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We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the ∆-
isobar ∆(1232) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use
pion-nucleon (πN) low-energy constants (LECs) from a Roy-Steiner analysis of πN scattering data,
optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon
scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the
binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method
to compute binding energies, radii, and neutron skins. We find that radii and binding energies are
much improved for interactions with explict inclusion of ∆(1232), while ∆-less interactions produce
nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter
is significantly improved, and its symmetry energy is consistent with empirical estimates.

PACS numbers: 21.30.-x, 21.10.-k, 21.45.-v, 21.60.De

I. INTRODUCTION

In recent years, ab initio calculation of atomic nuclei
with predictive power have advanced from light [1–4] to
medium-mass nuclei [5–9]. Such calculations are only
as good as their input, i.e. nucleon-nucleon (NN) and
three-nucleon (NNN) interactions, therefore the quest
for more accurate and more precise nuclear potentials is
an ongoing endeavor at the forefront of research [10–20].
Here, potentials from chiral effective field theory (χEFT)
– based on long-ranged pion exchanges and short-ranged
contact interactions – play a dominant role [21, 22], be-
cause they are expected to deliver accuracy (via fit to
data) and precision (via increasingly higher orders in the
power counting). As it turns out, however, state-of-the-
art χEFT potentials that are accurate for the lightest
nuclei with masses A = 2, 3 vary considerably in their
saturation point for nuclear matter [14] and in their bind-
ing energy for heavier nuclei [20, 23, 24].

This sensitivity of the saturation point to the details of
the χEFT interaction is not well understood [25] and also
puzzling from an EFT perspective. A practical approach
to this dilemma consists of constraining χEFT potentials
to reproduce experimentally determined binding energies
and charge radii of nuclei as heavy as oxygen [18]. In this
work, we will follow a different approach and explicitly
include the ∆ isobar ∆(1232), abbreviated ∆ in the fol-
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lowing, as a low-energy degree of freedom in addition
to pions (π) and nucleons (N). We recall that the ∆-N
mass-splitting δ ≡M∆−MN ≈ 293 MeV is roughly twice
the pion mass (Mπ ∼ 140 MeV) and well below the ex-
pected breakdown scale of χEFT potentials [21, 22]. Fur-
thermore, the ∆ also couples strongly to the πN system.
For these reasons, the early chiral NN interactions [26–
28] included the ∆ degree of freedom. Indeed, van Kolck
as well as Bernard et al. showed that the low-energy con-
stants (LECs) of the πN interaction in a ∆-less χEFT re-
ceive a substantial contribution via resonance saturation.
As nuclear interactions from χEFT with and without ∆’s
have a similar structure otherwise, only little effort was
invested in producing quantitative ∆-full χEFT poten-
tials. We refer the reader to the reviews [21, 22] for ex-
tensive discussions of this topic.

Recently, Piarulli et al. produced minimally non-local
χEFT NN potentials at next-to-next-to-next-to leading
order (N3LO), with ∆’s included up to next-to-next-
to leading order (NNLO), using values for the sublead-
ing πN LECs c1, c2, c3, c4 from Ref. [31]. Dropping the
non-local terms led to the local potentials of Ref. [32].
Two different approaches augmented these local poten-
tials with NNN forces up to NNLO. The corresponding
diagrams of the NNN force, some NN diagrams, and
the most relevant LECs are shown in Fig. 1. Logoteta
et al. adjusted the LECs cD and cE of the short-ranged
NNN terms to reproduce the saturation point of nu-
clear matter. However, they did not report results for
few-nucleon systems. In contrast, Piarulli et al. adjusted
cD and cE to reproduce properties of nuclear systems
with mass number A = 3. Their quantum Monte Carlo
calculations yielded accurate results for spectra of light
nuclei up to 12C. We note that the potentials by Logoteta
et al. and Piarulli et al. employ values for cD and cE that
differ in signs and magnitudes.

In this paper we present a systematic construction
and comparative analysis of non-local ∆-full and ∆-less
χEFT potentials at LO, NLO, and NNLO, and report re-
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FIG. 1. (Color online) Schematic figure of relevant dia-
grams that enter in ∆-full χEFT at leading order (LO),
next-to-leading order (NLO), and next-to-next-to-leading or-
der (NNLO). The leading πN and πN∆ axial couplings are
denoted by gA and hA, respectively. Note that there are no ∆
contributions at LO. At NLO, the NN contact interactions
also remain unchanged. However, the leading-order NNN
interaction, i.e. the well-known Fujita-Miyazawa term [35],
appears at this order, see also Ref. [36]. The ∆ contributions
to the NNN interaction at NNLO vanish due to the Pauli
principle or are suppressed and demoted to a higher chiral or-
der. Besides the subleading πN LECs c1, c2, c3, c4, the NNN
diagrams contain two additional LECs; cD and cE .

