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Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear den-
sities obtained from ab initio no-core-shell-model (NCSM) calculations are to be used in reaction calculations,
translationally invariant nonlocal densities must be available.

Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM cal-
culations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal
one-body densities have not been considered so far. A major reason for this is that the procedure for removing
the center-of-mass component from NCSM wavefunctions up to now has only been developed for local densities.

Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained
from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state
densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components
in momentum as well as coordinate space.

Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration
increases as a function of the angular momentum. The relative magnitude of those contributions decreases with
increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is
given by the shell structure of the nucleus, and can not be described with simple functional forms.

PACS numbers: 21.60De,27.20.+n
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I. INTRODUCTION AND MOTIVATION

Recent developments of the nucleon-nucleon (NN) or three-nucleon (3N) interactions, derived from chiral effective
field theory, have yielded major progress [1–3]. These, coupled with the utilization of massively parallel computing
resources (e.g., see [4–7]), have placed ab initio large-scale simulations at the frontier of nuclear structure and reaction
explorations. Among other successful many-body theories, the ab initio no-core shell-model (NCSM) approach, which
has considerably advanced our understanding and capability of achieving first-principles descriptions of low-lying
states in light nuclear systems [8–12], has over the last decade taken center stage in the development of microscopic
tools for studying the structure of atomic nuclei. The NCSM concept combined with a symmetry-adapted (SA) basis
in the ab initio SA-NCSM [13] has further expanded the reach to the structure of intermediate-mass nuclei [14]. The
NCSM framework has been successfully extended to reactions of light nuclei at low energies (see e.g. [15–18]) by
combining the NCSM with resonating group methods. While this approach treats the many-body scattering problem
completely microscopically, reactions involving heavier nuclei or reactions at higher energies are usually treated by
reducing the many-body degrees of freedom to a more manageable few-body problem and thus introducing effective
interactions between relevant clusters. Those effective interactions may either be phenomenologically described by
fitting e.g. scattering data, or one may attempt to extract them from structure calculations combined with the
continuum. A path along this line has recently been proposed [19] based on the coupled-cluster approach to nuclear
structure.

Microscopic folding models for those effective interactions also have a long tradition. However, their main disad-
vantages is that they were usually constructed for closed shell nuclei using relatively simple models for the nuclear
structure input (see e.g. [20–22]). In order to open the path to account for the full microscopic structure of the clusters
and employ first-principle wave functions, as those derived in the ab initio NCSM, it is an important first step to
construct a one-body density, which is both nonlocal and translationally invariant, starting from one-body density
matrix (OBDM) elements obtained from NCSM calculations. The need for nonlocal densities has been recognized
in reaction theory, e.g., in treating the antisymmetrization between two localized clusters that accounts for particle
exchange [23], as well as in folding calculations of microscopic optical potentials [20, 22].

In this work we present a ‘proof-of-principle’ study that focuses on obtaining translationally invariant (ti) nonlocal
one-body densities and discuss their properties. We concentrate on the deformed oblate 12C nucleus and the open-
shell 6Li. As examples for closed shell nuclei we consider 4He and 16O. The NCSM calculations employed here are
carried out with the J-matrix inverse scattering potential, JISP16 [24, 25]. In Sec. II we first define the nonlocal
density, and then show how to remove the center-of-mass (c.m.) contribution to arrive at a translationally invariant
nonlocal density. In Sec. III, we illustrate the off-shell structure of the ti nonlocal density for 4He, 6Li, 12C, and
16O in momentum space as well as for 6Li and 12C in coordinate space. We also investigate the dependence of the
nonlocality on the model space, and finally provide some more details of the nonlocal structure. We summarize in
Sec. IV.

II. FORMAL CONSIDERATIONS

A. Space-fixed Nonlocal Densities

1. Space-fixed nonlocal one-body density in coordinate space

As a starting point we first derive a space-fixed (sf) nonlocal one-body density, ρsf (~r, ~r′), between an initial A-body
wave function |Ψ〉 and a final A-body wave function |Ψ′〉,

ρsf (~r, ~r′) =

〈
Ψ′

∣∣∣∣∣
A∑
i=1

δ3(~ri − ~r)δ3(~r′i − ~r′)

∣∣∣∣∣Ψ
〉

. (1)

The many-body wave function |Ψ〉 is expanded in a basis of Slater determinants of single-particle harmonic oscillator
(HO) states. Since we use sf single-particle coordinates, the wave functions and implicitly the calculated OBDM will
include the c.m. that needs to be removed later. In this paper OBDM elements are calculated within the NCSM,
using the JISP16 NN interaction [24, 25]. The NCSM uses a finite set of single-particle HO states, characterized by
two basis parameters, the HO energy h̄ω and the many-body basis space cut-off Nmax, where Nmax is defined as the
maximum number of oscillator quanta above the valence shell for that nucleus.

Expanding the delta functions from Eq. (1) in terms of spherical harmonics, labelling the A-nucleon many-body
eigenstates by the total angular momentum J , its projection M , and all additional quantum numbers collectively by



3

λ, we obtain

ρsf (~r, ~r′) =

〈
Aλ′J ′M ′

∣∣∣∣∣
A∑
i=1

δ(ri − r)
r2

δ(r′i − r′)
r′2

∑
lm

∑
l′m′

Y ml (r̂i)Y
∗m
l (r̂)Y ∗m

′

l′ (r̂′)Y m
′

l′ (r̂′i)

∣∣∣∣∣AλJM
〉

. (2)

Here r̂ represents the angular part of vector ~r. After coupling the spherical harmonics to bipolar harmonics,

Y l1l2lm (r̂, r̂′) =
∑
m1,m2

〈l1m1l2m2|lm〉Y m1

l1
(r̂)Y m2

l2
(r̂′)

Y m1

l1
(r̂)Y m2

l2
(r̂′) =

l1+l2∑
l=|l1−l2|

l∑
m=−l

〈l1m1l2m2|lm〉 Y l1l2lm (r̂, r̂′) , (3)

and using the Wigner-Eckart theorem, the nonlocal density becomes

ρsf (~r, ~r′) =
∑
ll′

l+l′∑
K=|l−l′|

(−1)J
′−M ′

(
J ′ K J
−M ′ k M

)
Y∗ll

′

Kk (r̂, r̂′)

×

〈
Aλ′J ′M ′

∣∣∣∣∣
∣∣∣∣∣
A∑
i=1

δ(ri − r)
r2

δ(r′i − r′)
r′2

Y ll
′

K (r̂i, r̂
′
i)

∣∣∣∣∣
∣∣∣∣∣AλJM

〉
. (4)

We can immediately make a simplification since in M-scheme calculationsM ′ = M . Thus, the condition−M ′+k+M =
0 in the 3j-symbol forces k to be zero.

