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The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole
correlations have usually been interpreted as rotational excitations on top of octupole vibration in
the language of collective models. In this paper, we report a deep analysis of the odd-even parity
splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N = 88
within a full microscopic framework of beyond mean-field multi-reference covariant energy density
functional theory. The dynamical correlations related to symmetry restoration and quadrupole-
octupole shape fluctuation are taken into account with a generator coordinate method combined
with parity, particle-number, and angular-momentum projections. We show that the behavior of
odd-even parity splittings is governed by the interplay of rotation, quantum tunneling and shape
evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-
parity states is exhibited in the neutron-rich Ba isotopes.

PACS numbers: 21.10.-k, 21.10.Re, 21.60.Jz

I. INTRODUCTION

Atomic nuclei with neutron number or proton num-
ber around 34, 56, 88, 134 are expected to have strong
octupole correlations as there are single-particle partner
states with orbital angular momentum difference ∆ℓ = 3
around Fermi surface [1–3]. These nuclei are character-
ized with the existence of low-lying parity-doublet states
and enhanced electric octupole transition (E3) strengths.
The typical example nuclei 144Ba [4, 5] and 224Ra [6]
are suggested to have a stable reflection-asymmetric (or
pear-like) shape in intrinsic frame. In contrast to the
low-lying states with an alternating parity in reflection-
asymmetric diatomic molecular systems, the negative-
parity states 1−, 3−, 5−, . . . in octupole deformed nuclei
are shifted up in energy with respect to positive-parity
states 2+, 4+, 6+, . . . at low spin region. It seems that
the negative- and positive-parity states form two differ-
ent rotational bands. This peculiar feature, referred to
as either odd-even staggering or parity splitting, indicates
a possible existence of large quantum shape fluctuation
in octupole shapes. On the other hand, the amplitude
of parity splitting is gradually decreasing with the in-
crease of spin and the two rotational bands merger into
one. In other words, starting from a certain angular mo-
mentum I, a molecular-type band ordered in energy as
I+, (I+1)−, (I+2)+, . . . , is exhibited. This phenomenon
seems to be common in atomic nuclei with octupole cor-
relations, even though their staggering amplitudes differ
from each other in detail.
There are several attempts to explain the observed

odd-even parity splittings based on different theoretical
models. Nazarewicz et al. proposed to understand the
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parity splitting by studying the overlap of parity oper-
ator for the intrinsic state on which the two rotational
bands are built, even though they did not provide a
deep analysis of the parity splittings in their cranking
Woods-Saxon-Bogoliubov method [7]. Jolos et al. pro-
posed a picture of rotation-induced second-order phase
transition from dynamical octupole to static octupole
shapes based on a one-dimensional collective model with
phenomenological spin-dependent potentials [8, 9]. Gar-
rote et al. found that the octupole deformations of the
negative- and positive-parity states in 144Ba from a self-
consistent cranked Hartree-Fock-Bogoliubov (HFB) cal-
culation with parity projection are obviously different
in low-spin region. As the spin increases up to a cer-
tain value, the octupole deformations become close to
each other. These results indicate that the odd-even
parity splittings are probably originated from the differ-
ently deformed intrinsic wave functions for the positive-
and negative-parity states [10]. Minkov et al. proposed
a collective model within which they ascribed the odd-
even parity staggering to the interplay between the oc-
tupole shape oscillation mode and the stable quadrupole-
octupole rotation mode [11]. Frauendorf interpreted the
strong octupole correlations of rotational bands in the
light actinides as the condensation of rotational-aligned
octupole phonons [12]. He attributed the odd-even parity
splittings to the discrete phonon energy and parity con-
servation. Recently, Yao et al. developed a beyond mean-
field multi-reference covariant density functional theory
(MR-CDFT) by implementing simultaneously particle
number, parity, and angular momentum projections onto
generator coordinate method (GCM) and applied this
method to understand the spin-dependent parity split-
tings in 224Ra [13]. It turns out that the attenuation
of parity splitting amplitude with the increase of spin is
related to the octupole shape stabilization of positive-
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parity states, the shapes of which drift gradually toward
those of negative-parity ones. This picture is close to,
but containing more information from shape fluctuations
than that by Garrote et al. [10] based on the cranking
HFB calculation with parity projection.