sults for light- and medium-mass nuclei, and infinite nu-
cleonic matter. We constrain the relevant short-ranged
LECs using experimental data from nuclear systems with
mass numbers A = 2, 4 and use πN LECs determined
in a recent high-precision analysis [37] based on the
Roy-Steiner equations [38]. We do not include any ad-
ditional contact operators beyond NNLO in Weinberg
power counting. We find that the resulting ∆-full poten-
tials yield accurate charge radii and much improved bind-
ing energies for medium mass nuclei, and reproduce the
saturation point of symmetric nuclear matter within es-
timated EFT-truncation errors. Furthermore, estimates
of the EFT-truncation errors furnish a discussion of the
improved convergence rate of the ∆-full χEFT expansion
compared to the ∆-less theory.

II. OPTIMIZATION OF INTERACTIONS

To isolate the effects of the ∆ isobar in the descrip-
tion of the saturation properties of nucleonic matter
we compare our results with ∆-less χEFT potentials
at LO, NLO, and NNLO. Other than the inclusion of

the ∆-isobar, the ∆-full and the ∆-less interactions
are constructed following identical optimization proto-
cols. For the description of the interaction we build on
work [26, 31, 36, 39, 40] and treat the ∆-N mass dif-
ference δ ≡ M∆ −MN as an additional small scale. A
power-counting for this approach is provided by the so-
called small-scale expansion [39]. This is identical to the
conventional heavy-baryon formulation of χEFT which is
already used for including the nucleon mass-scale with-
out any ∆ isobars. The ∆-less pion-exchanges in the NN
sector up to NNLO are given in Ref. [16]. The expres-
sions for the NN contact potentials at LO and NLO are
given in e.g. Ref. [22], and the ∆ contributions to the
leading and sub-leading 2π-exchanges in the NN poten-
tial are from Ref. [31]. Charge-independence breaking
terms are included in the LO contact LECs as well as
the one-pion exchange. Following Ref. [41] we remove
all contributions that are proportional to the subleading
πN∆ coupling b3 + b8 by renormalizing the πN∆ axial
coupling hA and the subleading πN couplings c2,3,4. We
follow Siemens et al. and use hA = 1.40, gA = 1.289, and
the central Roy-Steiner values of the πN LECs for the
∆-full and ∆-less potentials up to third order. We re-
call that ∆-less χEFT potentials often employ πN LECs
with values that differ from what is found in πN scat-
tering, because the absence of ∆’s strongly renormalize
the πN couplings c2,3,4 in the three-nucleon sector [42].
The ∆-full theory is more consistent in this regard and
the ci’s appear to be more natural in size.

The expressions for the three-nucleon diagrams at
NNLO are from Ref. [11]. The NLO NNN -force in the
∆-full theory is given by the well-known Fujita-Miyazawa
term [35]. This topology is identical in structure to the
∆-less 2π-exchange NNN interaction when using the
resonance-saturation values for the relevant πN LECs

c∆3 = −2c∆4 =
4h2

A

9δ
= −2.972246 GeV−1.

To construct quantitative ∆-full χEFT potentials we
need to determine the numerical values of the LECs in
the LO and NLO contact potentials and the cD and cE
terms in the NNN interaction at NNLO. To optimize the
contact LECs we use a Levenberg-Marquardt algorithm
with machine-precise derivatives from automatic differ-
entiation [20]. The objective function for the LO and
NLO contact LECs consists of the sum of squared differ-
ences between the theoretical partial-waveNN scattering
phase shifts and the corresponding values from the the
Granada analysis [43] up to 200 MeV scattering energy in
the laboratory system. At LO, we only use phase shifts

up to 1 MeV. The neutron-neutron LEC C̃
(nn)
1S0

is con-
strained to reproduce the effective range expansion in the
1S0 channel. At NNLO we use the same optimization al-
gorithm to find the cD and cE LECs that simultaneously
reproduce the binding energy and point-proton radius
of 4He. Although correlated, these A = 4 observables
provide enough information to identify a unique mini-
mum in the cD-cE plane that is sufficient for the purpose



3

of comparing the effects in nuclei and nucleonic matter
due to the ∆ isobar. An extended regression analysis
or Bayesian inference approach including additional data
from many-nucleon systems or three-nucleon scattering
would generate interactions for use in detailed analyses
of atomic nuclei or model selection. In this work we focus
on the effects of the ∆-isobar in nucleonic matter.