To further evaluate the nonlocal density, we rewrite Eq. (4) in second quantization form using α and β as final and
initial single-particle HO states, denoted by the single-particle quantum numbers (n, l, j, tz). Then (a†αãβ)(K), where
anljmtz = (−1)j−mãnlj−mtz , represents the single-particle transition operator of rank K. Using the general expression
of the matrix elements of a one-body operator TK =

∑
i TK,i of rank K [26],

〈ψf ; Jf ||TK ||ψi; Ji〉 =
1

K̂

∑
αβ

〈α ||TK,1||β〉
〈
ψf ; Jf

∣∣∣∣∣∣(a†αãβ)(K)
∣∣∣∣∣∣ψi; Ji〉 , (5)

with K̂ =
√

2K + 1 and TK,1 being a single-particle operator, we obtain for the nonlocal density,

ρsf (~r, ~r′) =
∑
ll′

l+l′∑
K=|l−l′|

(−1)J
′−M

(
J ′ K J
−M 0 M

)
Y∗ll

′

K0 (r̂, r̂′)× (6)

1

K̂

∑
αβ

〈
α

∣∣∣∣∣∣∣∣δ(r1 − r)
r2

δ(r′1 − r′)
r′2

Y ll
′

K (r̂1, r̂
′
1)

∣∣∣∣∣∣∣∣β〉〈Aλ′J ′ ∣∣∣∣∣∣(a†αãβ)(K)
∣∣∣∣∣∣AλJ〉 .

In Eq. (6),
〈
Aλ′J ′

∣∣∣∣(a†αãβ)(K)
∣∣∣∣AλJ〉 are reduced one-body density matrix (OBDM) elements. They are calculated

using NCSM eigenstates |AλJM〉 and |Aλ′J ′M ′〉, and are input to our calculations. Replacing α and β by (n′, l′α, j
′)

and (n, lβ , j), respectively, the reduced single-particle matrix element can be obtained using the HO single-particle
wavefunctions. Note that, for simplicity, the isospin projections are dropped from the labels, for which (tz)α = (tz)β ,
with only protons entering into calculations of charge densities, while calculations of matter densities involve a
summation over both protons and neutrons. We can thus separate and define the K-tensor dependence by

ρll′K(r, r′) ≡
∑
njn′j′

ĵĵ′(−1)l
′+l+j+ 1

2 +K

{
l′ l K
j j′ 1

2

}
Rn′l′(r

′)Rnl(r)
〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)(K)
∣∣∣∣∣∣AλJ〉 , (7)

where Rnl(r) is the radial component of the single-particle harmonic oscillator wave function (defined in Appendix A).

Using Eq. (7), the matrix elements of ρsf (~r, ~r′) can be expressed as a sum over all tensors ρll′K(r, r′),

ρsf (~r, ~r′) =
∑
Kll′

(−1)J
′−M

(
J ′ K J
−M 0 M

)
Y∗l

′l
K0 (r̂, r̂′)ρll′K(r, r′), (8)

separating out the radial and angular components of the nonlocal density.
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2. Space-fixed nonlocal one-body density matrix in momentum space

In order to remove the c.m. contribution, we need a momentum space representation of the nonlocal density,

ρsf (~p, ~p′). We obtain it by applying a Fourier transformation to ρsf (~r, ~r′),

ρsf (~p, ~p′) =
1

(2π)3

∫ ∫
ρsf (~r, ~r′)ei~p·~re−i

~p′·~r′d3rd3r′ , (9)

where a normalization factor
√

1
(2π)3 is included for each integral, and

e−i~p·~r = 4π
∑
Cc

Y cC(r̂)Y ∗cC (p̂)(−i)CjC(pr). (10)

Using ρsf (~r, ~r ′) from Eqs. (8) and (7), and the orthonormality of the spherical harmonics,
∫
Y cC(r̂)Y ∗ml (r̂)dr̂ = δlCδmc ,

leads to

ρsf (~p, ~p′) =
∑
Kll′

(−1)J
′−M

(
J ′ K J
−M 0 M

)
Y∗l

′l
K0 (p̂, p̂′)ρll′K(p, p′), (11)

where the radial and angular part of the ρll′K(p, p′) is given by

ρll′K(p, p′) =
∑
njn′j′

ĵĵ′(−1)
l−l′
2 (−1)j+

1
2 +l+l′+K

{
l′ l K
j j′ 1

2

}
Rn′l′(p

′)Rnl(p)
〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)(K)
∣∣∣∣∣∣AλJ〉 .(12)

This expression is used to calculate the densities from NCSM calculations of OBDM directly in momentum space.
For completeness, the derivation of the local density directly in momentum space is given in Appendix A.