The two questions to be asked naturally are 1) whether
the picture exhibited in the low-spin parity-doublet states
of 224Ra also exists in octupole shaped nuclei of other
mass region and 2) wether there is a direct connection
between the spin-dependent staggering behaviors and nu-
clear shape evolution. The neutron-rich Ba isotopes pro-
vide good examples to analyze in deep the mechanisms
for the spin-dependent parity splittings as the spectro-
scopic properties of their low-lying states with both pos-
itive and negative parities have been measured [4, 5, 14].
On the theoretical side, octupole correlations in the Ba
isotopes have been demonstrated with either mean-field
approaches [15–20], or a quadrupole-octupole collective
Hamiltonian based on mean-field solutions [21, 22], or
the interacting Boson model with Hamiltonian parame-
ters fitted to the mean-field energy surface [23] or the
most recent symmetry-conserved GCM [14, 24]. In the
above theoretical studies, however, the mechanisms for
the parity splittings are seldom discussed in detail.

The covariant density functional theory (CDFT) has
achieved a great success in nuclear physics [25–28]. To go
beyond mean-field approximation, projection techniques
and GCM based on the mean-field solutions have been
implemented into the CDFT. This beyond mean-field
method is often called MR-CDFT, which has been ap-
plied to study the collective excitations of axially [29] and
triaxially deformed nuclei [30–33]. Recently, this method
has been extended to understand the spin-dependent par-
ity splittings in the octupole deformed nucleus 224Ra [13],
the anharmonicity of multi-octupole-phonon excitations
in 208Pb [34], the molecular-like clustering structure in
20Ne [35], the nuclear matrix elements of neutrinoless
double beta decay [36–39], and the low-lying states of
hypernuclei [40, 41].

In this paper, we present a comprehensive study of oc-
tupole correlations in Ba isotopes and perform a deep
analysis of the mechanisms that are responsible for their
spin-dependent parity splittings based on the MR-CDFT.
We show that the staggering behaviors in excitation en-
ergies of odd-even spin states are governed by the in-
terplay of rotation, quantum tunneling and shape evo-
lution. All these effects can be taken into account si-
multaneously and full microscopically in the MR-CDFT.
The paper is organized as follows. The framework of
the MR-CDFT and numerical details are introduced in
Sec. II. The properties of the low-lying states and the
spin-dependent parity splittings in the neutron-rich Ba
isotopes are discussed in Sec. III. A brief summary of
this work is given in Sec. IV.

II. THE MODEL

In the MR-CDFT for nuclear quadrupole-octupole col-
lective excitations, the wave functions |ΨJπ

α 〉 of low-lying
parity-doublet states are constructed as a linear combina-
tion of a set of quantum-number projected nonorthogonal
mean-field states within the GCM framework,

|ΨJπ
α 〉 =

∑

κ={K,q}

fJπα
κ P̂ π|ΦJKNZ(q)〉, (1)

where the P̂ π is the parity projection operator defined
by the parity operator P̂ as follows

P̂ π =
1

2
(1 + πP̂ ). (2)

The index α = 1, 2, . . . in Eq. (1) labels different states
for a given spin-parity Jπ. The nonorthogonal wave func-
tion |ΦJKNZ(q)〉 is for an intrinsic state projected onto
angular momentum J and particle numbers of neutrons
(N) and protons (Z)

|ΦJKNZ(q)〉 = P̂ J
MK P̂N P̂Z |q〉 (3)

where the expressions for the projection operators P̂Gs
(G ≡ J,N,Z) have been introduced in detail in text-
book [42]. The generator coordinate q stands for the
discritized deformation parameters {β2, β3} of the refer-
ence states from deformation constrained selfconsistent
mean-field calculation [43] based on a universal relativis-
tic energy functional PC-PK1 [44]. The deformation pa-
rameters βλ of quadrupole (λ = 2) and octupole (λ = 3)
shapes are defined as

βλ ≡
4π

3ARλ
〈q|rλYλ0|q〉, R = 1.2A1/3, (4)

with A being mass number of the nucleus. The weight
function fJπα

κ and energy EJπ
α of each state Jπ is de-

termined with variational principle which leads to the
Hill-Wheeler-Griffin equation,