To regulate the the interactions we use the usual non-
local regulators

f(p) = exp

[
−
(
p2

Λ2

)3
]

f(p, q) = exp

[
−
(

4p2 + 3q2

4Λ2

)3
]

in the NN and NNN interactions, resepectively. Here, p
and q denote the Jacobi momenta in the two-body system
and spectator nucleon, respectively, and Λ is the momen-
tum cutoff. The non-local regulator acts multiplicative,
i.e.

VNN (p′, p)→ f(p′)VNN (p′, p)f(p),

VNNN (p′, q′; p, q)→ f(p′, q′)VNNN (p′, q′; p, q)f(p, q).

To explore the sensitivity of the results with respect to
changes in the cutoff Λ we employ two common choices,
namely Λ = 450 MeV and Λ = 500 MeV. To regular-
ize the 2π-exchanges in conjunction with non-local regu-
lation we use the standard spectral-function regulariza-
tion (SFR) [44] with a cutoff Λ̃ = 700 MeV through-
out. It should also be pointed out that recent work,
e.g. Refs. [45–47], indicates that a carefully selected
local regulation of the long-ranged 2π-exchanges render
SFR redundant and yields an improved analytical struc-
ture of the scattering amplitude. However, the overall
existence of such scheme dependencies [48] will persist
as long as the chiral interactions cannot be order-by-
order renormalized, see e.g Ref. [49] for a recent analysis.
The numerical values of the employed πN LECs and the
optimized short-ranged LECs for the ∆-less as well as
the ∆-full potentials are given in Tables I and II. For
the masses of the pions (π±,0), proton, neutron, nucleon
(p, n,N), and ∆ we use the following values (in MeV):
Mπ± = 139.57018, Mπ0 = 134.9766, Mp = 938.272046,
Mn = 939.565379, MN = 938.918267, and M∆ = 1232,
respectively.

The statistical error from the Roy-Steiner analysis of
the πN scattering data, documented in Ref. [37], as well
as uncertainties due to the fit of the contact potentials,
are not considered any further in this work. When con-
trasted with the much larger systematic uncertainties
due to the truncation of the EFT, such statistical errors
presently play a lesser role [20, 50, 51]. It is important to
note that although the πN LECs are extracted from πN
data using a high-precision Roy-Steiner analysis, the cor-
responding LECs in the ∆-full sector are less precise due
to the large uncertainty in the underlying determination
of hA.

To provide a crude estimate of the EFT-truncation un-
certainty we follow Refs. [17, 52] and write the EFT ex-
pansion for an observable X as X = X0

∑∞
n=0 anQ

n.
Here X0 is the scale of the observable, given e.g. by
the LO prediction, an are dimensionless expansion coef-
ficients (with a1 = 0 in Weinberg power counting), and
Q ≡ p/Λb is the ratio of the typical momentum p and
the breakdown momentum Λb. The application of Bayes
theorem with boundless and uniform prior distribution of
the expansion coefficients an leads to an expression for
the truncation error at order NjLO (j = 0: LO, j = 1:
NLO, j = 2: NNLO) according to

σX(NjLO) = X0Q
j+2max(|a0|, |a1|, ..., |aj+1|), (1)

see Eq. (36) of Ref. [52]. This estimate is in semi-
quantitative agreement with a Bayesian uncertainty
quantification of the truncation error. The uncertainty at
LO is further constrained to at least the size of the con-
tribution of the higher chiral orders. For the breakdown
scale Λb, we start from Ref. [17] but use a more conser-
vative estimate of Λb = 500 MeV. We also estimate the
typical momentum-scale for bound state observables as
p ∼ mπ, and employ p ∼ pF (the Fermi momentum) for
infinite nucleonic matter, whereas for NN scattering we
extract the momentum scale max(prel,mπ)/Λ. We dis-
regard detailed numerical factors in the various possible
definitions of the relevant momentum scales for bound
states since the estimate in Eq. (1) is only valid up to
factors of order unity.

In Figs. 2, 3, and 4 we compare the quality of the
NN scattering phase shifts of the ∆-full and ∆-less in-
teractions with cutoff Λ = 450 MeV. The results for the
peripheral waves agree well with published interactions
that were analyzed in the Born approximation [31]. The
dashed lines show the ∆-less results, order by order from
red to green to blue. The full lines show the ∆-full re-
sults, and we remind the reader that LO is not affected
by the ∆ (see Fig. 1). Clearly, in several partial waves
the ∆-full χEFT interactions exhibit a faster order-by-
order convergence than the corresponding ∆-less formu-
lations. Somewhat surprisingly, the ∆NNLO results at
higher scattering energies, in particular for 1S0 and se-
lected peripheral waves, such as 1D2, are slightly less
accurate than the corresponding ∆-less order. A more
involved optimization strategy, such as Bayesian param-
eter estimation, could further illuminate this point. Nev-
ertheless, the Granada phase shifts fall on the envelope
of the estimated truncation errors and the results there-
fore seem reasonable. Although not shown, the computed
phase shifts for the Λ = 500 MeV interactions are very
similar and exhibit the same features.