B. Translationally Invariant Nonlocal Densities

In order to analyze the charge and mass distribution inside the nucleus and employ the nonlocal density, e.g.,
in reaction calculations, it needs to be translationally invariant. In NCSM calculations in a HO basis with Nmax

truncation, as well as in the SA-NCSM, the wave function in single particle coordinates exactly factorizes in a c.m.
wave function and a ti wave function,

|ΨJM〉 = |ΨtiJM〉 ⊗ |φc.m.0s〉 , (13)

which can be used to remove the c.m. contribution from the nonlocal density. If we want to extend the scheme for
removing the c.m. contribution developed for local densities [27–31] to the nonlocal case, we need to carefully consider
in which variables we want to work. While in Section II A, the nonlocal density is calculated as a function of the
independent momenta ~p and ~p ′, it is more convenient to proceed with the independent momenta

~q = ~p ′ − ~p
~K =

1

2
(~p ′ + ~p) . (14)

The corresponding set of coordinate space variables is given by

~ζ =
1

2
(~r + ~r ′)

~Z = ~r ′ − ~r , (15)

where the displacement ~Z is translationally invariant, and ~ζ is the average position [32]. Thus the c.m. contribution

must only be associated with ~ζ,

ζ = ζrel + ζc.m.. (16)

Because of the exact factorization of the c.m. wave function and the ti wave function, the sf density can be expressed
as a convolution of the ti density distribution ρti with the c.m. density distribution ρc.m. via:

ρsf (~ζ, ~Z) =

∫
ρti(~ζ − ~ζc.m., ~Z) ρ(~ζc.m., 0) d3ζc.m.. (17)
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Based on the set of variables from Eqs. (14) and (15), we use a Fourier transformation of the operator defined in
Eq. (1) and the coordinates defined in Eq. (14),

ρsf (~q, ~K) =
1

(2π)3

〈
Ψ′J ′M

∣∣∣∣∣
A∑
i=1

e−i~q·(
~ζrel,i+~ζc.m.)e−i

~K·~Zi

∣∣∣∣∣ΨJM
〉

=
1

(2π)3

〈
Ψ′J ′M

∣∣∣∣∣e−i~q·~ζc.m.∑
i

e−i~q·
~ζrel,ie−i

~K·~Zi

∣∣∣∣∣ΨJM
〉

. (18)

In the above derivation we employed for the c.m. coordinate ~Rc.m. = 1
A

∑
i ~ri and defined ~ζc.m. = 1

2 (~Rc.m. + ~R′c.m.).
Using Eq. (13) we can separate the c.m. contribution from the intrinsic part of the nonlocal density.

ρsf (~q, ~K) =
〈
φcm0s|e−i~q·~ζc.m. |φcm0s

〉 1

(2π)3

〈
Ψ′tiJ

′M

∣∣∣∣∣∑
i

e−i~q·
~ζrel,ie−i

~K·~Zi

∣∣∣∣∣ΨtiJM

〉
. (19)

We now can define the ti matrix elements for the nonlocal density as

ρti(~q, ~K) ≡ 1

(2π)3

〈
Ψ′tiJ

′M

∣∣∣∣∣∑
i

e−i~q·
~ζrel,ie−i

~K·~Zi

∣∣∣∣∣ΨtiJM

〉
. (20)

Thus, if we know the space-fixed nonlocal density as a function of the momenta ~q and ~K and calculate the c.m.
contribution in the |0s〉 state, we obtain the translationally invariant density.

Let us first consider the calculation of ρsf (~q, ~K). In order to transform the sf nonlocal density to the coordinates

~q and ~K, the harmonic oscillator lengths must be transformed to b~q and b~K. This transformation is explicitly given
in Appendix B. Then we need to express the product Rnl(p)Rn′l′(p

′)Y(p̂, p̂′) from Eq. (11) as a function of ~q

and ~K. To do so, we use Talmi-Moshinsky transformations from |nln′l′ : K〉 to |nK, lK, nq, lq : K〉. Those Talmi-
Moshinsky brackets only depend on the transformation parameter d, defined in Appendix B, the multipole K, and
the harmonic oscillator quantum numbers (n, l, n′, l′). They do not depend on M and require the energy conservation
2n′ + l′ + 2n+ l = 2nK + lK + 2nq + lq. Thus the radial and angular components of the wave functions transform as

Rn′l′(p
′)Rnl(p)Y l

′l
KM (p̂, p̂′) =∑

nq,nK,lq,lK

〈nKlK, nqlq : K|n′l′, nl : K〉d=1RnKlK(K)Rnqlq (q)Y
lKlq
KM (q̂, K̂) . (21)

With this, the sf nonlocal density as a function of ~q and ~K becomes

ρsf (~q, ~K) =
∑
K

∑
nqlqnKlK

∑
nln′l′jj′

〈nqlqnKlK : K|n′l′nl : K〉d=1 (−1)J
′−M

(
J ′ K J
−M 0 M

)
Y lqlKK0 (q̂, K̂)

(−1)
l−l′
2 (−1)j+

1
2 +l+l′+K ĵĵ′

{
l′ l K
j j′ 1

2

}
Rnqlq (q)RnKlK(K)

〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)K∣∣∣∣∣∣AλJ〉
=
∑
K

∑
lqlK

(−1)J
′−M

(
J ′ K J
M 0 M

)
Y lqlKK0 (q̂, K̂)ρlqlKK(q,K), (22)

where the K-tensor component that depends on q and K is given by

ρlqlKK(q,K) ≡
∑
nqnK

∑
nln′l′jj′

〈nqlqnKlK : K|n′l′nl : K〉d=1 (−1)
l−l′
2 (−1)j+

1
2 +l+l′+K

ĵĵ′
{
l′ l K
j j′ 1

2

}
Rnqlq (q)RnKlK(K)

〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)K∣∣∣∣∣∣AλJ〉 . (23)

Next, we calculate the contribution of the c.m. as〈
φc.m.0s|e−i~q·

~ζc.m. |φc.m.0s
〉

= e−
1

4A b
2q2 , (24)

where A is the number of nucleons and b the harmonic oscillator length. The explicit calculation is given in Appendix C.
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Collecting the information from Eqs. (22) and (24), the ti nonlocal density can be calculated as

ρ(~q, ~K) = e
1

4A b
2q2 ρsf (~q, ~K) , (25)

where we dropped the subscript ti. Since the c.m. contribution is a simple analytic function of q2, the numerical

effort in computing the ti nonlocal density is the computation of the sf nonlocal density as a function of ~q and ~K
in Eq. (21). This is an important advantage of the current method, and avoids the need for transforming NCSM’s
OBDM elements to relative (Jacobi) coordinates. Subsequently, we can obtain the ti nonlocal density in coordinate
space by a Fourier transformation of Eq. (25). The ti local density can be computed from Eq. (25) by integrating the

nonlocal density over ~K,

ρK=0(q) =

∫
dKK2ρ000(q,K) . (26)

Note that this local density in momentum space is also referred to as the elastic form factor (see e.g. Ref. [31]), and
can also be obtained as the Fourier transform of the local probability density in coordinate space. We use this as
numerical check; in particular, the value at q = 0 should correspond to the number of nucleons.