∑

κb

[

H
Jπ
κa,κb

− EJπ
α N

Jπ
κa,κb

]

fJπα
κb

= 0 (5)

where the Hamiltonian kernel H Jπ
κa,κb

and norm kernel

N Jπ
κa,κb

are given by,

O
Jπ
κa,κb

= 〈ΦJKaNZ(qa)|ÔP̂ π|ΦJKbNZ(qb)〉 (6)

with the operator Ô representing Ĥ and 1, respectively.
The many-body wave functions |q〉 for the whole

atomic nucleus in intrinsic frame are generated from de-
formation constrained relativistic mean-field (RMF) plus
BCS calculation, where the Dirac equation for single-
particle wave functions is solved in a three dimensional
isotropic harmonic-oscillator basis with 12 major shells.
The oscillator frequency is given by ~ω0 = 41A−1/3
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(MeV). Axial and time-reversal symmetries are imposed
to reduce the computational burden. In this case, the
value of K in Eq. (1) is only zero and this index is
dropped out subsequently. Two of the three Euler an-
gles in the angular momentum projection can be carried
out analytically. The numbers of mesh points in remain-
ing one Euler angle for angular momentum projection
and the gauge angle for particle number projection are
chosen as 16 and 9, respectively. The Pfaffian formulas
with the occupation probability truncated in canonical
basis [45, 46] are implemented to calculate norm over-
laps in the norm kernel. Details on the truncation of
the model space have been introduced in Ref. [30]. The
Hamiltonian kernel is calculated with the mixed-density
prescription [47].The convenience of this choice regard-
ing consistency with the mean field was discussed in
Ref. [48] and the failure of other prescriptions presented
in Ref. [49]. Though the prescription brings with it spu-
rious divergences and ”steps” in multi-reference energy
density functional (EDF) calculation [50], it does not pro-
duce an unresolvable ambiguity when used together with
the relativistic EDF that is a functional of densities and
currents with integer powers. A set of about 40 reference
states in the (β2, β3 ≥ 0) deformation plane is adopted
in the GCM calculation. The configurations with β3 < 0
are included automatically by using the parity opera-
tor. More details about the calculations with symmetry-
conserved GCM are described in Refs. [31, 51, 52].

III. RESULTS AND DISCUSSIONS

Figure 1 displays the ratio RJ/2 of excitation energy of

each state with angular momentum J to that of 2+1 state
for neutron-rich Ba isotopes. It is seen that staggering
behavior is exhibited in all the Ba isotopes that are con-
cerned, even though the amplitude is somewhat different
from each other. The staggering amplitude is overall de-
creasing with the increase of spin. These features are rea-
sonably reproduced by the present configuration-mixing
MR-CDFT calculation, except for 142Ba. The quality of
reproducing the patterns in RJ/2 provides us a confidence
to analyze the underlying mechanisms responsible for the
energy-staggering behavior in the parity-doublet states
with the MR-CDFT. It is noted that the RJ/2 for 142Ba
as a function of angular momentum J deviates from data.
As it will be discussed later, it is ascribed to the obviously
overestimated excitation energy of the 2+1 state. A way
to cure this deficiency is to adopt the intrinsic reference
states optimized for each angular momentum J in the
so-called projection-before-variation (PBV) scheme. In
this case, the excitation energy of the 2+1 is expected to
decrease as the rotational structure will be determined
by the Thouless-Valatin moment of inertia, instead of
the Yoccoz moment of inertia [42, 53]. As an approxi-
mation of the PBV, one may choose the cranked states
without time-reversal invariance as the reference states
in the GCM calculations [54]. Such kind of calculation is
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FIG. 1. (Color online) The ratio RJ/2 (defined as

Ex(J
π)/Ex(2

+

1 )) of the excitation energy of each Jπ state
to that of 2+1 state as a function of the angular momentum
J(~). The filled symbols are for data, while the open sym-
bols are for the results from the present configuration-mixing
calculations.

beyond the scope of this work.
Supposing each spin-parity state Jπ is built on a sin-

gle configuration |q(β2, β3)〉, one can derive the energy
EJπ(q) for the state Jπ,

EJπ(q) =
〈Ĥ〉Jq + π〈ĤP̂ 〉Jq

〈1〉Jq + π〈P̂ 〉Jq
, (7)

where the overlap of the operator Ô is defined as 〈Ô〉Jq ≡

〈ΦJNZ(q)|Ô|ΦJNZ(q)〉. From the above expression for
the energy of each spin-parity state, one can calculate
the ratio RJ/2 for the spin-parity state Jπ, which for odd
J and negative parity has the following two limits

RJ/2 ≃











〈Ĥ〉Jq

〈Ĥ〉2q
·
〈1〉2q
〈1〉Jq

, 〈P̂ 〉Jq(β3 6=0) → 0

+∞ , 〈P̂ 〉Jq(β3 6=0) → 1

(8)

One notices that the overlap of parity operator for
a reflection-asymmetric intrinsic state (β3 6= 0),