Tables III and IV summarize our results for selected
bound-state observables in A ≤ 4 nuclei computed with a
Jacobi-coordinate version [53] of the no-core shell model
(NCSM) [3, 4]. All calculations are converged in 41 and
21 major oscillator shells with ~Ω = 36 MeV for A = 3
and A = 4, respectively. The charge radius and binding
energy of 4He were used to constrain the LECs cD and
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TABLE I. Numerical values of the LECs for ∆-full χEFT potentials with a momentum cutoff Λ = 450 MeV at LO, NLO,
and NNLO. The πN LECs c1,2,3,4 are taken from the Roy-Steiner analysis in Ref. [37], and for consistency we use hA = 1.40,
gA = 1.289, and Fπ = 92.2 MeV.

LEC LO(450) ∆NLO(450) ∆NNLO(450) LO(500) ∆NLO(500) ∆NNLO(500)
c1 − − −0.74 − − −0.74
c2 − − −0.49 − − −0.49
c3 − − −0.65 − − −0.65
c4 − − +0.96 − − +0.96

C̃
(nn)
1S0

−0.112927 −0.310511 −0.338023 −0.108522 −0.310256 −0.338223

C̃
(np)
1S0

−0.112927 −0.310712 −0.338139 −0.108522 −0.310443 −0.338320

C̃
(pp)
1S0

−0.112927 −0.309893 −0.337137 −0.108522 −0.309618 −0.337303

C̃3S1
−0.087340 −0.197951 −0.229310 −0.068444 −0.191013 −0.221721

C1S0
− +2.391638 +2.476589 − +2.395375 +2.488019

C3S1
− +0.558973 +0.695953 − +0.539378 +0.675353

C1P1
− +0.004813 −0.028541 − +0.015247 −0.012651

C3P0
− +0.686902 +0.645550 − +0.727049 +0.698454

C3P1
− −1.000112 −1.022359 − −0.951417 −0.937264

C3P2
− −0.808073 −0.870203 − −0.793621 −0.859526

C3S1−3D1
− +0.362094 +0.358330 − +0.358443 +0.354479

cD − − +0.790 − − −0.820
cE − − +0.017 − − −0.350

TABLE II. Numerical values of the LECs for ∆-less χEFT potentials with a momentum cutoff Λ = 500 MeV at LO, NLO,
and NNLO. The πN LECs c1,3,4 are taken from the Roy-Steiner analysis in Ref. [37], and for consistency we use gA = 1.289,
and Fπ = 92.2 MeV

LEC LO(450) NLO(450) NNLO(450) LO(500) NLO(500) NNLO(500)
c1 − − −0.74 − − −0.74
c3 − − −3.61 − − −3.61
c4 − − +2.44 − − +2.44

C̃
(nn)
1S0

−0.112927 −0.149559 −0.152421 −0.108522 −0.148625 −0.152130

C̃
(np)
1S0

−0.112927 −0.150034 −0.152630 −0.108522 −0.149167 −0.152327

C̃
(pp)
1S0

−0.112927 −0.149336 −0.151775 −0.108522 −0.148236 −0.151463

C̃3S1
−0.087340 −0.152884 −0.166118 −0.068444 −0.147784 −0.158592

C1S0
− +1.438619 +2.391093 − +1.479889 +2.394670

C3S1
− −0.684095 +0.446631 − −0.692660 +0.426020

C1P1
− +0.305070 +0.150981 − +0.304204 +0.160280

C3P0
− +1.207031 +0.909408 − +1.225764 +0.949224

C3P1
− −0.386920 −0.967768 − −0.385154 −0.923166

C3P2
− −0.167769 −0.696173 − −0.137914 −0.681166

C3S1−3D1
− +0.132948 +0.372585 − +0.133834 +0.368968

cD − − +1.790 − − +0.400
cE − − +0.130 − − −0.270

cE of the short-ranged three-nucleon force whereas the
NCSM results for A = 2, 3 nuclei are predictions. At
NNLO, all results except the binding energy of 2H, agree
with the experimental values within the estimated EFT-
truncation errors. The computed point-proton radii were
transformed to charge radii using a standard expression,
see e.g. Ref. [18].