III. RESULTS AND DISCUSSION

A. Nonlocal Densities in Momentum Space

The nonlocal densities shown in this work are based on ab initio NCSM or SA-NCSM calculations of OBDM elements
that employ the JISP16 NN interaction [25]. Before elaborating on the nonlocal structure of the translationally
invariant density, we first establish that its construction is consistent with a translationally invariant local density
directly constructed in momentum space as outlined in Appendix A. In Fig. 1 we show the K = 0 component of the
local proton density of 12C as a function of the momentum transfer q, which is constructed as outlined in Appendix A.
We also confirmed that this is numerically equivalent to the local density construction presented in Ref. [30]. The
solid line represents the Fourier transform of the density to momentum space, the formfactor, which is normalized at
q = 0 to the number of protons. The solid triangles represent the same quantity obtained by integrating the nonlocal
density over the nonlocal variable K according to Eq. (26). The integrated values agree with the directly constructed
ones at least within six significant figures. For comparison, we also include a local density obtained from a more
traditional Hartree-Fock-Bogolyubov mean-field calculation which utilizes the density-dependent finite-range Gogny
D1S nucleon-nucleon interaction [33, 34]. Based on this density elastic proton scattering off 12C was successfully
calculated in [35]. However, a slight mismatch in the diffraction minima of the differential cross section could indicate
that the slower fall-off of the NCSM local density may be preferable.

Next, we want to study nonlocal one-body densities of four different nuclei, the open shell nuclei 6Li and 12C,
and the closed shell nuclei 4He and 16O. It is well known that 12C consisting of six protons and six neutrons is
deformed in its body-fixed frame, 6Li consisting of three protons and three neutrons can be sometimes viewed as
consisting of a 4He core and an additional neutron-proton pair in the p-shell, while 4He and 16O are closed shell
nuclei. In a shell-model framework, the protons and neutrons in 4He occupy predominantly the s-shell, while in 16O
they occupy predominantly the s- and p-shells. Thus we want to explore if nonlocal properties reflect some of the
common perceptions about those nuclei. Since we make a multipole expansion of the nonlocal density, it is convenient
to concentrate on a specific multipole. Here we chose the K = 0 multipole, since this component determines the
density of the 0+ ground states for the even-even nuclei under consideration and dominates in the 1+ ground state in
6Li. First, we want to consider the K = 0 multipole (see Eq. (23) for notation) of the nonlocal one-body density in
momentum space, ρlqlK(K=0)(q,K). We show proton densities in physically relevant variables, the momentum transfer

q = |~p ′−~p| and K = 1
2 |~p
′+~p|. Note that the variable ~K, being the conjugate coordinate to the nonlocal coordinate ~Z,

only appears when nonlocal densities are considered. The converged nonlocal densities ρlqlK(K=0)(q,K) for the proton

distributions of 12C, 16O, and 4He are displayed as function of q and K in Figs. 2, 3, and 4, respectively, while the
corresponding nonlocal density of 6Li is given in the last column of Fig. 7. To illustrate the contributions of different
angular momenta we show slices of constant values of lq = lK. The constraints given in Eq. (21) indicate that, for
K = 0, once lq is fixed, lK takes the same value. We also need to point out that the contributions of odd values of lq
cancel out exactly for K = 0 as a result of the symmetry properties of the Talmi-Moshinsky brackets [36, 37]. The
vanishing contribution for odd lq is validated numerically as well.

A common observations for all four nuclei is that the contribution of lq = 0 dominates. We further point out that
when integrating ρlqlK(K=0)(q,K) over K to obtain the local density, the constraints for lq determine that only lq = 0
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contributes to the local density as it is e.g. given for 12C in Fig. 1. Thus, all higher values of lq are genuinely nonlocal
contributions for K = 0. For both, 6Li and 4He, the maximum of the lq = 0 slice is located at q = 0 and K = 0, and
the functions fall off smoothly to zero in q as well K. This is different for 12C and 16O, for which the maximum value
is located around K ∼ 1 fm−1 and q = 0, and which, in addition, exhibit a minimum around q ∼ 2 fm−1 for K = 0.

Figs. 2-4 as well as Figs. 7-9 are plotted in a way that ρlqlK(q = 2K,K) is shown along the diagonal. For the closed

shell nucleus 4He (Fig. 4), for which the protons are assumed to dominantly occupy the s-shell, the maximum of the
nonlocality for lq ≥ 2 follows the diagonal line and moves to higher values of q the larger lq becomes. For 6Li (Fig. 7,
4th column), which can still be considered as dominated by particles in the s-shell, the maximum of ρlqlK(q,K) moves
slightly away from the ‘diagonal’ and the off-shell structure can be roughly located between ρlqlK(q = 4K,K) and

ρlqlK(q = K,K), while for 12C (Fig. 2) and 16O (Fig. 3) the entire nonlocality is located in this ‘wedge’. Furthermore
the density changes sign along the line q = 2K. This pattern, together with the different lq = 0 behavior, appears to
be a signature for nonlocal densities in p-shell dominated nuclei.

B. Nonlocal Densities in Coordinate Space

Once we obtain the ti nonlocal density in momentum space, we can numerically Fourier transform them to coordinate
space. The conjugate coordinate to the momentum transfer q is the local coordinate ζ = 1

2 |~r
′ + ~r|, and to K the

nonlocal coordinate Z = |~r′ − ~r|. The angular momenta related to ζ and Z are denoted as lζ and lZ . In Fig. 5 we
show angular momentum slices of nonlocal proton densities in coordinate space for K = 0 as a function of ζ and Z
for 12C, and in Fig. 6 for 6Li. Here we choose the local coordinate ζ as one of the axes, so that one can directly read
off the local densities of 12C and 6Li along the line Z = 0. Hence, Fig. 5 shows that the local density of 12C has its
maximum at ζ ∼ 1 fm and is suppressed at ζ = 0 fm, suggesting that the density is pushed away from the center;
indeed, if one plots this density in a body-fixed frame, it will have a deformed torus-like shape with a suppressed
density in the center. However, the present densities are not calculated in a body-fixed frame, and Fig. 5 does not
reveal any features that can be associated with the nuclear deformation. On the other hand, we can say, that when we
compare the lq = 0 contributions in momentum space of 12C and 16O, the local density of 16O also has a maximum
that is pushed away from the origin, which is a consequence of the p-shell being filled up.

