting Forms for Small and Large E

We will first consider the case of large energies at fixed radius, where ρ→∞ and η → 0.

Since the asymptotic formulas for large ρ are still valid when η is small, the high-energy limits

can be calculated using the ρ→∞ formulas located in Tables III and IV of Appendix C.
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For considering the low-energy limit at fixed radius, the expansions in terms of modified

Bessel functions and inverse powers of η2 are appropriate [25, 26]. We will focus our attention

on the shift factor, as the penetration factor has been thoroughly covered elsewhere [1, 27].

In this limit, it is convenient to use the energy-independent radial coordinate x0:

x0 =
√

8ηρ =
√

8αr, (D1)

where α = ηk is likewise independent of energy. In the low-energy limit, we have G` � F`

and the shift factor at zero energy is given by the well-known result [1, 6]

S` = −`− x0K2`(x0)

2K2`+1(x0)
, (D2)

where Kν are the irregular modified Bessel functions. The energy derivative of the shift

factor can be found by considering the leading energy-dependent terms in the expansions of

G` and G′`. The slope of the shift factor at zero energy is thus found:

∂S`
∂E

=
2µ

~2α2

x30
192[K2`+1(x0)]2

(D3)

×
{

6(`+ 1) [K2`+1(x0)K2`+2(x0)

−K2`(x0)K2`+3(x0)] + x0 [K2`(x0)K2`+4(x0)

−K2`+1(x0)K2`+3(x0)]

}
.

Lane and Thomas [1, p. 351] have given in their Eq. (A.25) a similar expression, valid for

` = 0 only, that is equivalent to our result in that case. It is not at all clear that ∂S`/∂E

as given by Eq. (D3) is positive. An alternative approach is to realize that at zero energy

the wave function decays exponentially at large radii all the way out to ∞ (physically, the

classical turning radius is infinite) and Eq. (27) can be used. This results in

∂S`
∂E

=
2µ

~2α2

x20
32

∫ ∞
x0

[
xK2`+1(x)

x0K2`+1(x0)

]2
x dx, (D4)

which clearly shows ∂S`/∂E > 0 at zero energy. The equivalence of Eqs. (D3) and (D4)

can be confirmed using differentiation and recurrence formulas. The small radius (x0 → 0)

limits of these results, for ` a non-negative integer, are:

S` =


x20
2

[γ + log(x0/2)] + . . . ` = 0

−`− x20
8`

+ . . . ` > 0
(D5)
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and

∂S`
∂E

=
2µ

~2α2


x20
48

+ . . . ` = 0

x40
64(2`− 1)

+ . . . ` > 0
, (D6)

which are consistent with Eqs. (C2) and (C3) when the low-energy behavior of h(η) is taken

into consideration via Eq. (B9).

Appendix E: Additional Integral Relations

Some integral expressions involving ∂S/∂E are given here. A general class of relations

may be derived by multiplying through by an arbitrary function f before integrating to

achieve Eq. (25). This procedure results in:

− E
[
fO2

ρ

∂L

∂E

]ρb
ρa

=

∫ ρb

ρa

O2

[
f − E

ρ
f ′
∂L

∂E

]
dρ. (E1)

One choice for f is

f = e−iψ, (E2)

where ψ is defined by Eq. (29), such that fO2 = A2, f ′ = −2if/A2, and

− E
[
A2

ρ

∂L

∂E

]ρb
ρa

=

∫ ρb

ρa

A2

[
1 +

2i

A2

E

ρ

∂L

∂E

]
dρ. (E3)

Taking the real part gives

− E
[
A2

ρ

∂S

∂E

]ρb
ρa

=

∫ ρb

ρa

[
A2 − 2E

ρ

∂P

∂E

]
dρ. (E4)

and then letting ρb →∞ (noting that the integrand ∼ 1/ρ3 for large ρ) yields a relation for

∂S/∂E:

E

[
A2

ρ

∂S

∂E

]
ρa

=

∫ ∞
ρa

[
A2 − 2E

ρ

∂P

∂E

]
dρ. (E5)

Interestingly, Eq. (49) ensures that the integrand in the r.h.s. of this equation is positive.

Alternatively, noting that

dφ

dr
=
P

r
and hence

∂

∂E

(
dφ

dr

)
=

1

r

∂P

∂E
, (E6)

the second term in the integrand of Eq. (E4) can be integrated to give

E

[
−A

2

ρ

∂S

∂E
+ 2

∂φ

∂E

]ρb
ρa

=

∫ ρb

ρa

A2 dρ, (E7)
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which happens to be equivalent to Eq. (A.31) of Lane and Thomas [1, p. 352]. The asymp-

totic behavior of A2 for large ρ can be subtracted[
−EA

2

ρ

∂S

∂E
+ 2E

∂φ

∂E
− ρ− η log(2ρ)

]ρb
ρa

=

∫ ρb

ρa

(A2 − 1− η

ρ
) dρ

(E8)

in order to allow ρb →∞ to be taken:[
E
A2

ρ

∂S

∂E
− 2E

(
∂φ

∂E
− ∂σ

∂E

)
+ ρ

+ η log(2ρ) + η

]
ρa

=

∫ ∞
ρa

(A2 − 1− η

ρ
) dρ,

(E9)

where the asymptotic forms of the functions have been used to evaluate the surface terms

at ∞.

It is also natural to investigate the integral relations arising from considering solutions

O∗1 and O2 with O2 → O1. Assuming that O = A exp(iφ) and multiplying through by an

arbitrary function g before integrating yields:

−E
[
g

(
A2

ρ

∂S

∂E
− 2

∂φ

∂E

)]ρb
ρa

=

∫ ρb

ρa

[
gA2 − Eg′

(
A2

ρ

∂S

∂E
− 2

∂φ

∂E

)]
dρ.

(E10)

These relations are not independent of those derivable from Eq. (E1).
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