III. PREDICTIONS FOR MEDIUM MASS
NUCLEI AND NUCLEONIC MATTER

In this Section we present results for selected finite
nuclei and infinite nucleonic matter. For nucleonic mat-
ter we present results for both ∆-less and ∆-full interac-
tions, while for finite nuclei we limit the discussion to the
∆-full interactions since the ∆-less interactions produce
nuclei that are not bound with respect to breakup into
α-particles. The computed binding energies and radii of
finite nuclei are consistent with our results for the satu-
ration point in symmetric nuclear matter.
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FIG. 2. (Color online) Neutron-proton scattering phase shifts for the contact partial waves using the ∆-full and ∆-less χEFT
potentials with non-local cutoff Λ = 450 MeV. All phases are compared to the results from the Granada phase shift analysis [43].
The bands correspond to the order-by-order EFT truncation error in the ∆-full approach, as described in the main text.

TABLE III. Binding energies (E) in MeV, charge radii (Rch) in fm, for 2,3H and 3,4He at LO, NLO, and NNLO with Λ = 450
MeV, with and without the ∆-isobar and compared to experiment. For the ground state of 2H we also present the quadrupole
moment (Q) in e fm2 and the D-state probability (PD) in %. Experimental charge radii are from Ref. [54]. Estimates of the
EFT truncation-errors are given in parenthesis, and at LO we report the truncation error belonging to the ∆-full expansion.

LO(450) NLO(450) ∆NLO(450) NNLO(450) ∆NNLO(450) Exp.
E(2H) 2.01(15) 2.02(12) 2.10(5) 2.14(3) 2.16(2) 2.2245
Rch(2H) 2.16(16) 2.167(16) 2.156(7) 2.1511(44) 2.1486(19) 2.1421(88)
PD(2H) 7.15(3.51) 3.43(1.02) 3.63(97) 3.70(28) 3.74(27) −
Q(2H) 0.322(41) 0.276(13) 0.277(11) 0.277(3) 0.277(3) 0.27a

E(3H) 10.91(2.38) 8.54(65) 8.65(62) 8.56(18) 8.53(17) 8.48
Rch(3H) 1.52(23) 1.70(5) 1.72(6) 1.74(1) 1.74(2) 1.7591(363)
E(3He) 9.95(2.21) 7.78(60) 7.85(58) 7.78(16) 7.73(16) 7.72
Rch(3He) 1.66(32) 1.91(7) 1.94(8) 1.96(2) 1.97(2) 1.9661(30)
E(4He) 39.60(11.3) 30.10(2.62) 29.32(2.83) 28.30(72) 28.29(78) 28.30
Rch(4He) 1.37(30) 1.59(9) 1.63(7) 1.68(3) 1.67(2) 1.6755(28)

a CD-Bonn value [22]

A. Finite nuclei

The many-body calculations for finite nuclei are per-
formed with the coupled-cluster (CC) method [5, 55–57].
We employ the translationally invariant Hamiltonian

H = T − Tcm + VNN + VNNN . (2)

Here, T denotes the total kinetic energy and Tcm the
kinetic energy of the center of mass. As the Hamilto-

nian (2) does not reference the center-of-mass coordinate,
the ground-state wave function is a product of an intrin-
sic and a Gaussian center-of-mass wave function [8, 58–
61]. The CC method yields a similarity transformed
Hamiltonian whose ground state is the product state
corresponding to a closed-shell nucleus. In the coupled-
cluster singles and doubles (CCSD) approximation, typ-
ically accounting for about 90% of the correlation en-
ergy, the ground-state is orthogonal to all 1-particle–1-
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FIG. 3. (Color online) Neutron-proton scattering phase shifts for selected peripheral partial waves using the ∆-full and ∆-less
χEFT potentials with non-local cutoff Λ = 450 MeV. All phases are compared to the results from the Granada phase shift
analysis [43]. The bands correspond to the order-by-order EFT truncation error in the ∆-full approach, as described in the
main text.

TABLE IV. Binding energies (E) in MeV, charge radii (Rch) in fm, for 2,3H and 3,4He at LO, NLO, and NNLO with
Λ = 500 MeV, with and without the ∆-isobar and compared to experiment. For the ground state of 2H we also present
the quadrupole moment (Q) in e fm2 and the D-state probability (PD) in %. Experimental charge radii are from Ref. [54].
Estimates of the EFT truncation-errors given in the parenthesis, and at LO we report the truncation error belonging to the
∆-full expansion.