The range of the ζ and Z axes are chosen such that the diagonal of the plot shows ρlζ lZ (ζ, Z = 2ζ). Both figures
show similar behavior for lζ ≥ 2 as the corresponding q-K-figure. In Fig. 5 for lζ ≥ 2, the nonlocal density changes
sign along ρlζ lZ (ζ, Z = 2ζ), and the maxima/minima are roughly located in the area given by the lines ζ = 4Z and

ζ = Z, indicating a possible p-shell dominance of the nonlocal density. For 6Li the situation is slightly different: for
lζ = 2 the maximum still follows the diagonal and only for lζ ≥ 4 a p-shell dominance develops. This may indicate
that the lower lζ are still s-shell dominated, while the p-shell proton mainly gives the lζ = 6 contribution.

A further study of NCSM calculations with different NN interactions will have to be carried out to investigate if
the observed nonlocal structures persist and are essentially an indication of the shell structure of the nucleus under
consideration.

C. Dependence of the Nonlocal Density on the Model Space

The calculations presented in the previous sub-sections are carried out with one-body density matrix elements from
NCSM and SA-NCSM calculations that are close to convergence with respect to the ground state binding energies and
low-lying excited states, as far as the model space is concerned. For 6Li those studies are carried out in Ref. [30, 31, 38],
together with model-dependence studies with respect to the root-mean-square point-proton radius and the quadrupole
moment. The calculations for 12C are discussed in Ref. [38] and those for 16O in Refs. [39, 40]. The ti density should
become independent of the basis parameters h̄ω and Nmax as Nmax increases. However, it is impractical to carry out
a convergence study of the nonlocal density itself, and instead, we illustrate how some of the features of the nonlocal
density depend on the model space.

First, we consider the K = 0 component of the nonlocal proton density for a fixed h̄ω = 20 MeV as a function of
the Nmax truncation. In Fig. 7 we display slices of ρlqlK(q,K) for 6Li for fixed lq = lK for Nmax = 6, 10, 12, and 14.
For lq = 0 we observe that the density maximum at q = 0, K = 0 increases as a function of Nmax. This is consistent
with the fact that the tail of the wavefunction in coordinate space (and hence radii) become better described as Nmax

increases. However, the general distribution remains the same. The angular momentum slices lq = 2 and lq = 4
clearly show how the nonlocal structure builds up as Nmax increases, but again, the general distribution remains
the same. Even going from Nmax = 12 to Nmax = 14, there is a very slight increase of the maxima of ρlqlK . The
slice for lq = 6 for Nmax = 6 exhibits a very different nonlocal structure in comparison to the higher Nmax values,
which can be understood as an effect of the model-space truncation. We observe changes in the nonlocal structure
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for lq = 6 even when going from Nmax = 12 to Nmax = 14. However, the absolute values of this contribution is
so small, that calculations of observables based on this nonlocal density are unlikely to be affected by the lq = 6
(or higher) contributions. In general, the figure shows that the Nmax = 6 model space is not sufficient to describe
nonlocal correlations, but the nonlocal structure looks reasonably well converged at Nmax = 14, similarly to the results
calculated earlier for the binding energy and other observables [30].

Next we keep Nmax fixed (Nmax=12) and study the nonlocal structure as a function of the oscillator parameter h̄ω,
where we choose the values 15 MeV, 20 MeV, and 25 MeV. It is well known that, for a given Nmax, the basis truncation
introduces effective infrared (IR) cutoff and ultraviolet (UV) cutoffs that also depend on the h̄ω value: namely, very
low h̄ω values (a small momentum UV cutoff) cut out high momenta that may affect short-range correlations, while
very large h̄ω values (small spatial IR cutoff) affect the wavefunction tail [41–44]. Note that increasing Nmax increases
both the IR and UV cutoffs, removing both cutoffs in the infinite model space limit. Exploring the h̄ω dependence,
in comparison to the large Nmax limit of Fig. 7 which improves both cutoffs, can provide some indication if the
nonlocality is sensitive to these cutoffs. The corresponding functions ρlqlK(q,K) for lq = lK = 0, 2, 4, and 6 are

shown in Fig. 8 and ρlζ lZ (ζ, Z) in Fig. 9 for the proton density of 6Li. The study of Ref. [30] has already shown

that for the local density ρ(r) of 6Li, a smaller value of h̄ω leads to a better description of the asymptotic tail of the
wavefunction and a spatially expanded density, but the density in the nucleus interior becomes low, whereas for larger
values of h̄ω the situation is reversed. Indeed, the larger h̄ω value yields a significantly lower maxima for the density
in momentum space (Fig. 8), whereas the smaller h̄ω value gives very pronounced maxima as function of q and K. As
already mentioned above, this is the result of the poor convergence of the tail of the wavefunction in coordinate space
for large values of h̄ω. On the other hand, low h̄ω values lack a good description of the high momentum behavior.
Furthermore, for low h̄ω the maxima are moved toward low q momentum transfers, and for high lq a particle is mainly
transferred from (or to) low p momentum (diagonal line, as discussed above).

Considering the coordinate space density, ρlζ lZ (ζ, Z), in Fig. 9, we find that for small h̄ω values, the nonlocal
structures are well developed at larger values of ζ and lζ , while for lζ = 0 the maximum at ζ = Z = 0 is less
developed. Again, this is consistent with the findings in Ref. [30]. In contrast, for h̄ω = 25 MeV, we notice that more
features are resolved in the nonlocal structure, especially for higher lζ , a direct result of improving the UV cutoff.
Overall, we conclude that the nonlocality of the density seems to be more sensitive to the IR cutoff, that is, to the
description of the tail of the wavefunction in coordinate space, except for high lq, where the nonlocal contribution,
while being very small, becomes also sensitive to the UV cutoff.