〈q(β2, β3)|P̂ |q(β2, β3)〉 = 〈q(β2, β3)|q(β2,−β3)〉. This
overlap is decreasing rapidly from one to zero with the
increase of β3, see Fig. 7 for 144Ba or Ref. [13] for 224Ra.
From Eq. (8), one expects that the ratio RJ/2 with odd-
J is a large number for the configuration with a small
β3 value. At a sufficient large value of β3, the quan-
tities 〈P̂ 〉Jq(β3 6=0) and 〈HP̂ 〉Jq(β3 6=0) approach to zero,
in which case, the positive- and negative-parity states
share a same energy expression, cf. Eq. (7). As a re-
sult, the negative-parity states merger into the band of
positive-parity states and there is no staggering. Con-
sidering the fact that the overlap 〈P̂ 〉Jq of a quantum-
number (J,N,Z) projected state is usually much smaller

than 〈q|P̂ |q〉, the speed of transition in between these
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FIG. 2. (Color online) (Upper panels) The excitation energy of states projected onto particle number, angular momentum and
parity based on an individual configuration for 144Ba. (Lower panels) The ratio RJ/2 as a function of angular momentum J(~).

two limits is faster than that without the particle-number
and angular momentum projections. The above analysis
indicates that the overlap of parity operator 〈P̂ 〉Jq(β3 6=0),
which reflects the penetrability of the barrier separating
the two octupole minima at q(±β3), affects the odd-even
parity splittings and this effect is changing with the spin.
Taking 144Ba as an example, we perform a de-

tailed study on the excitation energy of parity-doublet
states based on a set of differently shaped configu-
rations with quadrupole deformation parameter β2 =
0.0, 0.1, 0.2, 0.3, 0.4 and octupole deformation parameter
β3 = 0.1, 0.2, 0.3, respectively. Figure 2 displays the nu-
merical results for the excitation energy and the ratio
RJ/2 for each case. Obviously, one can see that the size
of octupole deformation parameter plays a decisive role
in the staggering behavior for the low-spin parity-doublet
states. Specifically, one finds

• For β3 = 0.1, the staggering amplitude increases
roughly with the quadruple deformation parameter
β2 of the configuration. Moreover, spin-dependent
staggering amplitude is exhibited even in the re-
sults of calculation based on a single configuration.
This phenomenon can be understood from the spin-
dependent overlap 〈P̂ 〉Jq.

• For β3 = 0.2 or 0.3, the odd-even parity states
are interleaving regardless of the value of quadruple
deformation as the overlap 〈P̂ 〉Jq is close to zero.
There is no evident staggering.

The octupole deformation parameter of the predominant
configuration is usually in between 0.1 and 0.2 and thus
the energy spectra of these nuclei exhibit similar patterns
to those displayed in the left-bottom panel (β2 = 0.1
case) of Fig. 2. To the best of our knowledge, no one
has found any single atomic nucleus that possesses inter-
leaving odd-even parity states in their low-spin states as
illustrated in the middle(right)-bottom panel of Fig. 2.
Besides, it is interesting to notice that the 3− state is
predicted to be the first excited state for the configura-
tion with β2 = 0 and β3 = 0.1, or 0.2. This is exactly
the case that has been found in closed-shell nucleus like
208Pb [34].

Let us move on to some realistic cases, the neutron-
rich Ba isotopes around neutron number N = 88, in
which there are mixings of differently quadrupole-octuple
shaped configurations. Figure 3 displays mean-field en-
ergy surfaces of even-even Ba isotopes 140−154Ba in β2-β3

deformation plane. These energy surfaces are essentially
the same as Fig.6 in Ref. [22]. Instead of constructing a
collective Hamiltonian based the mean-field solutions, we
carry out an exact GCM calculation in this work. The
existence of octupole deformed minima in 144−150Ba is a
consequence of strong octupole-octupole interactions be-
tween pairs of single-particle orbitals near the Fermi sur-
face with orbital (ℓ) and total (j) angular momenta differ-
ing by 3~ around the Fermi level, i.e. the proton (1h11/2,
2d5/2) and the neutron (1i13/2, 2f7/2) in neutron-rich Ba
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isotopes [15]. For 142,152,154Ba, their energy surfaces are
slightly softer in β3 direction than those of 144−150Ba.
Similar to what has been found in Th isotopes [55], the
collectivity of both quadrupole and octupole types is de-
veloping as the neutron number increases from N = 84
to N = 92. The development of quadrupole and octupole
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collectivity is demonstrated more clearly in the evolution
of excitation energies of the 2+1 state and the E2, and
E3 transition strengths, see Fig. 4. The corresponding
data are reasonably reproduced except for the obvious
overestimation of the excitation energy of the 2+1 state in
142Ba. Together with the somewhat underestimation of
the E2 transition strength between ground state and the
2+1 state, one may conclude that the quadrupole collectiv-
ity in 142Ba is underestimated in the present calculation.