LO(500) NLO(500) ∆NLO(500) NNLO(500) ∆NNLO(500) Exp.
E(2H) 2.04(16) 2.04(12) 2.12(5) 2.16(3) 2.18(2) 2.2245
Rch(2H) 2.15(16) 2.164(16) 2.153(7) 2.149(4) 2.1459(19) 2.1421(88)
PD(2H) 7.80(3.97) 3.55(1.17) 3.82(1.09) 3.93(32) 3.97(30) −
Q(2H) 0.317(42) 0.273(12) 0.276(11) 0.275(3) 0.276(3) 0.27a

E(3H) 10.47(1.97) 8.42(56) 8.91(43) 8.49(16) 8.50(12) 8.48
Rch(3H) 1.54(21) 1.71(5) 1.71(5) 1.75(1) 1.75(1) 1.7591(363)
E(3He) 9.50(1.80) 7.66(51) 8.11(40) 7.72(14) 7.70(11) 7.72
Rch(3He) 1.68(30) 1.93(7) 1.92(7) 1.97(2) 1.98(2) 1.9661(30)
E(4He) 37.00(8.69) 29.22(2.15) 30.70(2.38) 28.31(60) 28.31(65) 28.30
Rch(4He) 1.39(28) 1.60(7) 1.62(6) 1.68(2) 1.67(2) 1.6755(28)

a CD-Bonn value [22]

hole (1p-1h) and 2p-2h excitations. In addition to the
CCSD approximation we include leading-order 3p-3h ex-
citations perturbatively by employing the Λ-CCSD(T)
method [59, 62, 63]. This approximation typically cap-
tures about 99% of the correlation energy. We employ a
model space of 15 oscillator shells with ~Ω = 16 MeV,
and a cutoff E3max = 16~Ω for the maximum excita-

tion energy of three nucleons interacting via the three-
nucleon potential VNNN . This potential enters the CC
calculations in the normal-ordered two-body approxima-
tion [64, 65] in the Hartree-Fock basis.

To asses the impact of the ∆-isobar in finite nu-
clei we calculated the binding energies and charge radii
for 4He, 16O, and 40Ca order-by-order, i.e. at LO,
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FIG. 4. (Color online) Proton-proton scattering phase shifts for the contact and selected peripheral partial waves using the
∆-full and ∆-less χEFT potentials with non-local cutoff Λ = 450 MeV. All phases are compared to the results from the Granada
phase shift analysis [43]. The bands correspond to the order-by-order EFT truncation error in the ∆-full approach, as described
in the main text.

NLO, and NNLO. Figure 5 shows the results using
the ∆-full interactions with a momentum cutoff Λ =
450 MeV. The ground-state energies are E(16O) =
−108.8(11.4) , −120.3(6.4), and −117.0(1.8) MeV and
E(40Ca) = −216(97), −312(52), and −309(14) MeV at
LO, NLO, and NNLO, respectively. The charge radii are
Rch(16O) = 1.96(0.76), 2.63(0.36), and 2.73(0.10) fm and
Rch(40Ca) = 2.29(1.25), 3.41(0.61), and 3.55(0.17) fm
at LO, NLO, and NNLO, respectively. Before we ana-
lyze the results, we estimate the systematic uncertain-
ties due to the truncation of the EFT. Again we follow
Refs. [17, 66], use Eq. (1) and set the momentum scale
p = mπ for our low-energy observables. The predicted
charge radii are accurate at each order within uncer-
tainties. Already at NLO, which is independent of the
sub-leading 2π-exchange LECs ci, we obtain an accurate
description of both radii and binding energies of 4He,
16O and 40Ca. At NNLO, the charge radii also exhibit a
first sign of convergence in terms of the chiral expansion.
Binding energies exhibit a nearly identical order-by-order
increase in precision but somewhat underbind nuclei at
NNLO. These results demonstrate that the ∆-isobar can
play an important role also in low-energy nuclear struc-
ture and nuclear saturation [14, 50].

The ∆ degree of freedom also impacts the stability of
nclei with respect to breakup into alpha particles. At

LO, 16O and 40Ca are not stable with respect to al-
pha emission. Similar results were observed in pionless
EFT [67–69] and nuclear lattice EFT [25]. However, the
∆ modifies the 2π-exchanges between nucleons, and we
observe that the ∆-full interactions at NLO and NNLO
yield nuclei that are stable with respect to alpha emis-
sion. This is in stark contrast to results we obtained here
using the ∆-less NLO and NNLO interactions at cutoff
Λ = 450 MeV, and to those of Ref. [20].