D. Study of the Nonlocality of the Density

To study the nonlocal behavior in a more quantitative fashion, we plot the K = 0, lq = 0 component of ρlqlK(q,K)

for fixed values of q as a function of K for 12C (Fig. 10 (a)) and 4He ((Fig. 10 (b)). As soon as we take K-slices of
12C at higher values of q, the form of the nonlocality changes, dips for q = 1 fm−1 for small K and becomes negative
for even larger q. Since the magnitude of ρK=0,lq=0(q,K) changes by orders of magnitude when moving along q, we
normalize the slices by a factor N given by

N =
ρ(q = 0,K = 0)

ρ(q,K = 0)
. (27)

We also note, that ρK=0,lq=0(q,K) falls off quickly as a function of K, independent of the value of q and becomes

essentially zero for K ≥ 2 fm−1. Comparing with Fig. 3, the nonlocal density of 16O exhibits the same behavior.
Panel (b) of Fig. 10 shows similar slices of the K = 0 component of ρlqlK(q,K) for 4He. Here we find that the
nonlocal density is positive for all values of q and falls off like a Gaussian. However, there is no uniform Gaussian
bell shape for all q, since for the larger q values, the Gaussian width increases. It appears that there is no simple
parameterization of this behavior as a function of q. Similarly to 12C, the nonlocality of the 4He density is essentially
zero for K > 2 fm−1, though it has larger high-momentum components compared to 12C. This can be understood
from realizing that smaller radii in coordinate space translate to larger high-momentum components.

Finally, we show in Fig. 11(a) a ‘formfactor’ ρK=0(K), for K = 0, as a function of K, where ρlqlK(q,K) is integrated

over q. It is worthwhile noting that for 4He and 6Li this function is positive, while it starts as negative values for 12C
and 16O before turning positive. This, together with the observations of Sec. III A, may allow one to conclude that if
a nucleus is dominated by s-shell nucleons, the value of ρK=0(K = 0) is positive, and when p-shell nucleons dominate,
ρK=0(K = 0) is negative.

In addition, we show in Fig. 11(b) the conventional proton formfactors (local densities in momentum space) for the
same nuclei, which are normalized to the proton number at q = 0. Only the charge distributions of the heavier nuclei
have a zero crossing visible in the figure, the one for 6Li turns negative at ∼ 6 fm−1 while it stays completely positive
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for 4He. Generally, the proton formfactor provides information about the spatial charge distribution of the nucleus.
The information given by ρK=0(K) gives a consistent picture, namely, after the s-shell is filled, additional protons fill
up the p-shell.

IV. CONCLUSIONS AND OUTLOOK

In this work we explored features of translationally invariant nonlocal one-body densities obtained from ab initio
NCSM and SA-NCSM calculations using the JISP16 NN interaction [25] for several light nuclei. In order to do this,
we first defined the nonlocal one-body density in a space-fixed coordinate system in such a way that it directly relates
to the OBDM elements which a NSCM calculation provides, and constructed space-fixed nonlocal one-body densities
for 4He, 6Li, 12C, and 16O in momentum and position space. As examples for our study, we chose 4He and 16O
representing closed shell nuclei, together with 6Li and 12C representing open shell nuclei.

To remove the c.m. part of the wavefunctions calculated in the NCSM using a harmonic oscillator basis, we first
needed to transform the space-fixed nonlocal densities from conventionally used linearly independent variables ~p and

~p′ to another linearly independent set ~q and ~K which is more appropriate for our task. Their conjugate coordinate

variables ~ζ and ~Z are such that the c.m. contribution is only contained in ~ζ. With this, we can successfully extend
a scheme developed for removing c.m. contributions from local one-body densities [27–31] to nonlocal one-body
densities.

We studied the nonlocal structure of the one-body densities as a function of the angular momentum lq in momentum
as well as coordinate space. For all four nuclei the largest contribution to the nonlocal density comes from the lq = 0
part, for which the nonlocality is restricted to about 2 fm. The higher angular momenta, though at least two orders
of magnitude smaller, contribute exclusively to the nonlocal structure. Thus nuclear properties or reactions that are
dominated by these angular momentum contributions will show sensitivity to the nonlocality. In addition, we found
that the nonlocal structure of the neutron and proton one-body densities does not show any significant difference for
the N = Z nuclei we investigated. We also found that the structure of the nonlocality reflects the shell structure of the
nuclei we considered. Once the p shell becomes dominant, the nonlocality exhibits a specific pattern not visible in the
s-shell dominated 4He. Finally, we investigated if there may be some systematic behavior in the nonlocal structure of
the one-body densities which might be captured in some analytic form. While this might be possible for the nonlocal
structure of 4He, it does not look promising for the other nuclei we investigated.

We note that the current results are presented for the JISP16 NN interaction, and we have found that, e.g., using
chiral potentials such as the NNLOopt [45] for 6Li does not introduce significant changes into the density outcomes
presented here. A further study that adopts different NN interactions will have to be carried out to investigate if
the observed nonlocal structures persist and are essentially an indication of the nuclear shell structure. We have also
studied the role of nonlocality in densities calculated from the SA-NCSM using selected model spaces, which yields
results that are essentially the same as compared to those obtained in the corresponding complete model spaces. This
will allow one to study nonlocal density features in heavier nuclear systems. The outcomes of these studies will be
the focus of a following publication.

Summarizing, this work shows how the c.m. contribution can be removed from ab initio nonlocal one-body densities
using NCSM wavefunctions, in a similar way as is known for local ones. This will open the path for those densities
to be employed, for example, in calculations of nuclear reactions.