To understand the staggering behaviors in the low-
lying parity-doublet states in neutron-rich Ba isotopes,
c.f. Fig. 1, it is helpful to plot the distribution of their
collective wave functions in β2-β3 plan. Figs. 5 and 6 dis-
play the collective wave functions |gJπα |2 for the low-lying
parity-doublet states for 144,146,148,150Ba, where the or-
thonormal collective wave function gJπα is constructed as

gJπα (qa) =
∑

qb

[

N Jπ
]1/2

qa,qb

fJπα
qb

. It is shown that the

distribution of the collective wave function for the neg-
ative parity state is not evidently changed with the in-
crease of spin, while that for the positive-parity states are
changing gradually with spin and become close to that of
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FIG. 7. (Color online) The distribution of the overlap 〈q|P̂ |q〉
of parity operator for each intrinsic state of 144Ba in the β2-
β3 plane. The average deformation 〈βλ〉 ≡

∑
q βλ|g

Jπ
α |2 with

λ = 2, 3 and J = 0, 1, . . . , 10 for the parity-doublet states in
144Ba is indicated with filled circles (π = +) and open squares
(π = −).

negative-parity state when the spin increases up to a cer-
tain value. In this evolution process, the octupole defor-
mation of the predominant configuration for the positive-
parity state is increasing and also becomes close to that
for the negative parity state. It is shown more clearly in
Fig. 7, where the average quadrupole-octupole deforma-
tion of each spin-parity state as a function of spin has
been plotted. This picture is similar to that presented
in the parity-doublet states of 224Ra [13]. As discussed
in Fig. 2, the RJ/2 is closely related to the quadrupole-
octupole deformation of the configuration on which the
energy spectrum is built. As the increase of spin up to
J = 10, the average octupole deformation of even-spin
and positive-parity states is increasing up to β3 ≃ 0.16
and the odd-even staggering have the tendency to disap-
pear, cf. the discussions on Fig. 2. Therefore, the shift
of the predominant configuration in the positive-parity
state with the increase of spin also affects the odd-even
parity staggering behaviors in the neutron-rich Ba iso-
topes.

IV. SUMMARY

We have presented a symmetry-conserved beyond-
mean-field study of low-lying parity-doublet states in

neutron-rich Ba isotopes with the MR-CDFT, where the
dynamical correlations related to restoration of broken
symmetries and to fluctuations of quadrupole-octupole
shapes have been taken into account with the exact
generator coordinate method combined with particle-
number, angular-momentum, and parity projections.
Both the energy spectrum and the E2, E3 transitions are
reasonably reproduced in a full microscopic way. Par-
ticular emphasis has been placed on the analysis of the
odd-even parity splittings at the low-spin region. By car-
rying out a set of calculations based on a single configu-
ration, we have demonstrated that the behavior of odd-
even parity splittings is mainly governed by the quan-
tity 〈P̂ 〉Jq, which is closely related to the configuration
on which the energy spectrum is built. Moreover, the
configuration-mixing calculations have shown that with
the increase of spin, the shapes of the negative-parity
states in the neutron-rich Ba isotopes are much more sta-
ble than those of positive-parity states, the predominant
configuration of which is shifting from a weakly octupole
deformed shape to that of negative-parity states. This
picture is similar to that found in 224Ra. It confirms the
conjecture made in Ref. [13] that the rotation-induced
octupole shape stabilization is a common phenomenon
in some actinides and rare-earth nuclei. The above two
analysis convince us that the spin-dependent parity split-
ting is governed not only by the octupole shape stabiliza-
tion, but also by the interplay of rotation and quantum
tunneling. We note that our present study is based on
the static intrinsic states with time-reversal invariance.
In other words, the reference states which server as the
basis of GCM wave functions, are not allowed to change
with angular momentum and only the mixing amplitudes
vary with rotation. A more comprehensive way to study
the evolution of nuclear shape with rotation requires the
choice of cranked states as the reference states in the
MR-CDFT calculation. Work along this direction is in
progress.
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