Table V summarizes binding energies, radii, and also
the neutron skins of nuclei with closed subshells up to
48Ca. Note that the lack of a spin-orbit (LS) force at
LO results in energy-degeneracies that hamper CC cal-
culations of non LS-closed nuclei. Therefore, we can ob-
tain EFT truncation-errors only for 16O and 40Ca us-
ing Eq. (1). For 48Ca we predict a neutron skin of
Rskin = 0.15 fm at ∆NLO and ∆NNLO, consistent with
the recent ranges 0.14-0.20 fm and 0.12-0.15 fm from
Ref. [70] and Ref. [7], respectively.

Figure 6 shows the charge form-factor at ∆NLO and
∆NNLO, compared to NNLOsat [18] and data. The
charge form-factor is obtained by a Fourier transform of
the intrinsic charge density [7, 72], and agrees with data
for momentum transfers up to about q ≈ 2.5 fm−1. Also
for this quantity, the ∆NLO results indicate an improved
convergence of chiral expansion compared to the ∆-less
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TABLE V. Binding energies (E) (in MeV), charge radii (in fm), proton point radii (in fm), neutron point radii (in fm), and
neutron skin (in fm) for 8He, 16,22,24O, and 40,48Ca at ∆NLO and ∆NNLO, and compared to experiment.

E Rch Rp Rn Rskin

∆NLO ∆NNLO Exp. [71] ∆NLO ∆NNLO Exp. [54] ∆NLO ∆NNLO ∆NLO ∆NNLO ∆NLO ∆NNLO
8He 27.5 27.0 31.40 1.90 1.97 1.924(31) 1.77 1.85 2.63 2.70 0.85 0.85
16O 120.3 117.0 127.62 2.63 2.73 2.699(5) 2.49 2.61 2.47 2.58 −0.02 −0.03
22O 146.2 145.4 162.04 2.66 2.77 2.54 2.66 2.88 3.00 0.34 0.34
24O 152.2 151.6 168.96 2.70 2.81 2.59 2.71 3.11 3.22 0.52 0.51
40Ca 312.2 309.1 342.05 3.41 3.55 3.478(2) 3.31 3.45 3.26 3.40 −0.05 −0.05
48Ca 373.4 373.8 416.00 3.45 3.56 3.477(2) 3.36 3.47 3.51 3.62 0.15 0.15
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FIG. 5. (Color online) Ground-state energy (negative of bind-
ing energy) per nucleon and charge radii for selected nuclei
computed with coupled cluster theory and the ∆-full poten-
tial (Λ = 450 MeV). For each nucleus, from left to right: LO
(red triangle), NLO (green square), and NNLO (blue circle).
The black bars are data. Vertical bars estimate uncertain-
ties from the order-by-order EFT truncation errors σ(LO),
σ(NLO), and σ(NNLO). At NLO and NNLO we estimate a
conservative 95% confidence interval, i.e 1.96×σ. See the text
for details.

formulation.

We also computed spectra of various nuclei. These ex-
plorations exhibited mixed results: While the low-lying
states in 17O were in good agreement with data, 25O is
bound at ∆NNLO with respect to 24O by about 0.5MeV,
and the Jπ = 2+ state in 24O is too low. We believe that
these shortcomings should not distract from the main re-
sults reported in this work: accurate saturation proper-
ties at NLO in the ∆-full χEFT. We speculate that finer
details such as spectra will require us to go to higher order
in the NN interaction (as was done, e.g., in Ref. [34] by
including N3LO contacts), or to vary the ∆-full πN cou-
plings within their somewhat more generous uncertainty
limits due to the rather poorly known πN∆ coupling hA,
or to also use data of heavier nuclei in the optimization
of the interaction. The interactions constructed in this
work serve as excellent starting points for such endeavors.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

q [fm−1]

10−9
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10−1

|F
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)|2
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∆NLO

∆NNLO

Experiment

FIG. 6. (Color online) Elastic charge form factor of 48Ca
from NNLOsat (gray dash-dotted), ∆NLO (green dashed),
and ∆NNLO (blue solid line) compared to experimental data
(black).