Appendix A: Derivation of the Space-Fixed Local One-Body Density Constructed in Momentum Space

To apply the procedure for removing the c.m. contribution from the local density as suggested in Refs. [30, 31, 44],
the space-fixed local density constructed in coordinate space needs to be Fourier transformed to momentum space.
A numerical Fourier transform as suggested in [30] will introduce numerical errors specifically at large momenta due
to the highly oscillatory nature of the transformation. Therefore, it is highly desirable to derive a scheme in which
the space-fixed local density is constructed directly in momentum space. For this, we need the HO wave functions,
Rnl(p), in momentum space

Rnl(p) = (−1)n
[

2(b2)l+3/2Γ(n+ 1)

Γ(n+ l + 3
2 )

] 1
2

ple−
1
2p

2b2L
l+ 1

2
n (p2b2) , (A1)
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with harmonic oscillator length b =
√

h̄2c2

mc2h̄Ω . The corresponding coordinate space HO wave functions are given as

Rnl(r) =

√
2

π

∫
dpp2Rnl(p)jl(rp) =

[
2Γ(n+ 1)

(b2)l+3/2Γ(n+ l + 3
2 )

] 1
2

rle−
1
2
r2

b2 L
l+ 1

2
n (

r2

b2
) . (A2)

Here a normalization coefficient
√

2
π is included. The function L

l+ 1
2

n ( r
2

b2 ) represents the associated Laguerre polyno-

mials. Note the difference in phase of (−1)n in Rnl(p) and Rnl(r).
Combining this with the multipole expansion of the space-fixed nonlocal one-body density in Eq. (6) and Eq. (7),

we arrive at

ρ
(K)
sf (~r, ~r′) =

∑
nljn′l′j′

l+l′∑
K=|l−l′|

(−1)J
′−M ′

(
J ′ K J
−M ′ 0 M

) ∑
m,m′

〈lml′m′|K0〉Y ∗ml (r̂)Y ∗m
′

l′ (r̂′)×

ĵĵ′ (−1)l
′+l+j+ 1

2 +K

{
l′ l K
j j′ 1

2

}√
2

π

∫
dpp2Rnl(p)jl(rp)

√
2

π

∫
dp′p′2Rn′l′(p

′)jl(r
′p′)〈

Aλ′J ′
∣∣∣∣∣∣(a†n′l′j′ ãnlj)(K)

∣∣∣∣∣∣AλJ〉 . (A3)

Setting ~r = ~r′, reducing the spherical harmonics, and simplifying the resulting Clebsch-Gordan coefficients by com-
bining them with the 6j symbol leads to

ρ
(K)
sf (~r) =

∑
nljn′l′j′

l+l′∑
K=|l−l′|

(−1)J
′−M ′

(
J ′ K J
−M ′ 0 M

)(
j′ j K
1
2 −

1
2 0

)
1√
4π
ĵĵ′ (−1)j+

3
2 +KY ∗0K (r̂)√

2

π

∫
dpp2Rnl(p)jl(rp)

√
2

π

∫
dp′p′2Rn′l′(p

′)jl(rp
′)
〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)(K)
∣∣∣∣∣∣AλJ〉 . (A4)

Rearranging the integrals and performing the Fourier transformation leads to

ρ
(K)
sf (~q) =

∑
nljn′l′j′

l+l′∑
K=|l−l′|

(−1)J
′−M ′

(
J ′ K J
−M ′ 0 M

)(
j′ j K
1
2 −

1
2 0

)
1√
4π
ĵĵ′ (−1)j+

3
2 +K(i)K

Y ∗0K (r̂)
〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)(K)
∣∣∣∣∣∣AλJ〉 8

∫
dpp2Rnl(p)

∫
dp′p′2Rn′l′(p

′)

∫
drr2jK(qr)jl(rp)jl′(r

′p′) . (A5)

For the special case of K = 0 the integral over r can be evaluated analytically, noting that l = l′ and j = j′,∫
drr2j0(qr)jl(rp)jl′(rp

′) =
π

4

β(∆)

pp′q
Pl(∆). (A6)

Here Pl(∆) are Legendre polynomials, and the argument ∆ is defined as

∆ =
p2 + p′2 − q2

2pp′
. (A7)

The function β(∆) is given as

β(∆) = 1 for − 1 < ∆ < 1
β(∆) = 1/2 for ∆ = ±1
β(∆) = 0 otherwise. (A8)

The function β(∆) allows to constrain the integral over p′ in Eq. (A4) to the values

p′ ≤ q + p and p′ ≥ |q − p| . (A9)

This leads to the final expression for the momentum space local density, which can be calculated directly in momentum
space from given OBDM elements from NCSM calculations,

ρ
(0)
sf (q) =

∑
nn′lj

(−1)J
′−M ′

(
J ′ 0 J
−M ′ 0 M

)(
j j 0
1
2 −

1
2 0

)√
πĵĵ(−1)j+

3
2Y ∗00 (r̂)

〈
Aλ′J ′

∣∣∣∣∣∣(a†n′lj ãnlj)(0)
∣∣∣∣∣∣AλJ〉∫ ∞

0

dpp2Rnl(p)

∫ p+q

|p−q|
dp′p′2Rn′l(p

′)
1

pp′q
Pl(∆) . (A10)
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Appendix B: Derivation of harmonic oscillator lengths for the Transformation to q and K

For transforming the momenta of ρ(~p, ~p′) in Eq. (11) to momenta ~q and ~K we need to know how the harmonic
oscillator lengths transform. Defining bK and bq, we can infer that a dimensionless coordinate transformation must
hold in the same fashion as the coordinate transformation defined in Eq. (14),

bK ~K =
bK
2b
b~p ′ +

bK
2b
b~p

bq~q =
bq
b
b~p ′ − bq

b
b~p. (B1)

The transformation can be written as (
bK ~K
bq~q

)
=

√ d
1+d

√
1

1+d√
1

1+d −
√

d
1+d

(b~p ′
b~p

)
, (B2)

with d as a yet undetermined parameter. A comparison with Eq. (B1) leads to

bK
2b

=

√
d

1 + d
=

√
1

1 + d
bq
b

=

√
1

1 + d
=

√
d

1 + d
, (B3)

which is then solved as

d = 1 and bK =
√

2b

d = 1 and bq =
b√
2
. (B4)

This transformation of the harmonic oscillator lengths is the same for the conjugate variables ~ζ and ~Z,

d = 1 and bZ =
√

2b

d = 1 and bζ =
b√
2
. (B5)

The values of d enters the Talmi-Moshinsky brackets in Eq. (21), and bq and bK the radial oscillator functions.