B. Nucleonic matter

We turn to the CC calculations of nuclear matter
using ∆-full and ∆-less interactions up to NNLO. We
follow Ref. [73] and employ a Hamiltonian H = T +
VNN + VNNN . The basis is a discrete lattice in mo-
mentum space corresponding to periodic boundary con-
ditions in a cubic box of length L in position space, and
the discrete lattice momenta are given by 2π~ni/L, with
ni = 0,±1, . . .±nmax, and i = x, y, z. We used nmax = 4
as the maximum number of lattice points. The CC
calculations were carried out at the doubles excitation
level (2p-2h) with perturbative triples (3p-3h) corrections
[CCD(T)]. Due to translational invariance, there are no
1p-1h excitations. We use “closed-shell” lattice config-
urations with 66 neutrons for neutron matter, and 132
nucleons for symmetric nuclear matter. These nucleon
numbers exhibit only small finite-size effects [73, 74]. The
CCD(T) calculations were performed with the normal-
ordered two-body approximation for the NNN inter-
action [64, 65], i.e. the three-nucleon force enters the
normal-ordered Hamiltonian as 0-body, 1-body and 2-
body interactions; summing over 3, 2, and 1 particles
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in the reference state, respectively. All results are well
converged for nmax = 4 at all considered densities, i.e.
ρ ≤ 0.2 fm−3 To gauge the quality of the normal-ordered
two-body approximation, we also included the “residual”
NNN interaction (i.e. those that generate 3p-3h excita-
tions when acting on the reference) in perturbation the-
ory. We found that the residual NNN contribution is
negligible for neutron matter, and small (0.2-0.3 MeV
per nucleon) in symmetric nuclear matter. This suggests
that the normal-ordered two-body approximation for the
three-nucleon force is sufficiently precise for the ∆-full
interactions considered in this work.

In Fig. 7 we compare the results for the energy per nu-
cleon at different densities in symmetric nuclear matter
and pure neutron matter using ∆-full and ∆-less interac-
tions with a momentum cutoff Λ =450 MeV at LO, NLO,
and NNLO. The saturation points in symmetric matter
at NLO and NNLO shift towards considerably more re-
alistic values upon inclusion of the ∆. This observation
is consistent with our results for finite nuclei. For the
EFT truncation uncertainty we use Eq. 1, a relevant mo-
mentum scale p = pF , and the breakdown momentum
Λb = 500 MeV. The uncertainties also make the acceler-
ated convergence and consistency of the ∆-full expansion
more apparent. We note that our breakdown scale Λb is
rather conservative. For Λb & 650 MeV the truncation-
error bands of the ∆-full and ∆-less NNLO(450) inter-
actions no longer overlap in the region of the empirical
saturation density. We also note that nuclear matter does
not saturate at LO in the range of densities we studied,
and we remind the reader once more that the ∆ does not
enter at this chiral order.

Figure 8 shows the difference between the equations of
state for neutron matter and symmetric nuclear matter
for the Λ = 450 MeV cutoff. At the saturation density
(ρ0), indicated as vertical lines for the different orders,
this yields the symmetry energy (S0). Our results are
ρ0 = 0.18(1) fm−3, 22.8 . S0 . 36.5 MeV, and 46 .
L . 65 MeV at ∆NLO, and ρ0 = 0.165(1) fm−3, 23.6 .
S0 . 33.3 MeV, and 32 . L . 67 MeV at ∆NNLO. The
estimated EFT truncation error for ρ0 is very small at
∆NNLO because its central value and lower and upper
bounds have essentially the same saturation point. The
estimated EFT truncation error for S0 is the maximum
difference between the energies per particle in neutron
matter and symmetric nuclear matter, at the saturation
point. This uncertainty also decreases with increasing
order. Finally, the estimated uncertainty in the slope
(L) of the symmetry energy is taken from the ranges of
slopes of S0 at its upper and lower values. It is large even
at ∆NNLO and reflects that the slope in neutron matter
exhibits a greater variance at ∆NNLO than at ∆NLO,
see Fig. 7. We note that our predictions for the symmetry
energy and its density derivative at ∆NLO and ∆NNLO
are consistent with the recent estimates of Ref. [75, 76].

IV. SUMMARY

We presented results for selected finite nuclei and infi-
nite nucleonic matter using optimized interactions from
χEFT with explicit ∆-isobar degree-of-freedom. We opti-
mized both ∆-full and ∆-less interactions order-by-order
in the power counting up to NNLO, for two different
cutoffs, and with πN LECs from a recent Roy-Steiner
analysis of πN scattering. The NN contact potentials
up to NNLO were adjusted to NN phase shifts, while
the short-ranged parts of the NNN interactions were
constrained by energy and radius data on 4He. We em-
phasize that the only differences between the ∆-full and
∆-less interactions are due to the explicit inclusion of the
∆ isobar. In a detailed comparison, we found that radii in
nuclei up to 48Ca are accurate within EFT-truncation er-
ror estimates, and that binding energies – while improv-
ing order-by-order in precision – somewhat underbind
heavier nuclei. The saturation point in nuclear matter
is consistent with data within EFT error estimates. Our
results also show that the inclusion of ∆-isobars in the
nuclear interaction can address the long-standing prob-
lem regarding nuclear saturation. This work therefore
provides a valuable starting point for constructing more
refined ∆-full χEFT interactions, also at higher chiral
orders, with improved uncertainty estimates.
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