Appendix C: Derivation of the Center of Mass Contribution

As indicated in Eq. (16) the variable ζ can be separated into a component representing the relative motion and
one for the c.m. motion. The displacement Z is already translationally invariant. According to Eq. (13) the c.m.
component of (SA-)NCSM eigenstates is exactly factorized and, by construction, is in the |0s〉 state. Thus we need
to compute Eq. (24),〈

φc.m.0s|e−i~q·
~ζc.m. |φc.m.0s

〉
=

∫ ∫
d3Rc.m.d

3R′c.m.Rnl(Rc.m.)Rn′l′(R
′
c.m.)Y ll

′

K0(R̂c.m., R̂c.m.
′
) e−i~q·

~ζc.m.

=

∫ ∫
d3ζc.m.d

3Zc.m.
∑

nq,nK ,lq,lK

〈nKlK, nqlq : K|n′l′, nl : K〉d=1Rnζ lζ (ζc.m.)RnZ lZ (Zc.m. = 0)

Y lζ lZK0 (ζ̂c.m., Ẑc.m.) e
−i~q·~ζc.m.

=

∫
d3ζc.m.R00(ζc.m.)R00(0)

1

4π
e−i~q·

~ζc.m. . (C1)

We note that

〈nK = 0 lK = 0, nq = 0 lq = 0 : K = 0|n′ = 0 l′ = 0, n = 0 l = 0 : K = 0〉d=1 = 1. (C2)
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Furthermore, if n = l = n′ = l′ = 0, then nq = lq = nK = lK = 0 as well. Evaluating the radial wave function using
Eq. (A2) with the corresponding harmonic oscillator lengths, we obtain

R00(ζc.m.) =

[
22

(b2ζc.m.)
3/2
√
π

] 1
2

e
− 1

2

ζ2c.m.
b2
ζc.m.

R00(Zc.m. = 0) =

[
22

(b2Zc.m.)
3/2
√
π

] 1
2

(C3)

where b2ζc.m. =
b2ζ
A and b2Zc.m. =

b2Z
A . Inserting Eq. (C3) into Eq. (C1) leads to

〈
φc.m.0s

∣∣∣e−i~q·~ζc.m. ∣∣∣φc.m.0s〉 =

(
1

π

)3/2
1

(bζc.m.)
3/2

1

(bZc.m.)
3/2

∫
d3ζc.m.e

− 1
2

ζ2c.m.
b2
ζc.m.

−i~q·~ζc.m.
. (C4)

Completing the square in the integral leads to〈
φc.m.0s

∣∣∣e−i~q·~ζc.m. ∣∣∣φc.m.0s〉 =

(
2bζc.m.
bZc.m.

)3/2

e−
1
2 b

2
ζc.m.

q2 = e−
1

4A b
2q2 , (C5)

where we used the relations for bζ and bZ from Eq. (B5) to arrive at the final expression for the c.m. contribution.
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FIG. 1. The translationally invariant local one-body density obtained from a NCSM calculation (Nmax = 10, h̄ω = 20 MeV)
based on the JISP16 NN interaction for the proton distribution of 12C as function of the momentum transfer q. The solid
line (red) shows the direct construction in momentum space, while the solid triangles (black) give the local density obtained
by integrating the nonlocal density over the momentum K. As comparison a local density obtained from a HFB mean field
calculation based on the Gogny interaction [34] is shown by the filled solid (blue) circles.
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FIG. 2. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation
(Nmax = 10, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 12C as function of the momenta
q and K. Panel (a) depicts the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.
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FIG. 3. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation
(Nmax = 8, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 16O as function of the momenta
q and K. Panel (a) depicts the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.
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FIG. 4. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation
(Nmax = 14, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 4He as function of the momenta
q and K. Panel (a) depicts the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.
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FIG. 5. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation
(Nmax = 10, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 12C as function of the local
coordinate ζ and the nonlocal coordinate Z. Panel (a) depicts the contribution of lζ = 0, (b) of lζ = 2, (c) of lζ = 4, and (d)
of lζ = 6.
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FIG. 6. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation
(Nmax = 14, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the local
coordinate ζ and the nonlocal coordinate Z. Panel (a) depicts the contribution of lζ = 0, (b) of lζ = 2, (c) of lζ = 4, and (d)
of lζ = 6.
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FIG. 7. The K = 0 component of the translationally invariant nonlocal one-body density ρlqlK(q,K) obtained from a NCSM

calculation (h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the momenta
q and K and the size of the model space. The first column contains angular momentum slices obtained with Nmax = 6, the
second with Nmax = 10, the third with Nmax = 12, and the fourth with Nmax = 14. The rows represent different angular
momentum slices lq = lK from 0 to 6.
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FIG. 8. The K = 0 component of the translationally invariant nonlocal one-body density ρlqlK(q,K) obtained from a NCSM

calculation (Nmax = 12) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the momenta q
and K and the oscillator parameter h̄ω. The first column contains angular momentum slices obtained with h̄ω = 15 MeV, the
second with h̄ω = 20 MeV, and the third with h̄ω = 25 MeV. The rows represent different angular momentum slices lq = lK
from 0 to 6.
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FIG. 9. The K = 0 component of the translationally invariant nonlocal one-body density ρlζ lZ (ζ, Z) obtained from a NCSM

calculation (Nmax = 12) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the local
coordinate ζ, the nonlocal coordinate Z and the oscillator parameter h̄ω. The first column contains angular momentum slices
obtained with h̄ω = 15 MeV, the second with h̄ω = 20 MeV, and the third with h̄ω = 25 MeV. The rows represent different
angular momentum slices lζ = lZ from 0 to 6.
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FIG. 10. The K = 0, lq = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM
calculation based on the JISP16 NN interaction for the proton distribution of 12C (panels (a)) and 4He (panel (b)) as a function
of the nonlocal momentum K at fixed momenta q as indicated in the legend. The distributions are normalized by the factors
indicated in the legend.
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FIG. 11. The K = 0 component of the translationally invariant one-body density obtained from NCSM calculations based on
the JISP16 NN interaction for the proton distributions of 4He, 6Li, 12C, and 16O as a function of the nonlocal momentum K
when integrated of the local momentum q (panel (a)). Panel (b) depicts the local densities for the same nuclei as function of
the momentum transfer q when integrated over the nonlocal momentum K.


